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Supervised Learning

[(xi, y'),i=1.. P] training dataset

i
X

!
Y

P

I-th input training example
I-th target label

number of training examples

X
m———

Goal: predict the target label of unseen inputs.
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Supervised Learning: Examples

Classification

OCR
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Supervised Deep Learning

Classification

OCR

“2345”
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Outline

« Supervised Neural Networks
- Convolutional Neural Networks
« Examples

« Tips
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Neural Networks

Assumptions (for the next few slides):

= The input image is vectorized (disregard the spatial layout of pixels)
= The target label is discrete (classification)

Question: what class of functions shall we consider to map the input
into the output?

Answer: composition of simpler functions.

Follow-up questions: Why not a linear combination? What are the
“simpler” functions? What is the interpretation?

Answer: |later...
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X

hl

Neural Networks: example

Input
1-st layer hidden units

h* 2-nd layer hidden units
O output

Example of a 2 hidden layer neural network (or 4 layer network,

counting also input and output).
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Forward Propagation

Def.: Forward propagation is the process of computing the
output of the network given its input.
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Forward Propagation

xeR’ w'er™” bp'er™  pler”
h'=max(0,W'x+b")

W' 1-st layer weight matrix or weights
bl 1-st layer biases

The non-linearity z=max (0,v) is called ReLU in the DL literature.
Each output hidden unit takes as input all the units at the previous
layer: each such layer is called “fully connected”.
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Forward Propagation

N

ner" w2er"™™ per": pepr™
W =max(0,W*h'+b*)

I/V2 2-nd layer weight matrix or weights
bp* 2-nd layer biases
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Forward Propagation

N N
> PPeR: oeRN3

Wwer" wler"™™™
o=max(0,W° h*+b’)

W3 3-rd layer weight matrix or weights
b3 3-rd layer biases
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Alternative Graphical Representation

k+1
hl

k+1
h2

k+1
h3

A
oW RN o 3

12
Ranzaton




Interpretation

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a
hierarchical architecture is potentially more efficient because
Intermediate computations can be re-used. DL architectures are
efficient also because they use distributed representations which
are shared across classes.

[0010000100110010...]truckfeature

Exponentially more efficient than a
1-of-N representation (a la k-means)
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Interpretation

[1100010100001101] motorbike

001000010011 0010...] tuck

ph
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Interpretation

prediction of class

high-level
parts

= distributed representations
s feature sharing
= compositionality

mid-level
parts

low level
parts

Input image e c -

== e | 16
Lee et al. “Convolutional DBN's ...” ICML 2009 Ranzaton




Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are
the answer. In general, the wider and the deeper the network the
more complicated the mapping.

Question: How do | set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.

Then, we need to define a procedure to adjust the parameters. .
Ranzaton




How Good is a Network?

Probability of class k given input (softmax):

o

e
p( Ck — 1 |x ) — C
2., ¢
j=1
(Per-sample) Loss; e.g., negative log-likelihood (good for classification
of small number of classes):

L(xayfe):_zj yflogp(CJ"x) Ranzaltgon
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Training

Learning consists of minimizing the loss (plus some
regularization term) w.r.t. parameters over the whole training set.

P
0~ =arg min, anl L(x",y";0)

Question: How to minimize a complicated function of the
parameters?

Answer: Chain rule, a.k.a. Backpropagation! That is the procedure
to compute gradients of the loss w.r.t. parameters in a multi-layer
neural network.

19

Rumelhart et al. “Learning internal representations by back-propagating..” Nature 1986



Key Idea: Wiggle To Decrease Loss

Let's say we want to decrease the loss by adjusting Wj,j.
We could consider a very small e=1e-6 and compute:

Lix,y;0)

Lix,y; 0\ W:,J.+e)

i Jj?

Then, update:
W:,J.<—Wf,j+e sgn(L(x,y:0)—L(x,y;0\W'

i, J?

W, +e))
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Derivative w.r.t. Input of Softmax

ple=1lx)= Z =

1 k C
L(x,y;@):—zj_yjlogp(cj|x) y=[00..010..0]|

By substituting the fist formula in the second, and taking the
derivative w.rt. 0 we get:

0L

6_0: p(ch)—y
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Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the
Jacobian of each module, we have:

0L 9L do 0L 8L do

ow® 0o oW’ oh> 00 on
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Backward Propagation

oL

Given 0 L/00 and assuming we can easily compute the

Jacobian of each module, we have:

0L oL do 0L 0L 0o
ow® 0o oW’ oh> 00 on
oL oL
= (plc|x)—y) b =W (plex)—y)=

oW’ oh’



Backward Propagation

oL
oh’

oL 0L on’ oL oL ol

ow®  on® ow? oh'  ohn’ on'

Given

we can compuie now:
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Backward Propagation

oL
oh'

0L OL Oh'
ow' on ow'

Given

we can compuie now:
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Backward Propagation

Question: Does BPROP work with ReLU layers only?
Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input
and parameters at every layer).



Optimization

Stochastic Gradient Descent (on mini-batches):

00-nSs.ne(0.1)

Stochastic Gradient Descent with Momentum:

6—0—nA
o L

Note: there are many other variants... 27
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Toy Example: Synthetic Data

5

# Target

® Before training
4L © After 1 epoch

L

At the end of training

output

1 input & 1 outpu
3 hidden layers, 1000 hiddens

_ Regression of cosine
i i | i

l 31
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output

-0.8

0.8

Toy Example Synthetlc Data

1 |nput&1 output .
100 hldden unlts |n each Iayer

3 l'-l'-]-l-l-l'.*'..i
1.\"_- : i,
i ; :

-20

4 -
dl TP T 3L Bk

5 -5-1-*"'\!
1 :

w1 hidden layer |:
=== 2 hidden layers |
3 hldden lavers

-15

10 15
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output

0.8

=10 hiddens
=== 400 hiddens

-20

-15 -10

1000 hiddens

Toy Example Synthetlc Data

| 1 |nput & 1 output”
3 hidden Iayers




Outline

» Convolutional Neural Networks
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This all seems pretty complicated. Why are we using Neural Networks? James’s rough assessment:

Learning method | Ease of

configuration

Neural Network 1

Nearest 10
Neighbor
Linear SVM 10

Non-linear SVM 5

Decision Treeor 4
Random Forest



This all seems pretty complicated. Why are we using Neural Networks? James’s rough assessment:

Learning method | Ease of Ease of
configuration interpretation

Neural Network 1 1

Nearest 10 10

Neighbor

Linear SVM 10 9

Non-linear SVM 5 4

Decision Treeor 4 4

Random Forest



This all seems pretty complicated. Why are we using Neural Networks? James’s rough assessment:

Learning method | Ease of Ease of Speed / memory
configuration interpretation when training

Neural Network 1 1 1

Nearest 10 10 8

Neighbor

Linear SVM 10 9 10

Non-linear SVM 5 4 2

Decision Treeor 4 4 4

Random Forest



This all seems pretty complicated. Why are we using Neural Networks? James’s rough assessment:

Learning method | Ease of Ease of Speed / memory | Speed / memory
configuration interpretation when training at test time

Neural Network 1 1 1 6

Nearest 10 10 8 4

Neighbor

Linear SVM 10 9 10 10

Non-linear SVM 5 4 2 2

Decision Treeor 4 4 4 8

Random Forest



This all seems pretty complicated. Why are we using Neural Networks? James’s rough assessment:

Learning method | Ease of Ease of Speed / memory | Speed / memory | Accuracy w/ lots
configuration interpretation when training at test time of data

Neural Network 1 1 1 6 10

Nearest 10 10 8 4 7

Neighbor

Linear SVM 10 9 10 10 5

Non-linear SVM 5 4 2 2 8

Decision Treeor 4 4 4 8 7

Random Forest



This all seems pretty complicated. Why are we using Neural Networks? James’s rough assessment:

Learning method | Ease of Ease of Speed / memory | Speed / memory | Accuracy w/ lots
configuration interpretation when training at test time of data

Neural Network 1

Nearest 10 10 8 4 7
Neighbor

Linear SVM 10

Representation design matters

Non-linear SVM 5

more for all of these

Decision Treeor 4
Random Forest




Outline

» Convolutional Neural Networks

32
Ranzaton




Fully Connected Layer

Example: 200x200 image
- 40K hidden units
m) ~2B parameters!!!

- Spatial correlation is local
- Waste of resources + we have not enough

. . 33
training samples anyway.. Ranzat n
anzato




Locally Connected Layer

Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
. when input image is registered (e.g., |
face recognition). Ranzaton




Locally Connected Layer

STATIONARITY? Statistics is similar at
different locations

Example: 200x200 image
\ 40K hidden units
. Filter size: 10x10

. 4M parameters

Note: This parameterization is good
when input image is registered (e.g., N
face recognition). Ranzaton




Convolutional Layer

Share the same parameters across

N different locations (assuming input is

,f ~ ' stationary):
\ Convolutions with learned kernels

36
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Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer

NN R\




Convolutional Layer




Convolutional Layer
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Convolutional Layer

""‘a




Convolutional Layer




Convolutional Layer

""4",




Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer




Convolutional Layer

r W
101 LTS N
*[-101| = s '
101 N
Vi
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Convolutional Layer

Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

54
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Convolutional Layer

K
n__ n—1 n
h';=max (0, > B k)

/

output input feature kernel
feature map map

Conv.
layer
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Convolutional Layer

K
n__ n—1 n
h';=max (0, > B k)

/

output input feature kernel
feature map map
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Convolutional Layer

K
n__ n—1 n
h';=max (0, > B k)

/

output input feature kernel
feature map map
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Convolutional Layer

Question: What is the size of the output? What's the computational
cost?

Answer: It is proportional to the number of filters and depends on the
stride. If kernels have size KxK, input has size DxD, stride is 1, and
there are M input feature maps and N output feature maps then:

- the input has size M@DxD

- the output has size N@(D-K+1)x(D-K+1)

- the kernels have MxNxKxK coefficients (which have to be learned)

- cost: M*K*K*N*(D-K+1)*(D-K+1)

Question: How many feature maps? What's the size of the filters?

Answer: Usually, there are more output feature maps than input

feature maps. Convolutional layers can increase the number of

hidden units by big factors (and are expensive to compute).

The size of the filters has to match the size/scale of the patterns wess
want to detect (task dependent). Ranzaton




Key ldeas

A standard neural net applied to images:
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:
- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: convolutional layer.
A network with convolutional layers is called convolutional network.

59
LeCun et al. “Gradient-based learning applied to document recognition” IEEE 1998



Pooling Layer

Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to
the exact location of the eye?

60
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Pooling Layer

By “pooling” (e.g., taking max) filter

responses at different locations we gain
robustness to the exact spatial location
of features.

61
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Pooling Layer: Examples
Max-pooling:
1 n—1;_ _
h]-('x’y):ma‘xfeN(x),j/EN(y)hj ('x:y)
Average pooling-

)J=UK DY N E, )

), VEN(y

L2-pooling:
n — n—1y7—_ _—\2
hj(x’y)_\/szN(x),jzeN(y) hj (x?y)

L2-pooling over features:

W, )=V 2 e P (3, 0)

62
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Pooling Layer

Question: What is the size of the output? What's the computational
cost?

Answer: The size of the output depends on the stride between the
pools. For instance, if pools do not overlap and have size KxK, and
the input has size DxD with M input feature maps, then:

- output is M@ (D/K)x(D/K)

- the computational cost is proportional to the size of the input
(negligible compared to a convolutional layer)

Question: How should | set the size of the pools?

Answer: It depends on how much “invariant” or robust to distortions
we want the representation to be. It is best to pool slowly (via a few
stacks of conv-pooling layers).

63
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Pooling Layer: Receptive Field Size

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

AVARAN

WA

66
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Pooling Layer: Receptive Field Size

hn_l hn hn+1

If convolutional filters have size KxK and stride 1, and pooling layer
has pools of size PxP, then each unit in the pooling layer depends
upon a patch (at the input of the preceding conv. layer) of size:
(P+K-1)x(P+K-1)

67
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Local Contrast Normalization

H(x.y)=m (N (x. 7))
o' (N (x. )

hi+l(x,y):

68
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Local Contrast Normalization

69
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Local Contrast Normalization
W, )2 )= (N ()
o (N(x,y))

Performed also across features
and in the higher layers..

Effects:

— Improves invariance
— improves optimization
— increases sparsity

Note: computational cost is
negligible w.r.t. conv. layer.

Ranzaton




ConvNets: Typical Stage

One stage (zoom)

Rectification
+
Contrast

Filter Bank
courtesy of

Mormalization
K. Kavukcuoglu Ranzaton




ConvNets: Typical Stage

One stage (zoom)

Conceptually similar to: SIFT, HoG, etc.
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ConvNets: Typical Architecture

One stage (zoom)

Whole system

Input
Image
—>

Class
Fully Conn, |Labels
Layers

73
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ConvNets: Typical Architecture

Whole system

Input Class
Image | Fully Conn. |Labels
Layers
1% stage 2" stage 3" stage

Conceptually similar to:

SIFT — K-Means — Pyramid Pooling —» SVM
Lazebnik et al. “...Spatial Pyramid Matching...” CVPR 2006

SIFT — Fisher Vect. — Pooling - SVM
Sanchez et al. “Image classifcation with F.V.: Theory and practice” IJCV 2012
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ConvNets: Training

All layers are differentiable (a.e.).
We can use standard back-propagation.

Algorithm:
Given a small mini-batch
- F-PROP
- B-PROP
- PARAMETER UPDATE

75
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Outline

« Examples
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CONV NETS: EXAMPLES
- OCR / House number & Traffic sign classification

| TN Tk

- 2 V2

el DR

e ” HAHBLE N NR
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7
i

3 [
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B
I[E
7
il 1
EAEE - TS )

o
B WV [[ﬁ

Ciresan et al. “MCDNN for image classification” CVPR 2012
Wan et al. “Regularization of neural networks using dropconnect” ICML 2013 82
Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014



CONV NETS: EXAMPLES

Texture classification

Sifre et al. “Rotation, scaling and deformation invariant scattering...” CVPR 2013

&3



CONV NETS: EXAMPLES

- Pedestrian detection

84
Sermanet et al. “Pedestrian detection with unsupervised multi-stage..” CVPR 2013



CONV NETS: EXAMPLES

Scene Parsing

Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 85
Pinheiro et al. “Recurrent CNN for scene parsing” arxiv 2013 Ranzatol 3




CONV NETS: EXAMPLES

- Segmentation 3D volumetric images

Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012 86
Turaga et al. “Maximin learning of image segmentation” NIPS 2009 Ranzaton




CONV NETS: EXAMPLES

- Action recognition from videos

Taylor et al. “Convolutional learning of spatio-temporal features” ECCV 2010
Karpathy et al. “Large-scale video classification with CNNs” CVPR 2014

Simonyan et al. “Two-stream CNNs for action recognition in videos” arXiv 2014
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CONV NETS: EXAMPLES

- Denoising

original | . denoised

89
Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012 Ranzatol 3




Dataset: ImageNet 2012

% T B T ede WY
4% [in BaF DE WD g
#7% PR A A0 3 EOR

mammal —— placental — camivore — canine — working dog

® 5 (a) Eskimo dog, husky (breed of heavy-coated Arctic sled dog)
& diract fypermym | inkerited hypernym | sister term
* §: () working dog (aav of sevaral braeds of wsually large powerful dogs bred to work as draft ansmale and puard and mide dogs)
o 5 (n) dog, domestic dog, Cans familiaris (a member of the genns Cants (probably descendad from the common welf) that has been demesticated by man since prebistoric times; occurs i many
breeds) "the dog barked all night”
& 5:(n) canme, canid (any of various fissiped mamsals with neaeetractle clavs and tvpically long nuzzles)
® S (n) camnivore (2 terrestrial or aquatic flesh-eating mammal) "ferrestrial earnivores have four or five clawed digits on each Tmb™
* 5 (n) placental, placental mammal, sutherian, eutherian mammal (mammals having a placenta; all mammals except monotremes and marsupéals)
* 5 (1) mammal mesrmakipn {any wann-blooded vertebrate having the skin more or less covered with hair; young are bean alive except for the small subclass of
menotremes and nowrished with milk)
® 5 (o) vertebrats, craniate (animals having a bony or cartilaginous skeleton with 2 sapmentad spinal cobuma aad a larps brain anclosed i a skl or cranne)
® 5 in) L}wchle (aﬂ} animal m"l.he phylumn Chesdats having a nnmdmrd of gpinal co!umn}

. g-‘r)w_g(ahmgdmgthathns(mcm&ncbp}thcabﬂm mmmﬁnmnmdcpmdmﬂy}
o 5 () bving thing, ansnate thing (3 bving (or once iving) entity)
& 5 () whole, unit (an assemblage of parts that is regarded a2 a smgle entity) "how big it that part compared to the
whole?"': "the ream is a wiir”
* 5 (n) object, physical object (a tangible and vishle entity, an entity that can cast a shadow) "it wes full of rackets,
balls and other objects"
» 5. (1) physical eniity (an ety that has physical existence)
® 5 (n) entity (that which is percerved or known or imferrad to have its own distinct axistence (hing or
noalving))

Deng et al. “Imagenet: a large scale hierarchical image database” CVPR 2009



ImageNet

Examples of hammer:

E




Architecture for Classification

category
prediction

LINEAR

I
FULLY CONNECTED

FULLY CONNECTED

I
MAX POOLING

CONV
|
CONV

CONV
|
MAX POOLING

LOCAL CONTRAST NORM

CONV
|
MAX POOLING

LOCAL CONTRAST NORM
CONV

95
Krizhevsky et al. “ImageNet Classification wihibep CNNs” NIPS 2012 RanzatolEd




Architecture for Classification

category

Total nr. params: 60M orediction Total nr. flops: 832M
4M LINEAR 4M
|
16M | EIll 1V ~ANNNECTEN | 1an

The first convolutional layer filters the 224 x 224 x 3 input image with 96 kernels of size 11 x 11 x 3

with a stride of 4 pixels (this i1s the distance between the receptive field centers of neighboring
‘ VMIAA PUOULINUG ‘

442K CONV 74M
I

1.3M CONV 224M

884K CONV 149M

|
MAX POOLING

LOCAL CONTRAST NORM

307K CONV 223M
|
MAX POOLING
LOCAL CONTRAST NORM
35K CONV 105M

96
, e inpyt
Krizhevsky et al. “ImageNet Classification wlltlﬂpéjeep CNNs” NIPS 2012 Ranzaton




Optimization

SGD with momentum:
» Learning rate = 0.01

« Momentum = 0.9

Improving generalization by:

=« Weight sharing (convolution)
s [nput distortions

» Dropout = 0.5

» Weight decay = 0.0005

97
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Error %
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|
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Krizhevsky et al. “ImageNet Classification with deep CNNs” NIPS 2012

Results: ILSVRC 2012

TASK 1 - CLASSIFICATION

CNN

SIFT+FV  SVM1

SVM2

NCM

TASK2 - DETECTION

CNN

DPM-SVM1 DPM-SYM2

9%
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mite

container ship

motor scooter

o

e

opard

mite container ship motér scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat
% - . | - ’ .
"B .

< p— 7 - ‘
grille mushroom cherry Madagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey




