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The machine learning framework

• Apply a prediction function to a feature representation of 

the image to get the desired output:

f(    ) = “apple”

f(    ) = “tomato”

f(    ) = “cow”
Slide credit: L. Lazebnik



Learning a classifier

Given some set of features with corresponding labels, learn a 
function to predict the labels from the features
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Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



Very brief tour of some classifiers

• K-nearest neighbor

• SVM

• Boosted Decision Trees

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• RBMs

• Etc.



Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and 
the labels

• Often, makes use of 
conditional independence 
and priors

• Examples
– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to 
future prediction problems

Discriminative Models

• Learn to directly predict the 
labels from the data

• Often, assume a simple 
boundary (e.g., linear)

• Examples
– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a 
label from the data than to 
model the data

Slide credit: D. Hoiem



Classification

• Assign input vector to one of two or more 

classes

• Any decision rule divides input space into 

decision regions separated by decision 

boundaries

Slide credit: L. Lazebnik



Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data 

point 

Voronoi partitioning of feature space 
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe



K-nearest neighbor
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1-nearest neighbor
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3-nearest neighbor
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5-nearest neighbor
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Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has error that is at most 
twice Bayes optimal error



Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)



Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)



Classifiers: Linear SVM
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• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)



• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard? 

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore



Φ:  x→ φ(x)

Nonlinear SVMs

• General idea: the original input space can 

always be mapped to some higher-dimensional 

feature space where the training set is 

separable:

Slide credit: Andrew Moore



Nonlinear SVMs

• The kernel trick: instead of explicitly computing 

the lifting transformation φ(x), define a kernel 

function K such that

K(xi,xj) = φ(xi ) · φ(xj)

(to be valid, the kernel function must satisfy 

Mercer’s condition)

• This gives a nonlinear decision boundary in the 

original feature space:
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Nonlinear kernel: Example
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Kernels for bags of features

• Histogram intersection kernel:

• Generalized Gaussian kernel:

• D can be (inverse) L1 distance, Euclidean distance, χ2

distance, etc.
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J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for 

Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf


Summary: SVMs for image classification

1. Pick an image representation (e.g. a histogram 

of sift feature counts)

2. Pick a kernel function for that representation

3. Compute the matrix of kernel values between 

every pair of training examples

4. Feed the kernel matrix into your favorite SVM 

solver to obtain support vectors and weights

5. At test time: compute kernel values for your test 

example and each support vector, and combine 

them with the learned weights to get the value of 

the decision function

Slide credit: L. Lazebnik



What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-class SVM 

formulation

• In practice, we have to obtain a multi-class SVM by combining 

multiple two-class SVMs 

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the class of the SVM that 

returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to the test example

Slide credit: L. Lazebnik



SVMs: Pros and cons

• Pros
• Many publicly available SVM packages:

http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible

• SVMs work very well in practice, even with very small 

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory 

– During training time, must compute matrix of kernel values for 

every pair of examples

– Learning can take a very long time for large-scale problems

http://www.kernel-machines.org/software


Generalization

• How well does a learned model generalize from 

the data it was trained on to a new test set?

Training set (labels known) Test set (labels 

unknown)

Slide credit: L. Lazebnik



Generalization
• Components of generalization error 

– Bias: how much the average model over all training sets differ 

from the true model?

• Error due to inaccurate assumptions/simplifications made by 

the model. “Bias” sounds negative. “Regularization” sounds 

nicer.

– Variance: how much models estimated from different training 

sets differ from each other.

• Underfitting: model is too “simple” to represent all the 

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant 

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error
Slide credit: L. Lazebnik



Bias-Variance Trade-off

• Models with too few 
parameters are 
inaccurate because of a 
large bias (not enough 
flexibility).

• Models with too many 
parameters are 
inaccurate because of a 
large variance (too much 
sensitivity to the sample).

Slide credit: D. Hoiem



Bias-Variance Trade-off

E(MSE) = noise2  + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural 

Networks” book): 

•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable 

error

Error due to 

incorrect 

assumptions

Error due to 

variance of training 

samples

Slide credit: D. Hoiem

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf


Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance
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Slide credit: D. Hoiem



Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance
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Slide credit: D. Hoiem



Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

E
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Fixed prediction model

Slide credit: D. Hoiem



Remember…

• No classifier is inherently 
better than any other: you 
need to make assumptions to 
generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to 
perfectly estimate parameters 
from limited data

Slide credit: D. Hoiem



• How to reduce variance?

– Choose a simpler classifier

– Regularize the parameters

– Get more training data

• How to reduce bias?

– Choose a more complex, more expressive classifier

– Remove regularization

– (These might not be safe to do unless you get more training data)

Slide credit: D. Hoiem



What to remember about classifiers

• No free lunch: machine learning algorithms are tools, not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers than simple features 
and smart classifiers

• Use increasingly powerful classifiers with more training data (bias-
variance tradeoff)

Slide credit: D. Hoiem



Machine Learning Considerations

• 3 important design decisions:
1) What data do I use?

2) How do I represent my data (what feature)?

3) What classifier / regressor / machine learning tool 
do I use?

• These are in decreasing order of importance

• Deep learning addresses 2 and 3 
simultaneously (and blurs the boundary 
between them). 

• You can take the representation from deep 
learning and use it with any classifier.





• Andrew Ng’s ranking of machine learning 
impact

1. Supervised Learning

2. Transfer Learning

3. Unsupervised Learning* (Often “self-supervised” 
learning)

4. Reinforcement Learning

James thinks 2 and 3 might 

have switched ranks.


