Classical and Modern Recognition Techniques

3-1-1-1

Today's outline

- We've covered Deep Convolutional Networks. But what did recognition techniques look like before AlexNet?
 - Bag of words models
 - Sliding window models
- What do more recent deep learning architectures look like?

Slides from Lana Lazebnik, Fei-Fei Li, Rob Fergus, Antonio Torralba, and Jean Ponce

How many visual object categories are there?

Biederman 1987

Specific recognition tasks

Scene categorization or classification

Image annotation / tagging / attributes

Object detection

Image parsing / semantic segmentation

Scene understanding?

Recognition is all about modeling variability

Within-class variations

History of ideas in recognition

• 1960s – early 1990s: the geometric era

Roberts (1965); Lowe (1987); Faugeras & Hebert (1986); Grimson & Lozano-Perez (1986); Huttenlocher & Ullman (1987) Svetlana Lazebnik

Recall: Alignment

 Alignment: fitting a model to a transformation between pairs of features (*matches*) in two images

Recognition as an alignment problem: Block world

L. G. Roberts, <u>Machine</u> <u>Perception of Three</u> <u>Dimensional Solids</u>, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Fig. 1. A system for recognizing 3-d polyhedral scenes. a) L.G. Roberts. b)A blocks world scene. c)Detected edges using a 2x2 gradient operator. d) A 3-d polyhedral description of the scene, formed automatically from the single image. e) The 3-d scene displayed with a viewpoint different from the original image to demonstrate its accuracy and completeness. (b) - e) are taken from [64] with permission MIT Press.)

J. Mundy, Object Recognition in the Geometric Era: a Retrospective, 2006

Representing and recognizing object categories is harder...

ACRONYM (Brooks and Binford, 1981) Binford (1971), Nevatia & Binford (1972), Marr & Nishihara (1978)

Recognition by components

Biederman (1987)

http://en.wikipedia.org/wiki/Recognition_by_Components_Theory

Zisserman et al. (1995)

General shape primitives?

Forsyth (2000)

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models

Empirical models of image variability

Appearance-based techniques

Turk & Pentland (1991); Murase & Nayar (1995); etc.

Eigenfaces (Turk & Pentland, 1991)

Experimental	Correct/Unknown Recognition Percentage		
Condition	Lighting	Orientation	Scale
Forced classification	96/0	85/0	64/0
Forced 100% accuracy	100/19	100/39	100/60
Forced 20% unknown rate	100/20	94/20	74/20

Color Histograms

Swain and Ballard, Color Indexing, IJCV 1991. Svetlana Lazebnik

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- 1990s present: sliding window approaches

Sliding window approaches

Sliding window approaches

- Turk and Pentland, 1991
- Belhumeur, Hespanha, & Kriegman, 1997
- Schneiderman & Kanade 2004
- Viola and Jones, 2000

- Schneiderman & Kanade, 2004
- Argawal and Roth, 2002
- Poggio et al. 1993

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features

Local features for object instance recognition

D. Lowe (1999, 2004)

Large-scale image search

Combining local features, indexing, and spatial constraints

Image credit: K. Grauman and B. Leibe

Large-scale image search

Combining local features, indexing, and spatial constraints

Philbin et al. '07

Large-scale image search

Combining local features, indexing, and spatial constraints

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

Available on phones that run Android 1.6+ (i.e. Donut or Eclair)

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models

Parts-and-shape models

- Model:
 - Object as a set of parts
 - Relative locations between parts
 - Appearance of part

Figure from [Fischler & Elschlager 73]
Constellation models

Weber, Welling & Perona (2000), Fergus, Perona & Zisserman (2003)

Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)

Discriminatively trained part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, <u>"Object Detection</u> with Discriminatively Trained Part-Based Models," PAMI 2009

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features

Bag-of-features models

Bag-of-features models

Svetlana Lazebnik

Objects as texture

• All of these are treated as being the same

• No distinction between foreground and background: scene recognition?

Origin 1: Texture recognition

- Texture is characterized by the repetition of basic elements or *textons*
- For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Origin 1: Texture recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Orderless document representation: frequencies of words
from a dictionary Salton & McGill (1983)

Bag-of-features steps

- 1. Extract features
- 2. Learn "visual vocabulary"
- 3. Quantize features using visual vocabulary
- 4. Represent images by frequencies of "visual words"

1. Feature extraction

• Regular grid or interest regions

1. Feature extraction

Detect patches

Slide credit: Josef Sivic

1. Feature extraction

Slide credit: Josef Sivic

2. Learning the visual vocabulary

2. Learning the visual vocabulary

2. Learning the visual vocabulary

Slide credit: Josef Sivic

Example codebook

Appearance codebook

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

But what about layout?

All of these images have the same color histogram

Spatial pyramid

Compute histogram in each spatial bin

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

Lazebnik, Schmid & Ponce (CVPR 2006)

Scene category dataset

Multi-class classification results (100 training images per class)

	Weak features		Strong features		
	(vocabulary size: 16)		(vocabulary size: 200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6		
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5	
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ±0.3	
3 (8 × 8)	63.3 ± 0.8	66.8 ±0.6	77.2 ± 0.4	80.7 ± 0.3	

Caltech101 dataset

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	$\textbf{64.6} \pm 0.8$
3	$52.2\pm\!0.8$	54.0 ± 1.1	60.3 ± 0.9	$64.6\pm\!0.7$

History of ideas in recognition

- 1960s early 1990s: the geometric era
- 1990s: appearance-based models
- Mid-1990s: sliding window approaches
- Late 1990s: local features
- Early 2000s: parts-and-shape models
- Mid-2000s: bags of features
- Present trends: combination of local and global methods, context, deep learning

Beyond AlexNet

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the "VGG" networks. "Perceptual Loss" in generative deep learning refers to these networks

ConvNet Configuration						
А	A-LRN	В	C	D	E	
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight	
layers	layers	layers	layers	layers	layers	
input (224×224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	
	LRN	conv3-64	conv3-64	conv3-64	conv3-64	
		max	pool			
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	
		conv3-128	conv3-128	conv3-128	conv3-128	
		max	pool			
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	
			conv1-256	conv3-256	conv3-256	
					conv3-256	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
		max	pool			
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	
			conv1-512	conv3-512	conv3-512	
					conv3-512	
maxpool						
FC-4096						
FC-4096						
FC-1000						
soft-max						

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train (S)	test (Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
С	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

Table 4: ConvNet performance at multiple test scales.

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich 2015

This is the "Inception" architecture or "GoogLeNet"

*The architecture blocks are called "Inception" modules and the collection of them into a particular net is "GoogLeNet"

(b) Inception module with dimensionality reduction
type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	$\#5 \times 5$	pool proj	params	ops
convolution	7×7/2	$112 \times 112 \times 64$	1							2.7K	34M
max pool	$3 \times 3/2$	$56 \times 56 \times 64$	0								
convolution	$3 \times 3/1$	$56 \times 56 \times 192$	2		64	192				112K	360M
max pool	$3 \times 3/2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
max pool	$3 \times 3/2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3 \times 3/2$	$7 \times 7 \times 832$	0								
inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	$7 \times 7/1$	$1 \times 1 \times 1024$	0								
dropout (40%)		1×1×1024	0								
linear		1×1×1000	1							1000K	1M
softmax		1×1×1000	0								

Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

 Table 2: Classification performance.

Number of models	Number of Crops	Cost	Top-5 error	compared to base
1	1	1	10.07%	base
1	10	10	9.15%	-0.92%
1	144	144	7.89%	-2.18%
7	1	7	8.09%	-1.98%
7	10	70	7.62%	-2.45%
7	144	1008	6.67%	-3.45%

ImageNet Classification top-5 error (%)

Surely it would be ridiculous to go any deeper...

• To be continued with ResNet