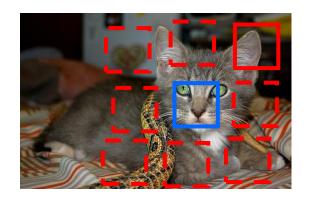
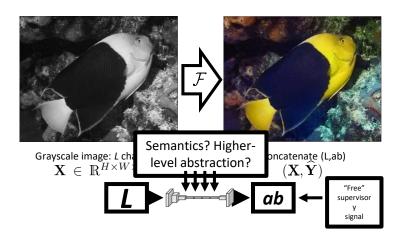


Semantic Segmentation, PSPNet, and MSeg

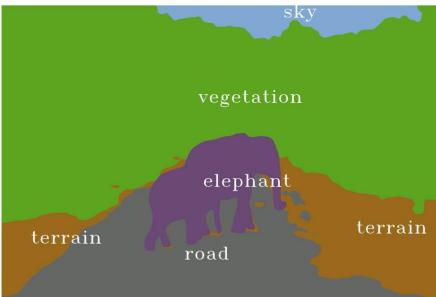
Recap – Self-supervised learning

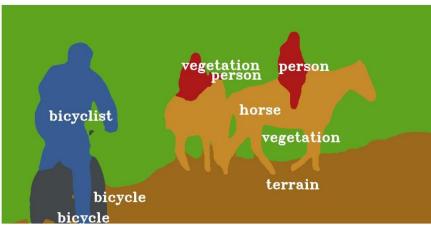


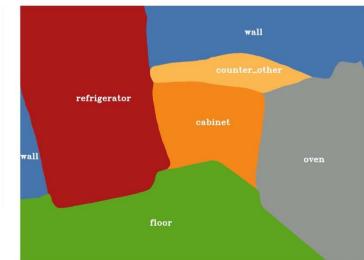


We looked at two of many ways to "self supervised" deep networks. These networks, trained on "pretext" tasks, generalize to other learning problems.

Semantic Segmentation



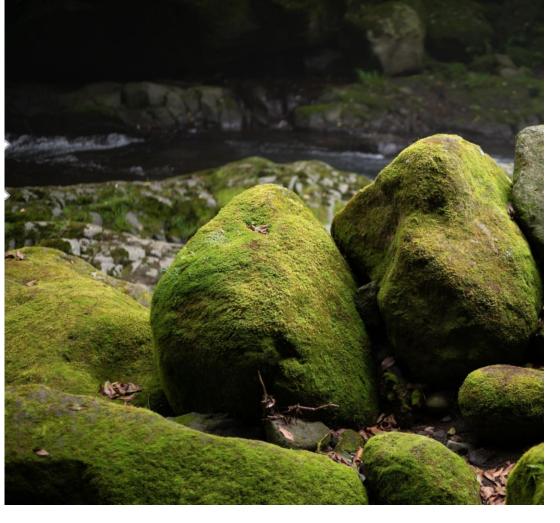




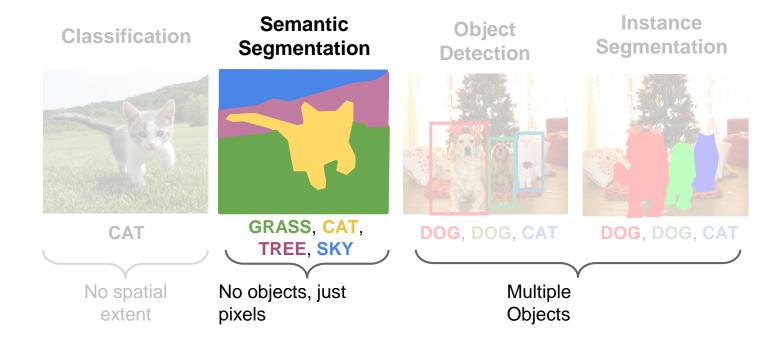


Measuring Performance: Intersection over Union

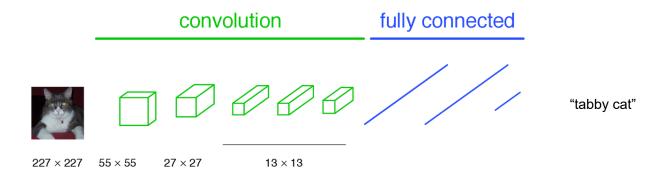
Figure source: http://cs230.stanford.edu/section/8/



Tasks: Semantic Segmentation

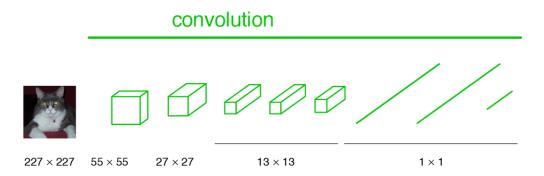


a classification network



Fully Convolutional Networks for Semantic Segmentation. Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015

becoming fully convolutional

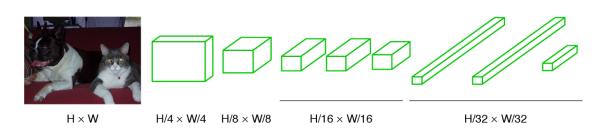


Note: "Fully Convolutional" and "Fully Connected" aren't the same thing.

They're almost opposites, in fact.

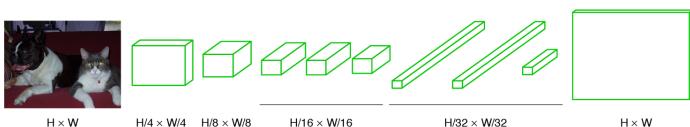
becoming fully convolutional

convolution



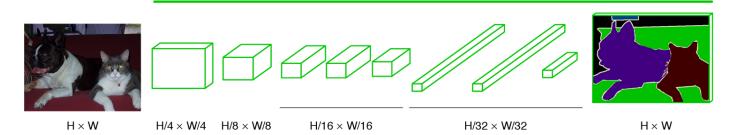
upsampling output

convolution



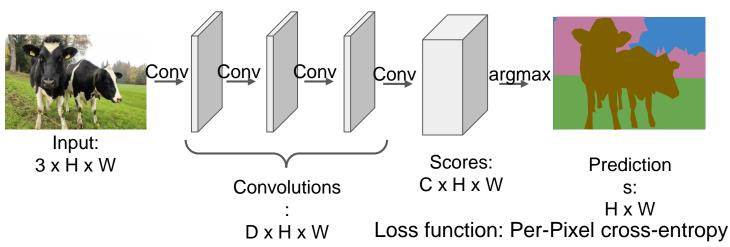
end-to-end, pixels-to-pixels network

convolution



Fully Convolutional Network

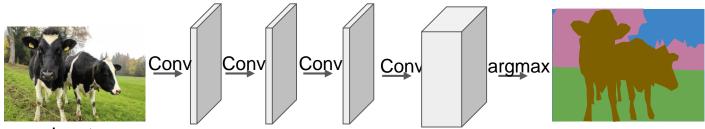
Design a network as a bunch of convolutional layers to make predictions for pixels all at once!



Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Fully Convolutional Network

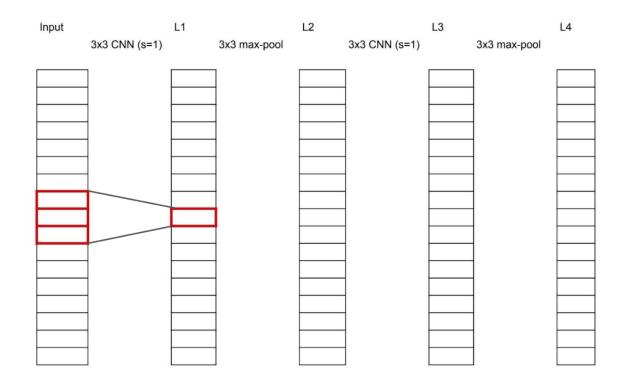
Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

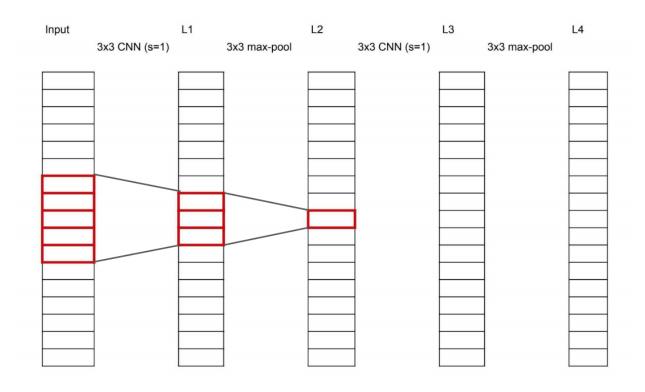


Input: 3 x H x W

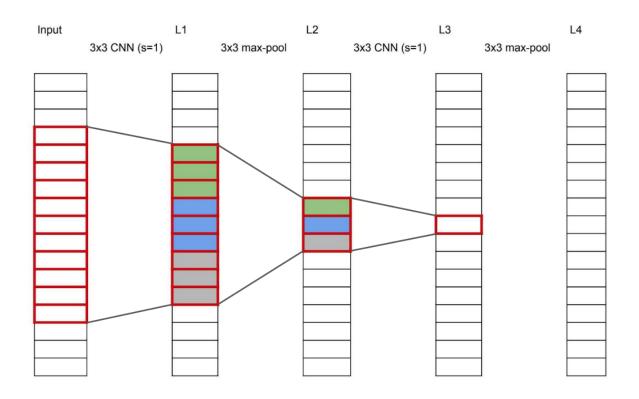
Problem #1: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

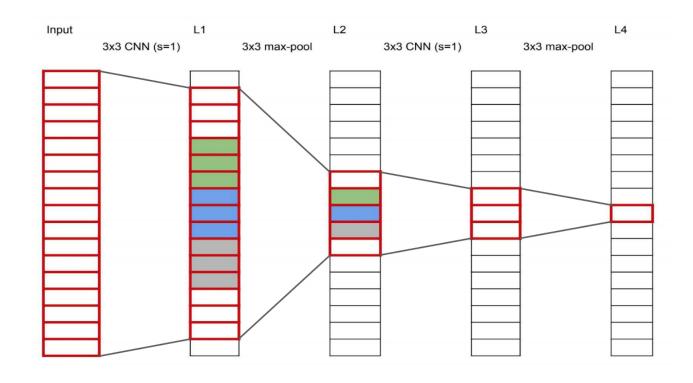




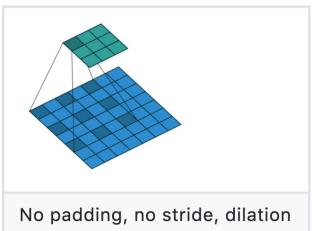
Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf

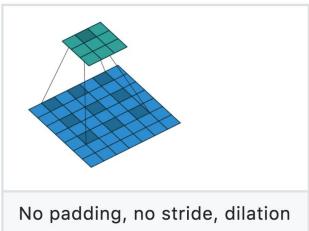


Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Dilated Convolution





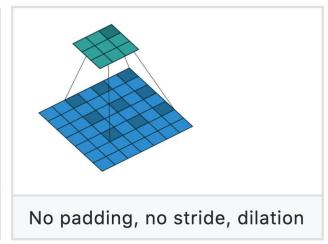


Figure source: https://github.com/vdumoulin/conv_arithmetic

2 DILATED CONVOLUTIONS

Let $F: \mathbb{Z}^2 \to \mathbb{R}$ be a discrete function. Let $\Omega_r = [-r, r]^2 \cap \mathbb{Z}^2$ and let $k: \Omega_r \to \mathbb{R}$ be a discrete filter of size $(2r+1)^2$. The discrete convolution operator * can be defined as

$$(F * k)(\mathbf{p}) = \sum_{\mathbf{s} + \mathbf{t} = \mathbf{p}} F(\mathbf{s}) k(\mathbf{t}). \tag{1}$$

We now generalize this operator. Let l be a dilation factor and let $*_l$ be defined as

$$(F *_{l} k)(\mathbf{p}) = \sum_{\mathbf{s}+l\mathbf{t}=\mathbf{p}} F(\mathbf{s}) k(\mathbf{t}).$$
 (2)

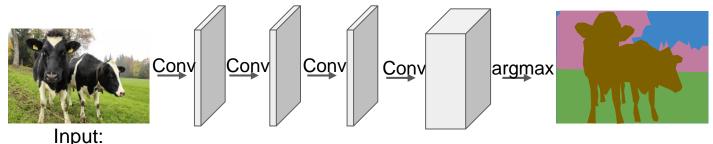
We will refer to $*_l$ as a dilated convolution or an l-dilated convolution. The familiar discrete convolution * is simply the 1-dilated convolution.

Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated Convolutions. ICLR, 2016.

Georgia Tech

Fully Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!



3 x H x W

Problem #1: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

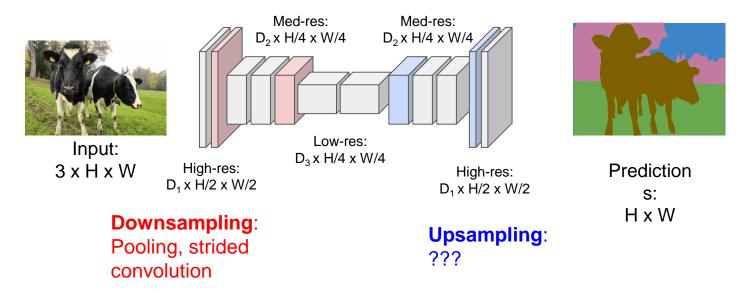
Problem #2: Convolution on high res images is expensive!

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Slide Credit: Justin Johnson and David Fouhey

Fully Convolutional Network

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

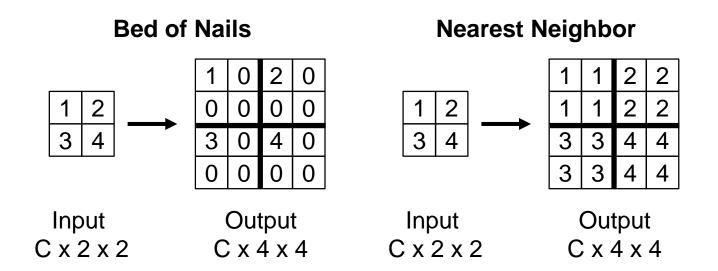


Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015

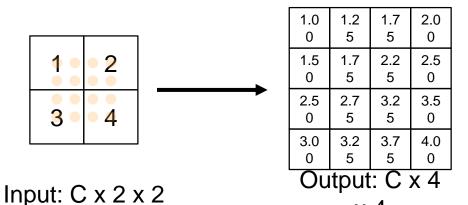
Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Georgia Tech

In-Network Upsampling: "Unpooling"



Upsampling: Bilinear Interpolation



$$f_{x,y} = \sum_{i,j} f_{i,j} \max(0, 1 - |x - i|) \max(0, 1 - |y - j|) \quad i \in \{ \lfloor x \rfloor - 1, \dots, \lceil x \rceil + 1 \}$$
$$j \in \{ \lfloor y \rfloor - 1, \dots, \lceil y \rceil + 1 \}$$

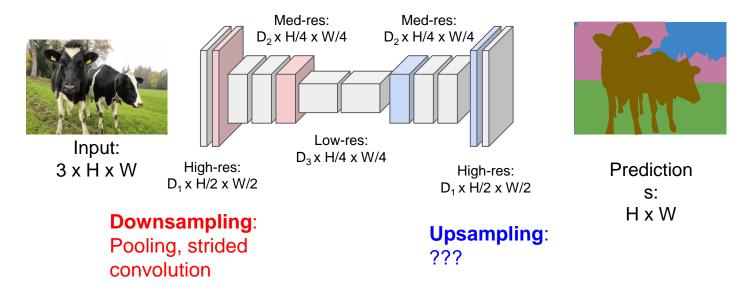
x 4

Use two closest neighbors in x and y to construct linear approximations

Slide Credit: Justin Johnson and David Fouhey

Fully Convolutional Network

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!



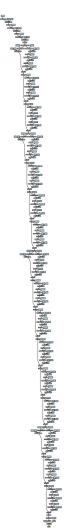
Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015

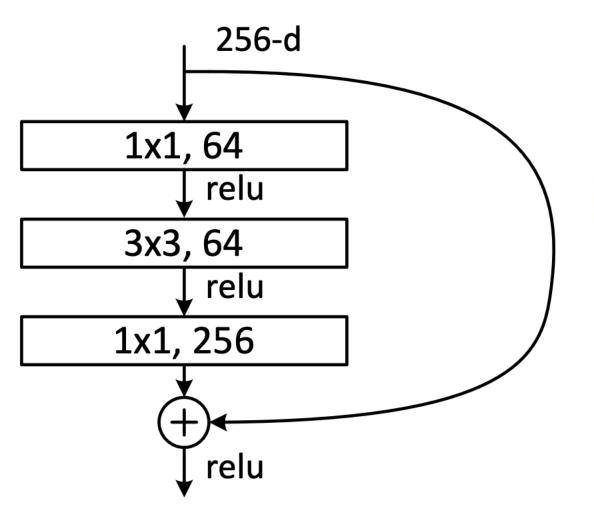
Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

PSPNet

PSPNet uses a ResNet backbone

- 50, 101, or 152 Layers
- 50 Layers is already quite deep!





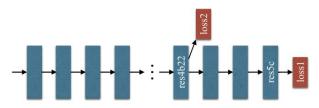
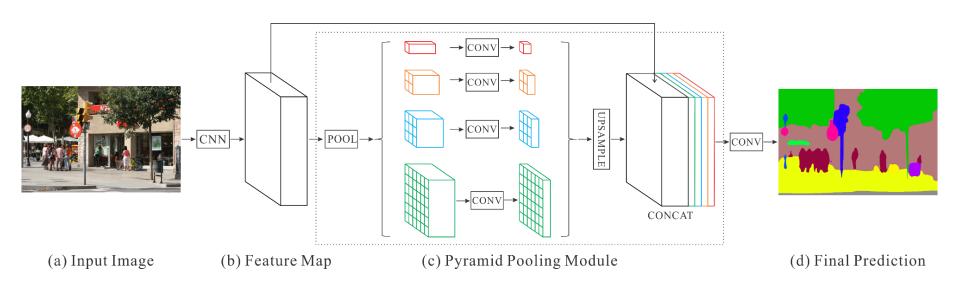
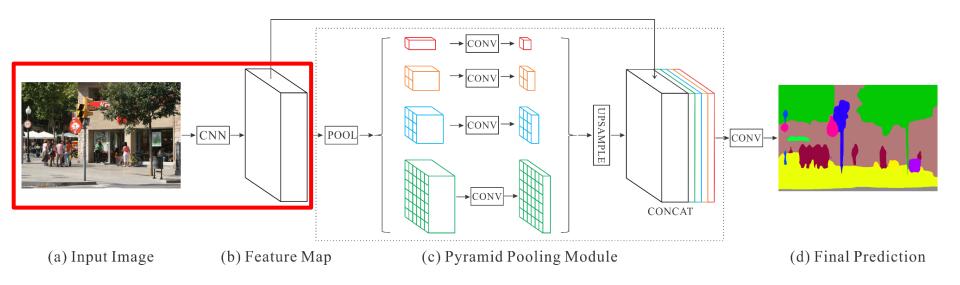


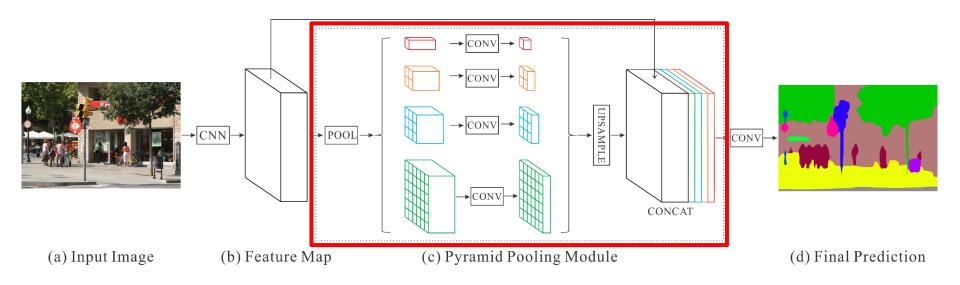
Figure 4. Illustration of auxiliary loss in ResNet101. Each blue box denotes a residue block. The auxiliary loss is added after the res4b22 residue block.



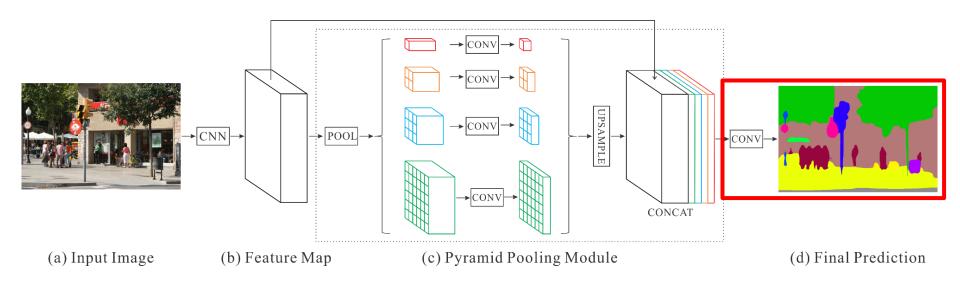
Framework overview of PSPNet



Regular feature extractor

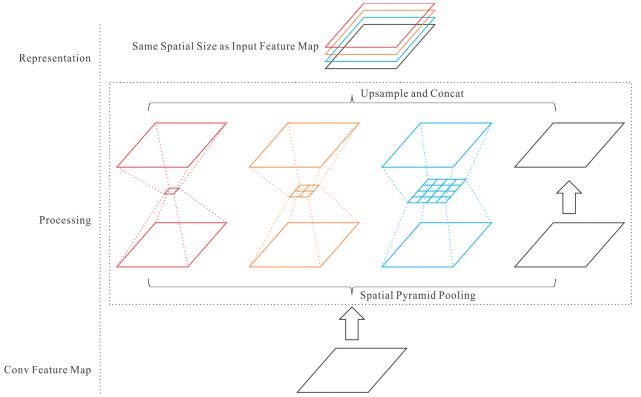


Context modeling: pyramid pooling module



Convolutional classifier for pixel-wise prediction

Pyramid Pooling Module

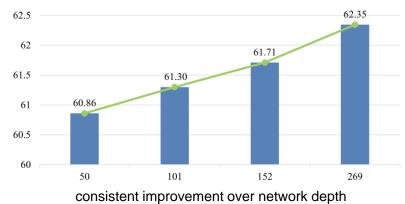


PPM: spatial illustration

ImageNet Scene Parsing Challenge

Method	Mean IoU(%)	Pixel Acc.(%)
FCN [26]	29.39	71.32
SegNet [2]	21.64	71.00
DilatedNet [40]	32.31	73.55
CascadeNet [43]	34.90	74.52
ResNet50-Baseline	34.28	76.35
ResNet50+DA	35.82	77.07
ResNet50+DA+AL	37.23	78.01
ResNet50+DA+AL+PSP	41.68	80.04
ResNet269+DA+AL+PSP	43.81	80.88
ResNet269+DA+AL+PSP+MS	44.94	81.69

Exceed by a large margin



PSPNet: 1st place among totally 75 submissions worldwide.

Result on PASCAL VOC 2012

Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mIoU
FCN [26]	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
Zoom-out [28]	85.6	37.3	83.2	62.5	66.0	85.1	80.7	84.9	27.2	73.2	57.5	78.1	79.2	81.1	77.1	53.6	74.0	49.2	71.7	63.3	69.6
DeepLab [3]	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	71.6
CRF-RNN [41]	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	72.0
DeconvNet [30]	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	72.5
GCRF [36]	85.2	43.9	83.3	65.2	68.3	89.0	82.7	85.3	31.1	79.5	63.3	80.5	79.3	85.5	81.0	60.5	85.5	52.0	77.3	65.1	73.2
DPN [25]	87.7	59.4	78.4	64.9	70.3	89.3	83.5	86.1	31.7	79.9	62.6	81.9	80.0	83.5	82.3	60.5	83.2	53.4	77.9	65.0	74.1
Piecewise [20]	90.6	37.6	80.0	67.8	74.4	92.0	85.2	86.2	39.1	81.2	58.9	83.8	83.9	84.3	84.8	62.1	83.2	58.2	80.8	72.3	75.3
PSPNet	91.8	71.9	94.7	71.2	75.8	95.2	89.9	95.9	39.3	90.7	71.7	90.5	94.5	88.8	89.6	72.8	89.6	64.0	85.1	76.3	82.6
CRF-RNN [†] [41]	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	74.7
BoxSup [†] [7]	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	75.2
Dilation8 [†] [40]	91.7	39.6	87.8	63.1	71.8	89.7	82.9	89.8	37.2	84.0	63.0	83.3	89.0	83.8	85.1	56.8	87.6	56.0	80.2	64.7	75.3
DPN [†] [25]	89.0	61.6	87.7	66.8	74.7	91.2	84.3	87.6	36.5	86.3	66.1	84.4	87.8	85.6	85.4	63.6	87.3	61.3	79.4	66.4	77.5
Piecewise [†] [20]	94.1	40.7	84.1	67.8	75.9	93.4	84.3	88.4	42.5	86.4	64.7	85.4	89.0	85.8	86.0	67.5	90.2	63.8	80.9	73.0	78.0
FCRNs [†] [38]	91.9	48.1	93.4	69.3	75.5	94.2	87.5	92.8	36.7	86.9	65.2	89.1	90.2	86.5	87.2	64.6	90.1	59.7	85.5	72.7	79.1
LRR [†] [9]	92.4	45.1	94.6	65.2	75.8	95.1	89.1	92.3	39.0	85.7	70.4	88.6	89.4	88.6	86.6	65.8	86.2	57.4	85.7	77.3	79.3
DeepLab [†] [4]	92.6	60.4	91.6	63.4	76.3	95.0	88.4	92.6	32.7	88.5	67.6	89.6	92.1	87.0	87.4	63.3	88.3	60.0	86.8	74.5	79.7
PSPNet [†]	95.8	72.7	95.0	78.9	84.4	94.7	92.0	95.7	43.1	91.0	80.3	91.3	96.3	92.3	90.1	71.5	94.4	66.9	88.8	82.0	85.4

Get the highest accuracy on all 20 classes

Result on Cityscapes

Method	road	swalk	build.	wall	fence	pole	tlight	sign	veg.	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU
CRF-RNN [41]	96.3	73.9	88.2	47.6	41.3	35.2	49.5	59.7	90.6	66.1	93.5	70.4	34.7	90.1	39.2	57.5	55.4	43.9	54.6	62.5
FCN [26]	97.4	78.4	89.2	34.9	44.2	47.4	60.1	65.0	91.4	69.3	93.9	77.1	51.4	92.6	35.3	48.6	46.5	51.6	66.8	65.3
SiCNN+CRF [16]	96.3	76.8	88.8	40.0	45.4	50.1	63.3	69.6	90.6	67.1	92.2	77.6	55.9	90.1	39.2	51.3	44.4	54.4	66.1	66.3
DPN [25]	97.5	78.5	89.5	40.4	45.9	51.1	56.8	65.3	91.5	69.4	94.5	77.5	54.2	92.5	44.5	53.4	49.9	52.1	64.8	66.8
Dilation10 [40]	97.6	79.2	89.9	37.3	47.6	53.2	58.6	65.2	91.8	69.4	93.7	78.9	55.0	93.3	45.5	53.4	47.7	52.2	66.0	67.1
LRR [9]	97.7	79.9	90.7	44.4	48.6	58.6	68.2	72.0	92.5	69.3	94.7	81.6	60.0	94.0	43.6	56.8	47.2	54.8	69.7	69.7
DeepLab [4]	97.9	81.3	90.3	48.8	47.4	49.6	57.9	67.3	91.9	69.4	94.2	79.8	59.8	93.7	56.5	67.5	57.5	57.7	68.8	70.4
Piecewise [20]	98.0	82.6	90.6	44.0	50.7	51.1	65.0	71.7	92.0	72.0	94.1	81.5	61.1	94.3	61.1	65.1	53.8	61.6	70.6	71.6
PSPNet	98.6	86.2	92.9	50.8	58.8	64.0	75.6	79.0	93.4	72.3	95.4	86.5	71.3	95.9	68.2	79.5	73.8	69.5	77.2	78.4
LRR [‡] [9]	97.9	81.5	91.4	50.5	52.7	59.4	66.8	72.7	92.5	70.1	95.0	81.3	60.1	94.3	51.2	67.7	54.6	55.6	69.6	71.8
PSPNet [‡]	98.6	86.6	93.2	58.1	63.0	64.5	75.2	79.2	93.4	72.1	95.1	86.3	71.4	96.0	73.5	90.4	80.3	69.9	76.9	80.2

Outperform previous state-of-the-art by 8.4 points

Algorithm Impact

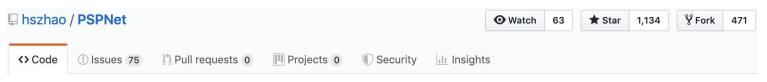
Scholar articles

Pyramid scene parsing network

H Zhao, J Shi, X Qi, X Wang, J Jia - Proceedings of the IEEE conference on

computer ..., 2017

Cited by 6941 Related articles All 20 versions



Pyramid Scene Parsing Network, CVPR2017. https://hszhao.github.io/projects/pspnet

Pyramid Scene Parsing Network (CVPR 2017)

Pyramid Scene Parsing Network (CVPR 2017)

13K views • 2 years ago

13K views • 2 years ago

Pyramid Scene Parsing Network (CVPR 2017)

7.9K views • 2 years ago

PSPNet paper

Pyramid Scene Parsing Network

Hengshuang Zhao¹ Jianping Shi² Xiaojuan Qi¹ Xiaogang Wang¹ Jiaya Jia¹

The Chinese University of Hong Kong ²SenseTime Group Limited

{hszhao, xjqi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

Abstract

Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

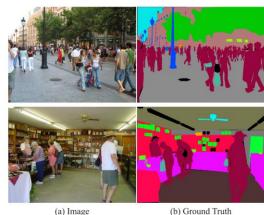


Figure 1. Illustration of complex scenes in ADE20K dataset.

MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun

Which dataset to train on?

Driving: Cityscapes, Mapillary Vistas, CamVid, KITTI, VIPER, Indian Driving Dataset, Berkeley Driving Dataset, WildDash, ...

Indoors: NYU, SUN RGBD, ScanNet, InteriorNet, ...

Multi-domain: COCO, ADE20K, PASCAL VOC, ...

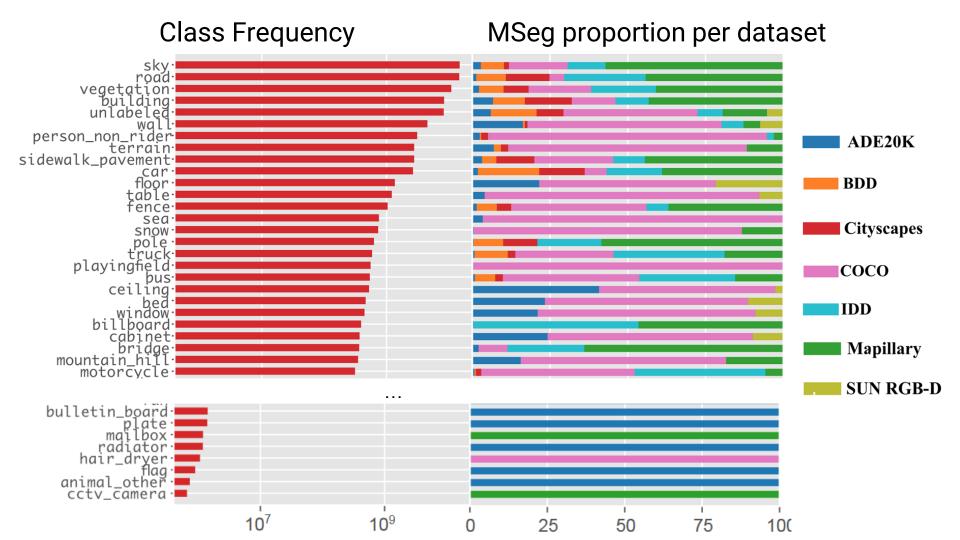
Methodology: Dataset mixing and zero-shot transfer

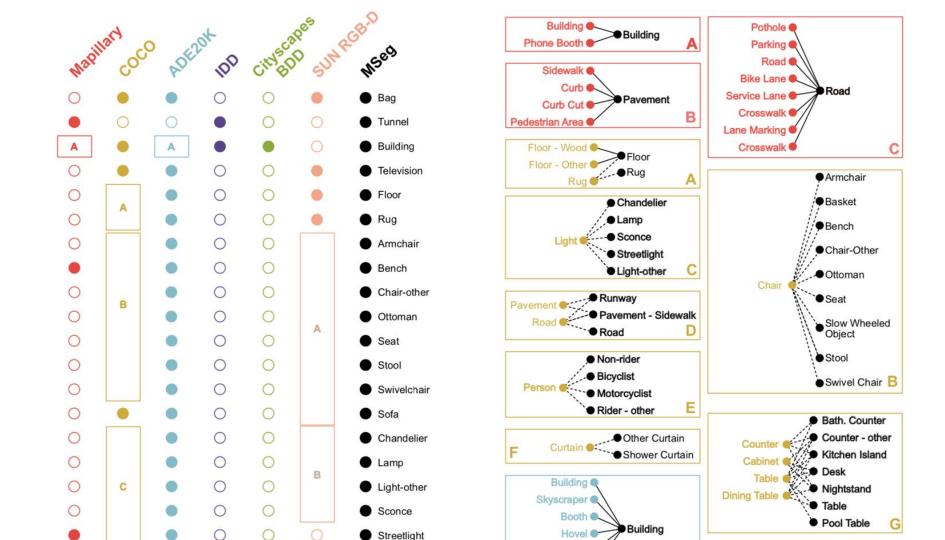
- Perform a training/test split at the level of datasets
- Train on many diverse datasets
- Test on datasets that were never seen during training
- Zero-shot cross-dataset transfer is a proxy for generality and robustness in the real world

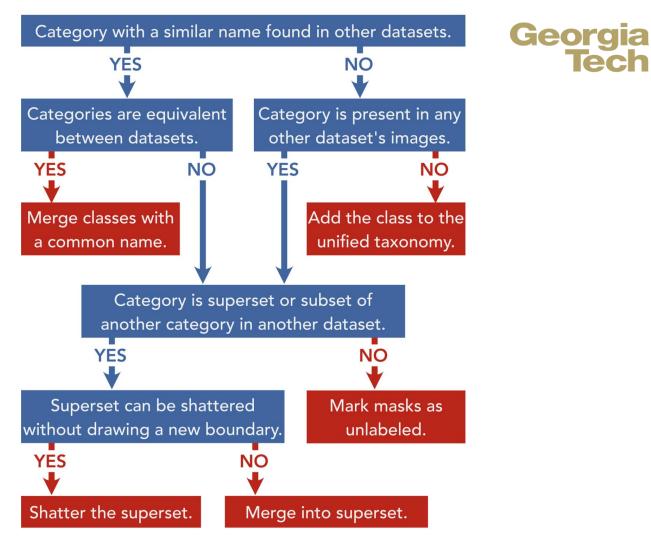
Dataset name	Origin domain	# Images	Georgia
Training & Validation			Tech
COCO [19] + COCO STUFF [4]	Everyday objects	123,287	
ADE20K [46]	Everyday objects	22,210	
Mapillary [25]	Driving (Worldwide)	20,000	
IDD [40]	Driving (India)	7,974	
BDD [43]	Driving (United States)	8,000	
CITYSCAPES [7]	Driving (Germany)	3,475	
SUN RGBD [36]	Indoor	5,285	
Test			
PASCAL VOC [10]	Everyday objects	1,449	
PASCAL CONTEXT [24]	Everyday objects	5,105	
CAMVID [3]	Driving (U.K.)	101	
WildDash [44]	Driving (Worldwide)	70	
KITTI [11]	Driving (Germany)	200	
SCANNET-20 [8]	Indoor	5,436	

MSeg: A Composite Dataset for Multi-domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun





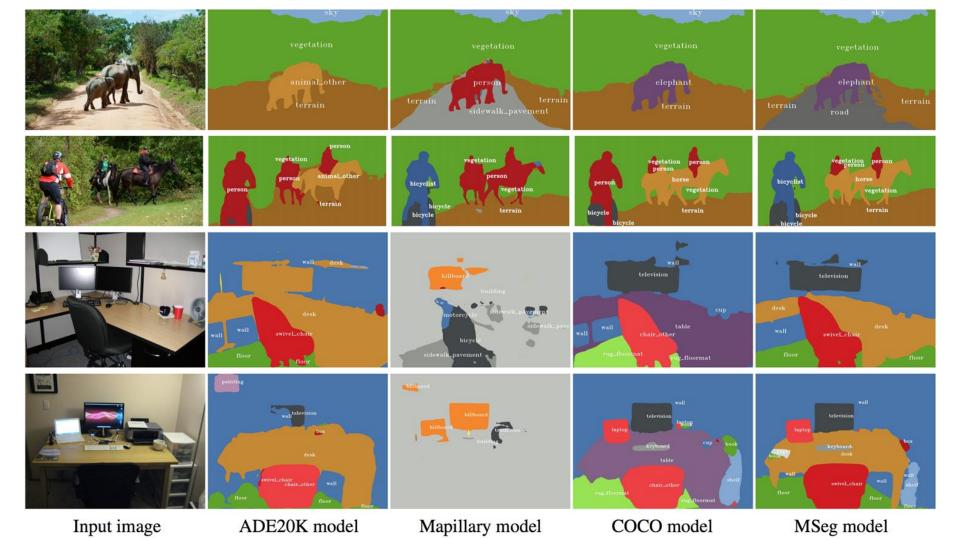


Tech

Generality and Robustness

Train/Test	VOC	Context	CamVid	WildDash	KITTI	ScanNet	h. mean
COCO	73.4	43.3	58.7	38.2	47.6	33.4	45.8
ADE20K	35.4	23.9	52.6	38.6	41.6	42.9	36.9
Mapillary	22.5	13.6	82.1	55.4	67.7	2.1	9.3
IDD	14.6	6.5	72.1	41.2	51.0	1.6	6.5
BDD	14.4	7.1	70.7	52.2	54.5	1.4	6.1
Cityscapes	13.3	6.8	76.1	30.1	57.6	1.7	6.8
SUN RGBD	10.0	4.3	0.1	1.9	1.1	42.6	0.3
MSeg-1m	70.7	42.7	83.3	62.0	67.0	48.2	59.2
MSeg-1m-w/o relabeling	70.2	42.7	82.0	62.7	65.5	43.2	57.6
Oracle	77.8	45.8	78.8	_	58.4	62.3	_

Accuracy on MSeg test datasets



WildDash benchmark

	Meta AVG mloU	Seen WildDash data?
MSeg-1080 (Ours)	48.3	X
LDN BIN-768 [4]	46.9	√
LDN OE [4]	42.7	✓
DN169-CAT-DUAL	41.0	✓
AHiSS [34]	39.0	×

Project 6

