
Machine Learning Crash Course

Computer Vision
James Hays

Slides: Isabelle Guyon,

Erik Sudderth,

Mark Johnson,

Derek Hoiem

Photo: CMU Machine Learning

Department protests G20

The machine learning framework

• Apply a prediction function to a feature representation of

the image to get the desired output:

f() = “apple”

f() = “tomato”

f() = “cow”
Slide credit: L. Lazebnik

Learning a classifier

Given some set of features with corresponding labels, learn a
function to predict the labels from the features

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

Very brief tour of some classifiers

• K-nearest neighbor

• SVM

• Boosted Decision Trees

• Neural networks

• Naïve Bayes

• Bayesian network

• Logistic regression

• Randomized Forests

• RBMs

• Etc.

Generative vs. Discriminative Classifiers

Generative Models

• Represent both the data and
the labels

• Often, makes use of
conditional independence
and priors

• Examples
– Naïve Bayes classifier

– Bayesian network

• Models of data may apply to
future prediction problems

Discriminative Models

• Learn to directly predict the
labels from the data

• Often, assume a simple
boundary (e.g., linear)

• Examples
– Logistic regression

– SVM

– Boosted decision trees

• Often easier to predict a
label from the data than to
model the data

Slide credit: D. Hoiem

Classification

• Assign input vector to one of two or more

classes

• Any decision rule divides input space into

decision regions separated by decision

boundaries

Slide credit: L. Lazebnik

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data

point

Voronoi partitioning of feature space
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe

K-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

1-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

3-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

5-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

Using K-NN

• Simple, a good one to try first

• With infinite examples, 1-NN provably has error that is at most
twice Bayes optimal error

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

f(x) = sgn(w  x + b)

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Φ: x→ φ(x)

Nonlinear SVMs

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Slide credit: Andrew Moore

Nonlinear SVMs

• The kernel trick: instead of explicitly computing

the lifting transformation φ(x), define a kernel

function K such that

K(xi,xj) = φ(xi) · φ(xj)

(to be valid, the kernel function must satisfy

Mercer’s condition)

• This gives a nonlinear decision boundary in the

original feature space:

bKyby
i

iii

i

iii  ),()()(xxxx 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Nonlinear kernel: Example

• Consider the mapping),()(2xxx 

22

2222

),(

),(),()()(

yxxyyxK

yxxyyyxxyx





x2

Kernels for bags of features

• Histogram intersection kernel:

• Generalized Gaussian kernel:

• D can be (inverse) L1 distance, Euclidean distance, χ2

distance, etc.





N

i

ihihhhI
1

2121))(),(min(),(









 2

2121),(
1

exp),(hhD
A

hhK

J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, Local Features and Kernels for

Classifcation of Texture and Object Categories: A Comprehensive Study, IJCV 2007

http://lear.inrialpes.fr/pubs/2007/ZMLS07/ZhangMarszalekLazebnikSchmid-IJCV07-ClassificationStudy.pdf

Summary: SVMs for image classification

1. Pick an image representation (e.g. a histogram

of sift feature counts)

2. Pick a kernel function for that representation

3. Compute the matrix of kernel values between

every pair of training examples

4. Feed the kernel matrix into your favorite SVM

solver to obtain support vectors and weights

5. At test time: compute kernel values for your test

example and each support vector, and combine

them with the learned weights to get the value of

the decision function

Slide credit: L. Lazebnik

What about multi-class SVMs?

• Unfortunately, there is no “definitive” multi-class SVM

formulation

• In practice, we have to obtain a multi-class SVM by combining

multiple two-class SVMs

• One vs. others
• Traning: learn an SVM for each class vs. the others

• Testing: apply each SVM to test example and assign to it the class of the SVM that

returns the highest decision value

• One vs. one
• Training: learn an SVM for each pair of classes

• Testing: each learned SVM “votes” for a class to assign to the test example

Slide credit: L. Lazebnik

SVMs: Pros and cons

• Pros
• Many publicly available SVM packages:

http://www.kernel-machines.org/software

• Kernel-based framework is very powerful, flexible

• SVMs work very well in practice, even with very small

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory

– During training time, must compute matrix of kernel values for

every pair of examples

– Learning can take a very long time for large-scale problems

http://www.kernel-machines.org/software

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

Generalization
• Components of generalization error

– Bias: how much the average model over all training sets differ

from the true model?

• Error due to inaccurate assumptions/simplifications made by

the model. “Bias” sounds negative. “Regularization” sounds

nicer.

– Variance: how much models estimated from different training

sets differ from each other.

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error
Slide credit: L. Lazebnik

Bias-Variance Trade-off

• Models with too few
parameters are
inaccurate because of a
large bias (not enough
flexibility).

• Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).

Slide credit: D. Hoiem

Bias-Variance Trade-off

E(MSE) = noise2 + bias2 + variance

See the following for explanations of bias-variance (also Bishop’s “Neural

Networks” book):

•http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Unavoidable

error

Error due to

incorrect

assumptions

Error due to

variance of training

samples

Slide credit: D. Hoiem

http://www.inf.ed.ac.uk/teaching/courses/mlsc/Notes/Lecture4/BiasVariance.pdf

Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

High Bias

Low Variance

E
rr

o
r

Slide credit: D. Hoiem

Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

High Bias

Low Variance

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

E
rr

o
r

Fixed prediction model

Slide credit: D. Hoiem

Remember…

• No classifier is inherently
better than any other: you
need to make assumptions to
generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications

– Variance: due to inability to
perfectly estimate parameters
from limited data

Slide credit: D. Hoiem

• How to reduce variance?

– Choose a simpler classifier

– Regularize the parameters

– Get more training data

• How to reduce bias?

– Choose a more complex, more expressive classifier

– Remove regularization

– (These might not be safe to do unless you get more training data)

Slide credit: D. Hoiem

What to remember about classifiers

• No free lunch: machine learning algorithms are tools, not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers than simple features
and smart classifiers

• Use increasingly powerful classifiers with more training data (bias-
variance tradeoff)

Slide credit: D. Hoiem

Machine Learning Considerations

• 3 important design decisions:
1) What data do I use?

2) How do I represent my data (what feature)?

3) What classifier / regressor / machine learning tool
do I use?

• These are in decreasing order of importance

• Deep learning addresses 2 and 3
simultaneously (and blurs the boundary
between them).

• You can take the representation from deep
learning and use it with any classifier.

• Andrew Ng’s ranking of machine learning
impact

1. Supervised Learning

2. Transfer Learning

3. Unsupervised Learning* (Often “self-supervised”
learning)

4. Reinforcement Learning

James thinks 2 and 3 might

have switched ranks.

