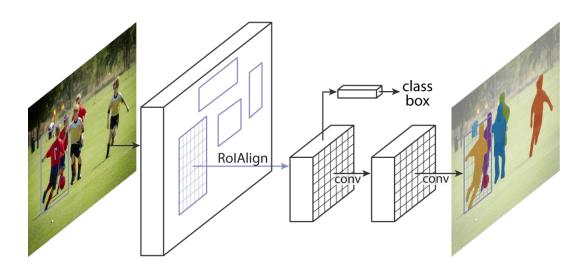
3D Point Processing and Lidar

James Hays

Recap – Structured Output from Deep Networks



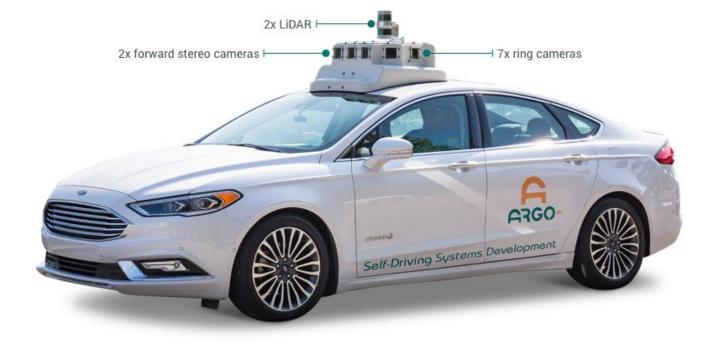
Convolutional Pose Machines and follow up works Mask R-CNN and "two stage" object detectors

A lot of machine learning tools, such as convolutional networks, don't naturally handle tasks with arbitrary numbers of outputs. These are a couple of clever methods, typical of the literature as a whole, to work around this.

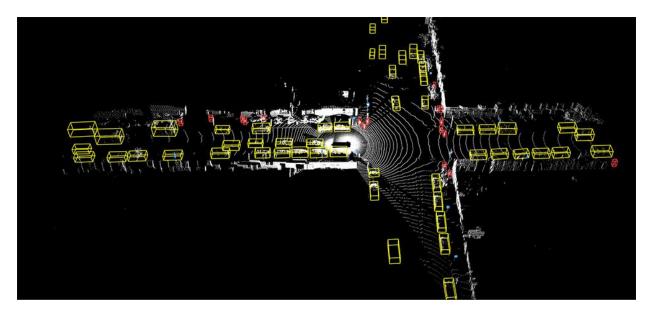
Outline

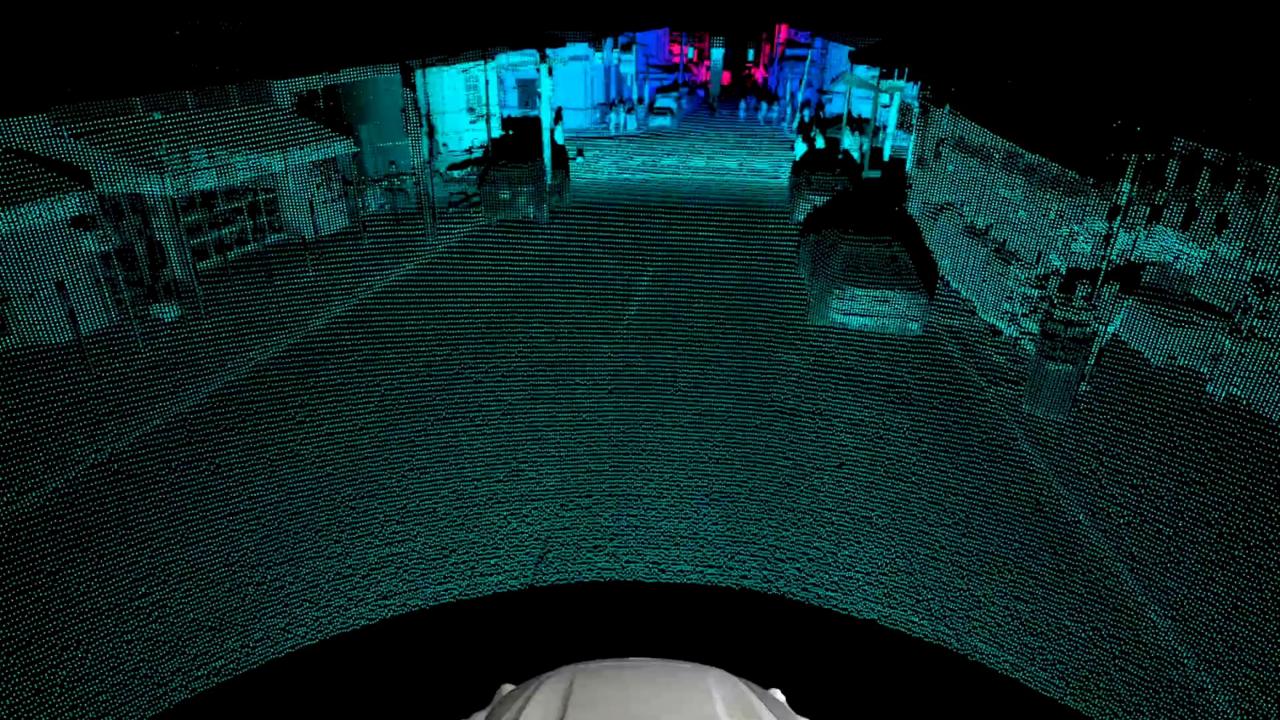
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

Lidar overview



Lidar overview





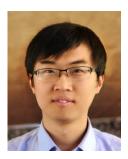
Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

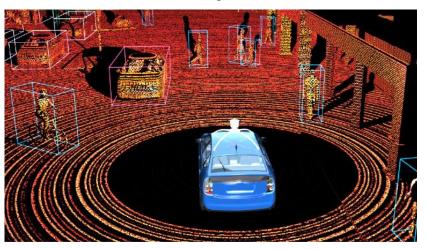
Charles R. Qi*

Kaichun Mo Leonidas J. Guibas



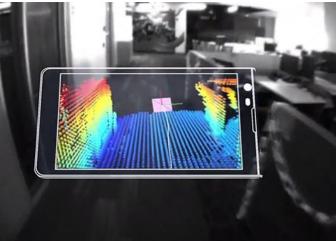
Big Data + Deep Representation Learning

Robot Perception



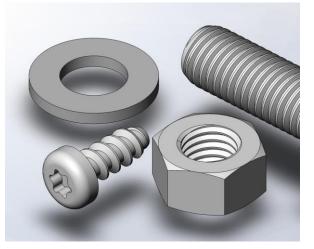
source: Scott J Grunewald

Augmented Reality



source: Google Tango

Shape Design

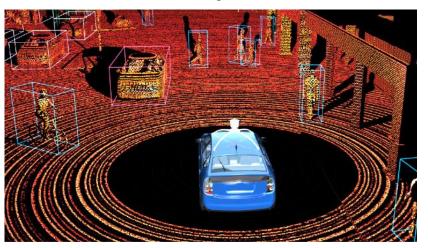


source: solidsolutions

Emerging 3D Applications

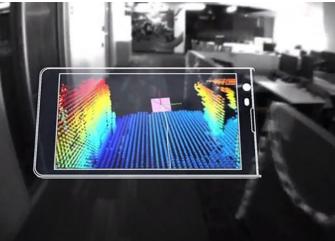
Big Data + Deep Representation Learning

Robot Perception



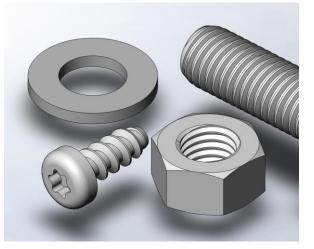
source: Scott J Grunewald

Augmented Reality



source: Google Tango

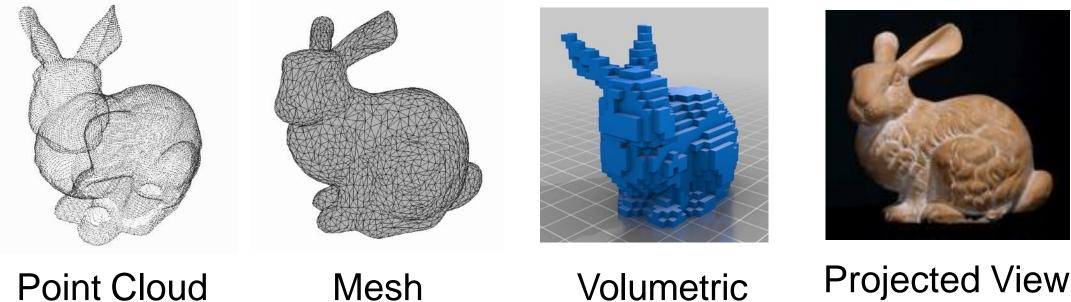
Shape Design



source: solidsolutions

Need for 3D Deep Learning!

3D Representations

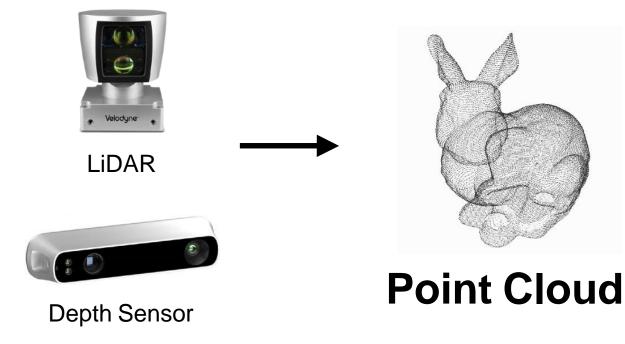


Projected View

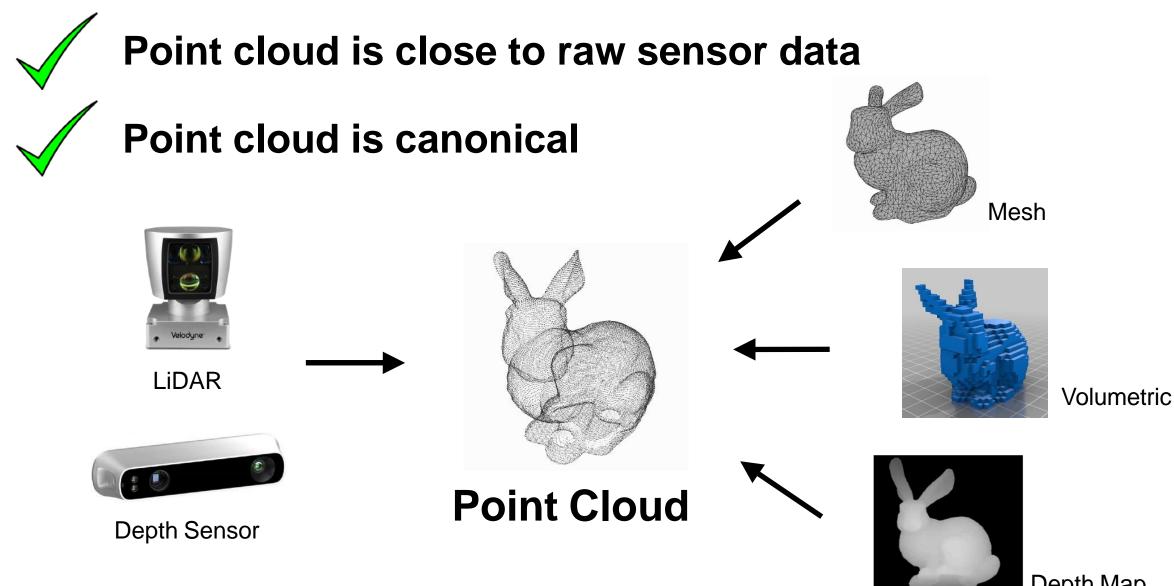
RGB(D)

3D Representation: Point Cloud

Point cloud is close to raw sensor data



3D Representation: Point Cloud



Depth Map

Most existing point cloud features are handcrafted towards specific tasks

Feature Name	Supports Texture / Color	Local / Global / Regional	Best Use Case
PFH	No	L	
FPFH	No	L	2.5D Scans (Pseudo single position range images)
VFH	No	G	Object detection with basic pose estimation
CVFH	No	R	Object detection with basic pose estimation, detection of partial objects
RIFT	Yes	L	Real world 3D-Scans with no mirror effects. RIFT is vulnerable against flipping

Source: https://github.com/PointCloudLibrary/pcl/wiki/Overview-and-Comparison-of-Features

Point cloud is **converted to other representations** before it's fed to a deep neural network

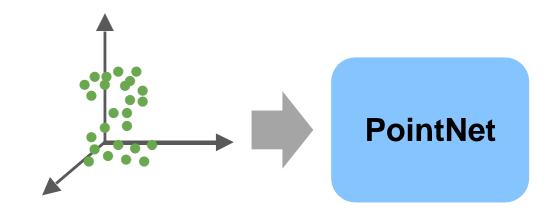
Conversion	Deep Net
Voxelization	3D CNN
Projection/Rendering	2D CNN
Feature extraction	Fully Connected

Research Question:

Can we achieve effective feature learning directly on point clouds?

Our Work: PointNet

End-to-end learning for scattered, unordered point data



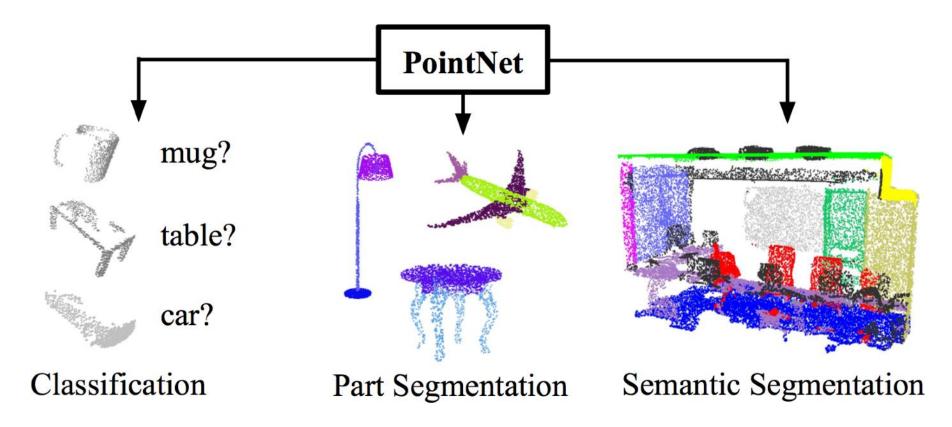
End-to-end learning for scattered, unordered point data

Unified framework for various tasks

. . .

End-to-end learning for scattered, unordered point data

Unified framework for various tasks



Unordered point set as input

Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

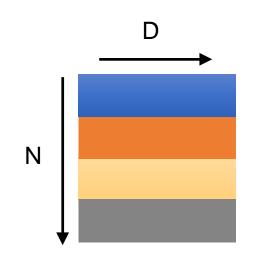
Unordered point set as input

Model needs to be invariant to N! permutations.

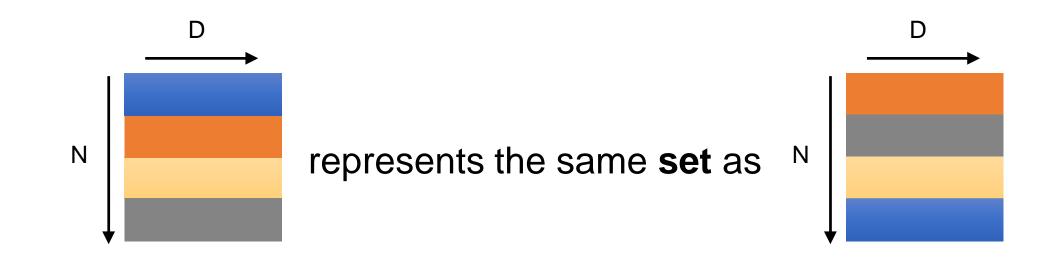
Invariance under geometric transformations

Point cloud rotations should not alter classification results.

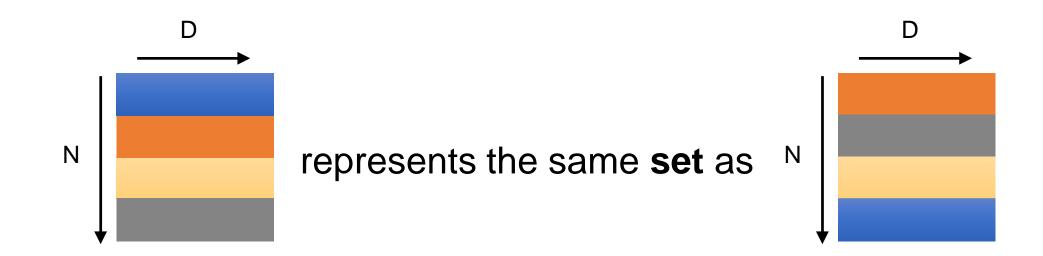
Point cloud: N <u>orderless</u> points, each represented by a D dim vector



Point cloud: N <u>orderless</u> points, each represented by a D dim vector



Point cloud: N orderless points, each represented by a D dim vector



Model needs to be invariant to N! permutations

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

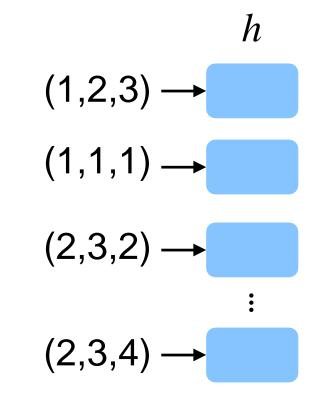
. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

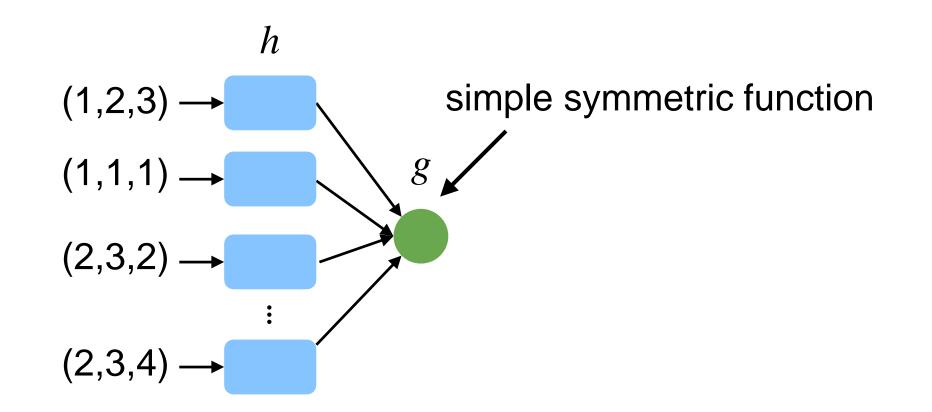
How can we construct a family of symmetric functions by neural networks?

Observe:

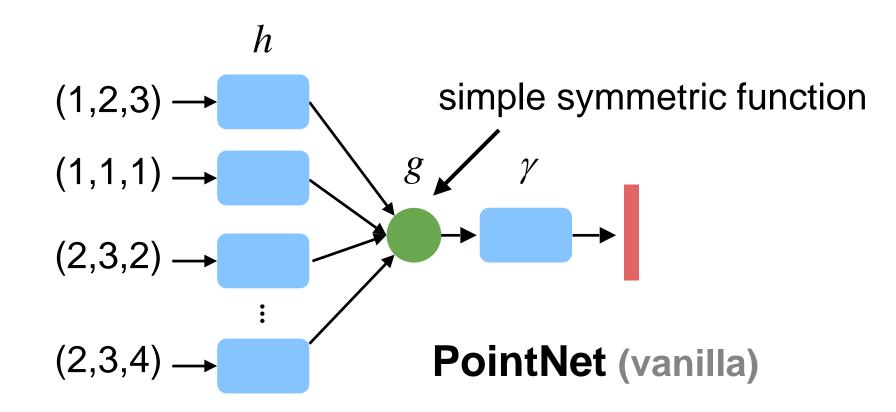
Observe:



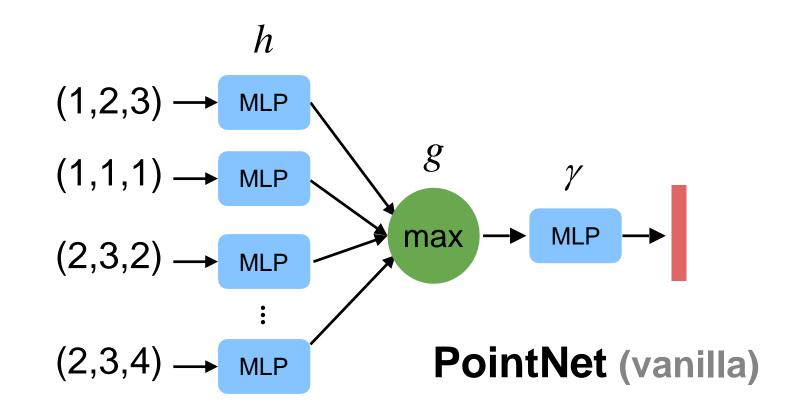
Observe:



Observe:



Empirically, we use multi-layer perceptron (MLP) and max pooling:



Unordered point set as input

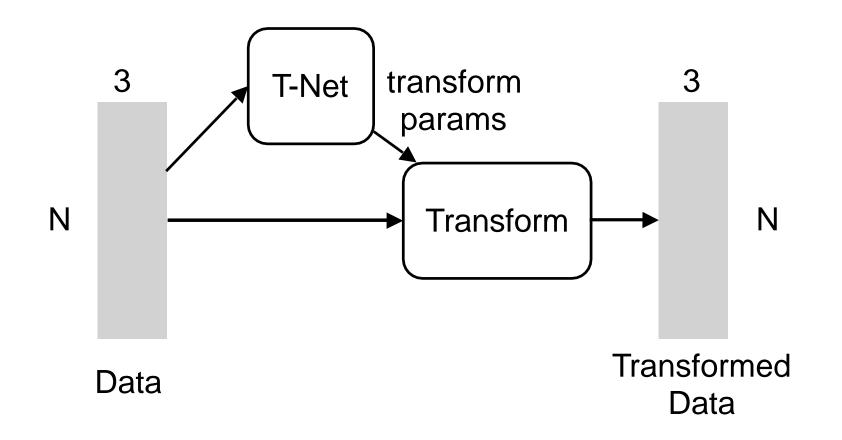
Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

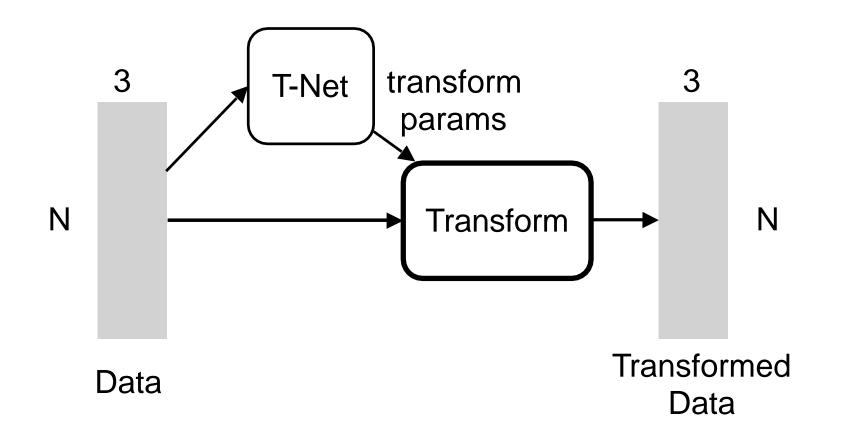
Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment



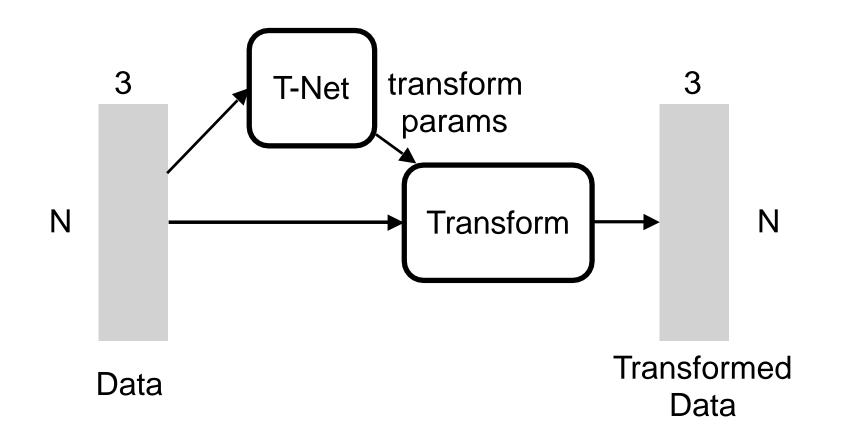
Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment



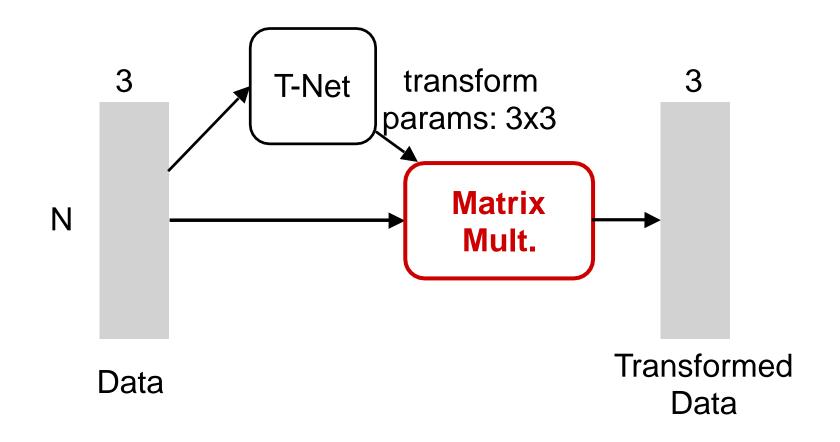
Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment

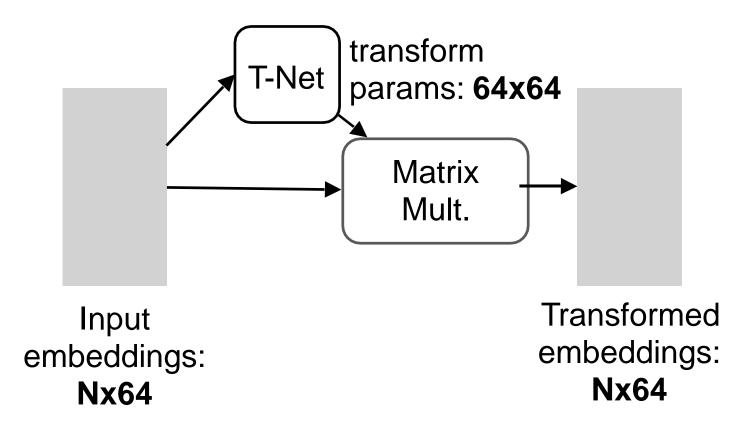


Input Alignment by Transformer Network

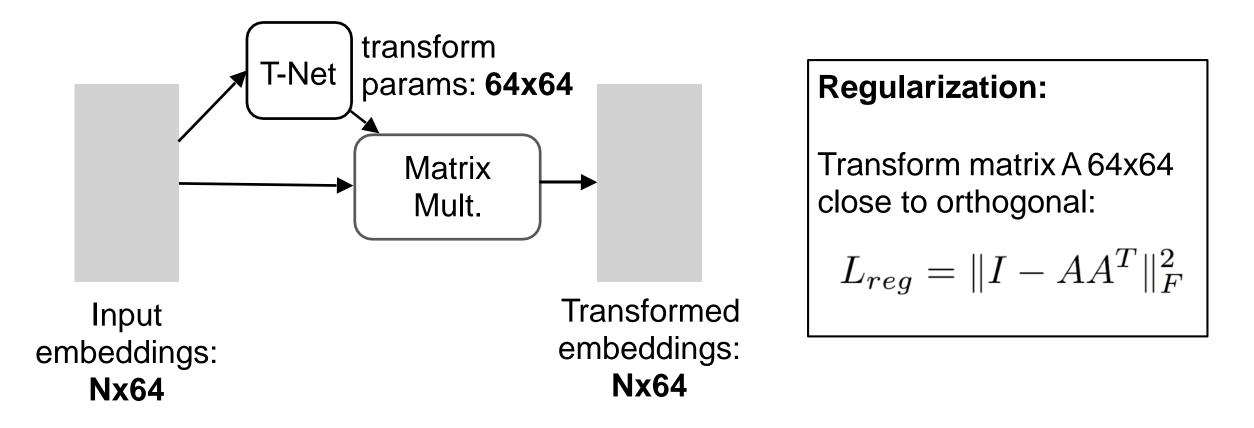
The transformation is just matrix multiplication!



Embedding Space Alignment

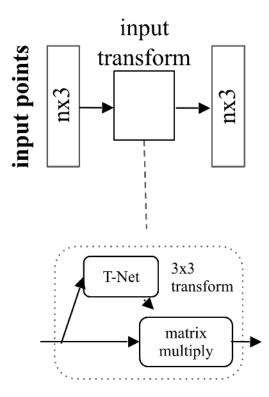


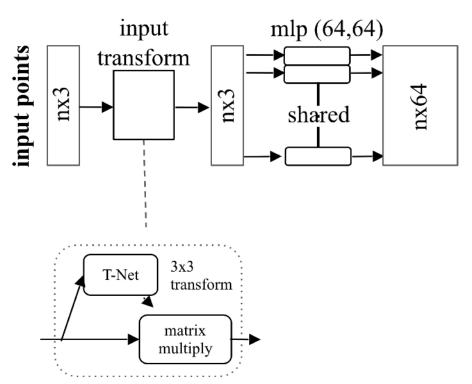
Embedding Space Alignment

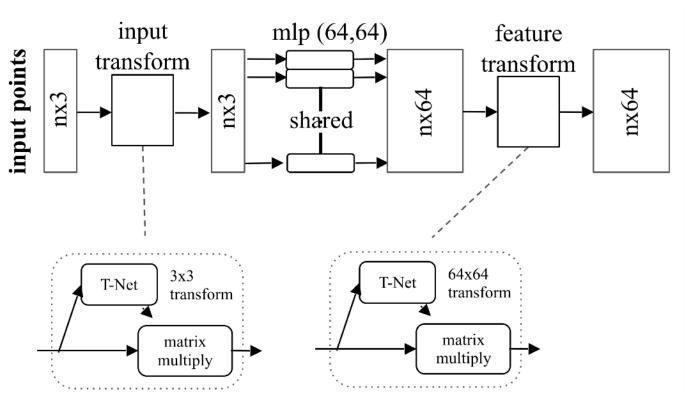


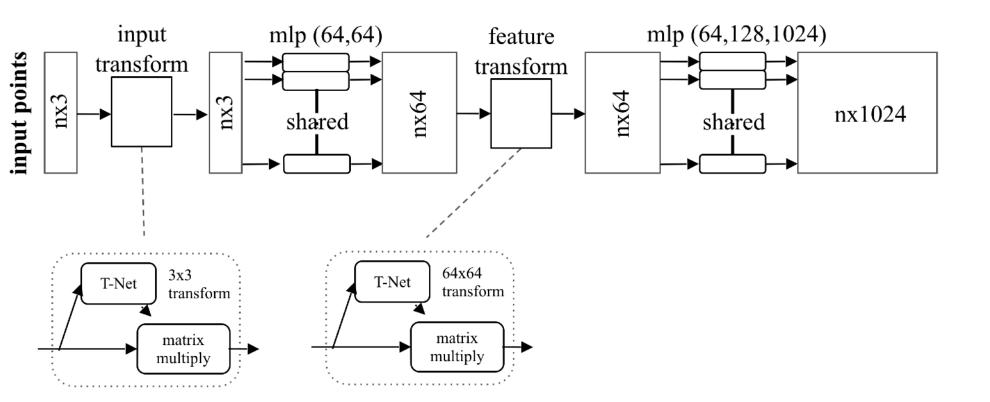
ints	
ut po	
du	

nx3

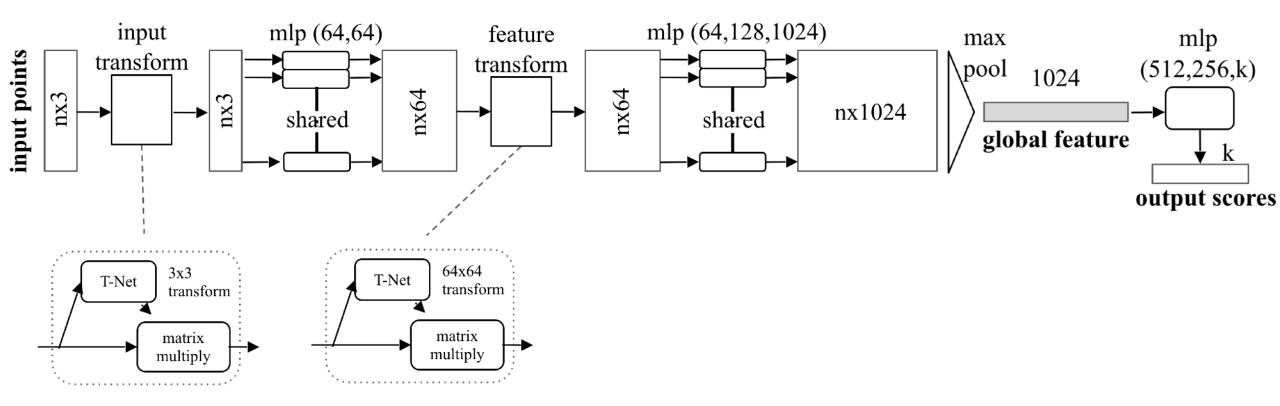




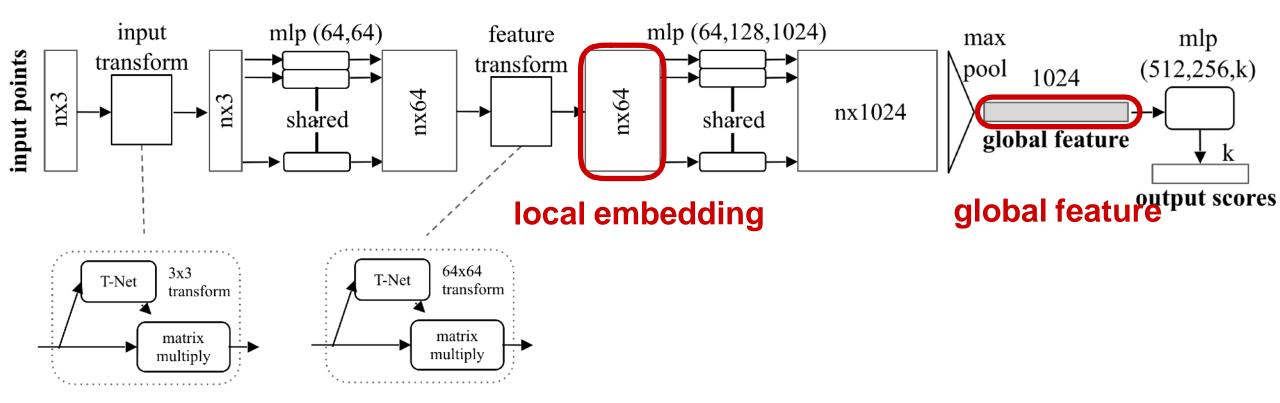




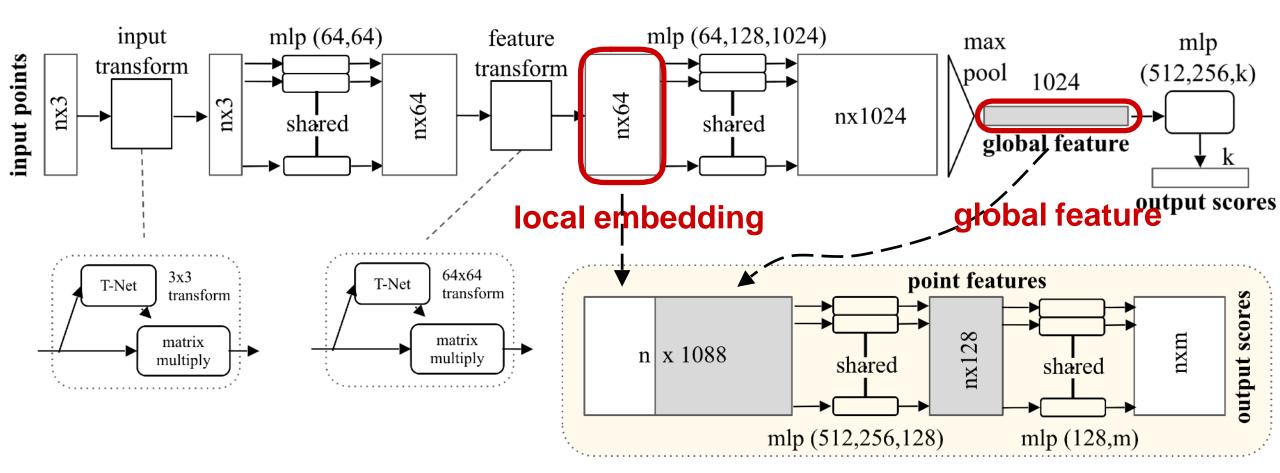




Extension to PointNet Segmentation Network



Extension to PointNet Segmentation Network

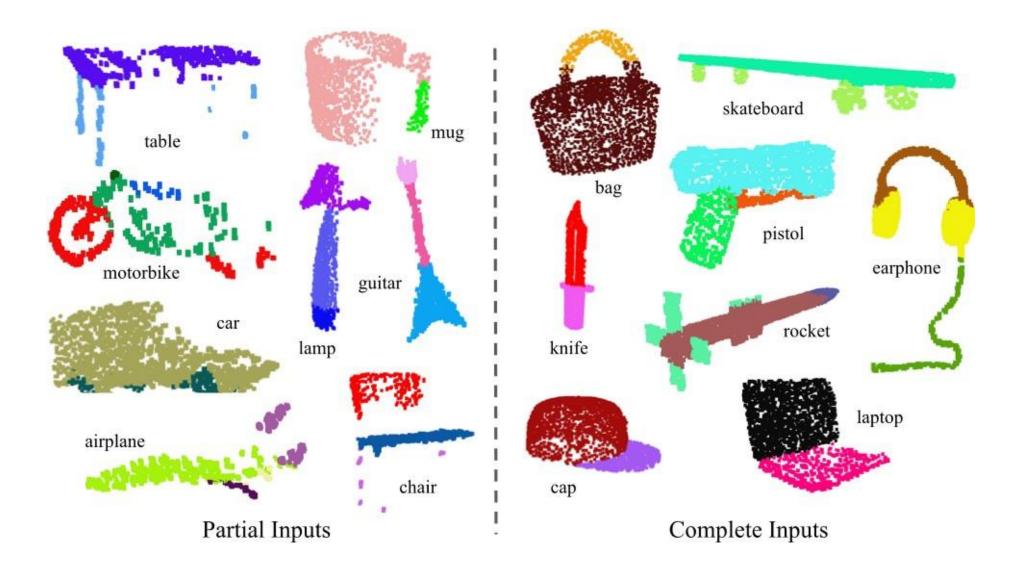


Results

Results on Object Classification

-		input	#views	accuracy	accuracy
		-		avg. class	overall
-	SPH [12]	mesh	-	68.2	
-	3DShapeNets [29]	volume	1	77.3	84.7
3D CNNs	CNNs VoxNet [18]	volume	12	83.0	85.9
	Subvolume [19]	volume	20	86.0	89.2
-	LFD [29]	image	10	75.5	-
	MVCNN [24]	image	80	90.1	-
-	Ours baseline	point	-	72.6	77.4
	Ours PointNet	point	1	86.2	89.2

Results on Object Part Segmentation



Results on Object Part Segmentation

	mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
							phone									board	
# shapes		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
Wu [28]	-	63.2	-	-	-	73.5	-	-	-	74.4	-	-	-	-	-	-	74.8
Yi [30]	81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
3DCNN	79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
Ours	83.7	83.4	78. 7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6

dataset: ShapeNetPart; metric: mean IoU (%)

Results on Semantic Scene Parsing

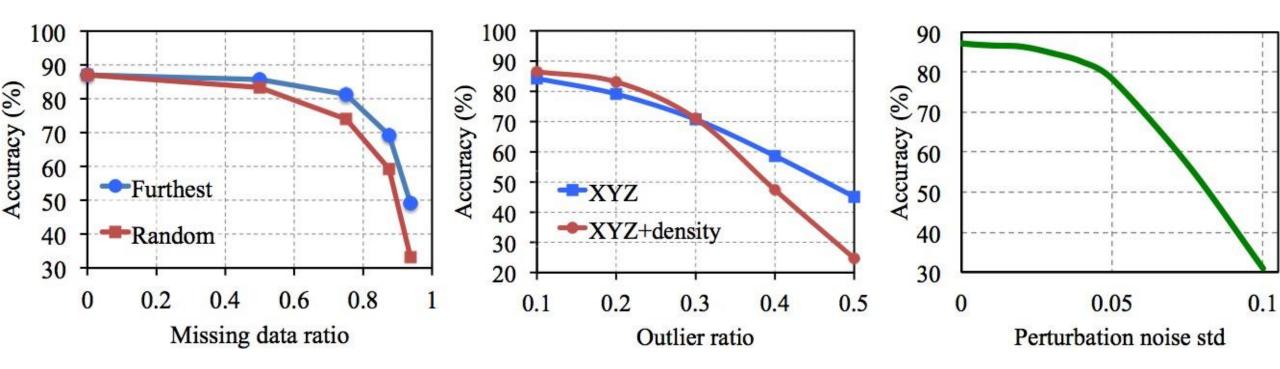
dataset: Stanford 2D-3D-S (Matterport scans)

Robustness to Data Corruption

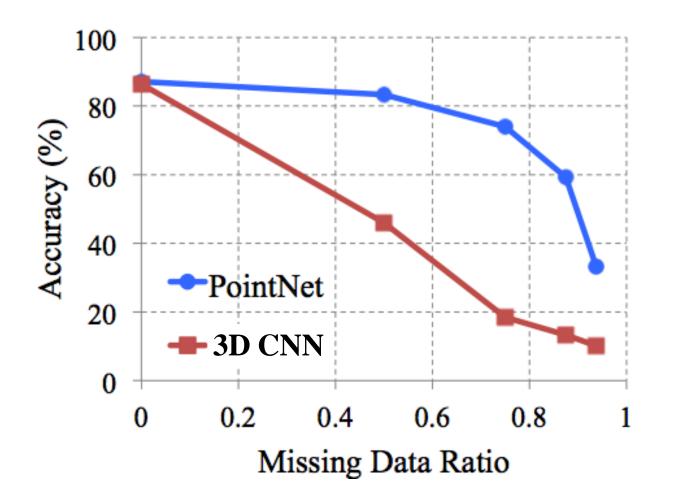
Less than 2% accuracy drop with 50% missing data



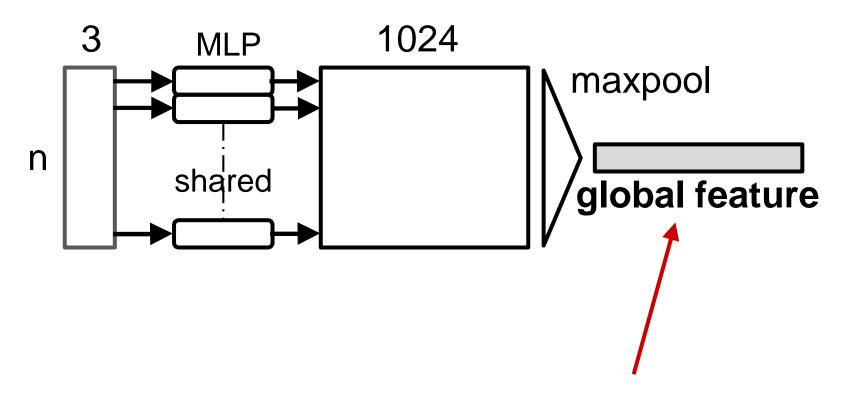
Robustness to Data Corruption



Robustness to Data Corruption



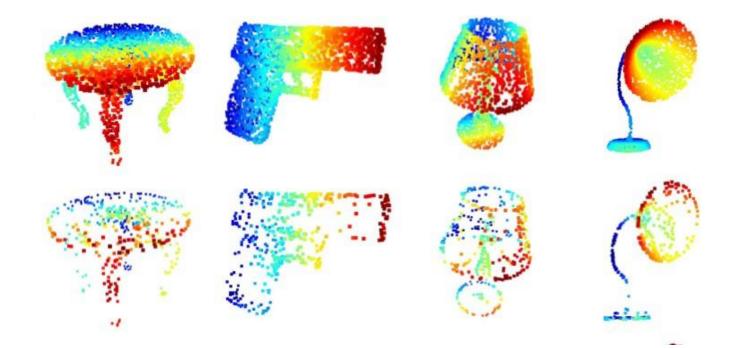
Why is PointNet so robust to missing data?

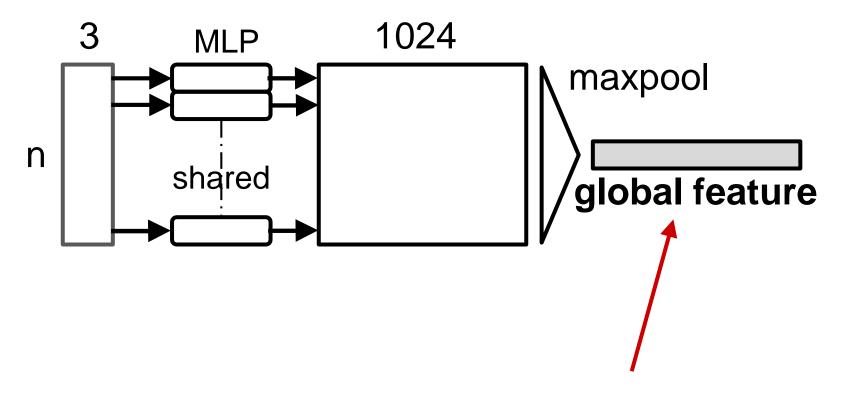


<u>Which input points</u> are contributing to the global feature? (critical points)

Original Shape:

Critical Point Sets:



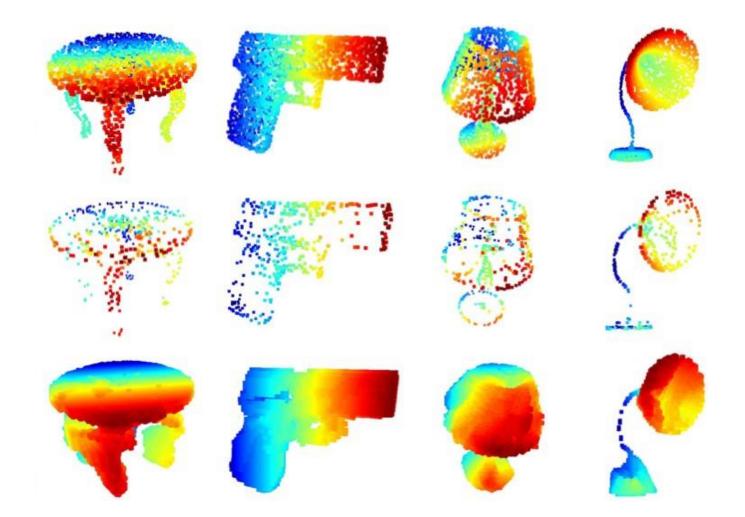


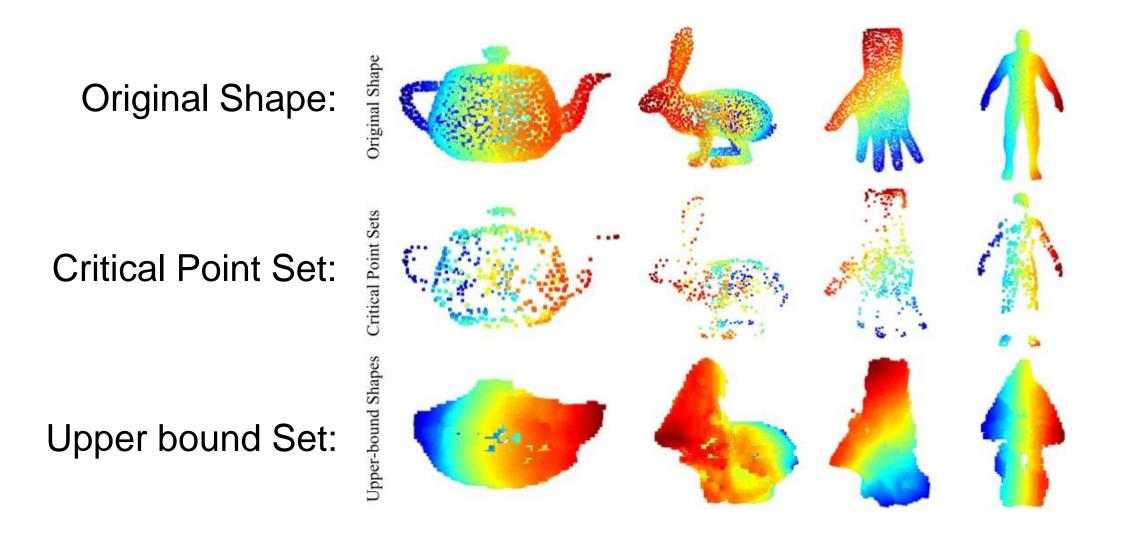
Which points won't affect the global feature?

Original Shape:

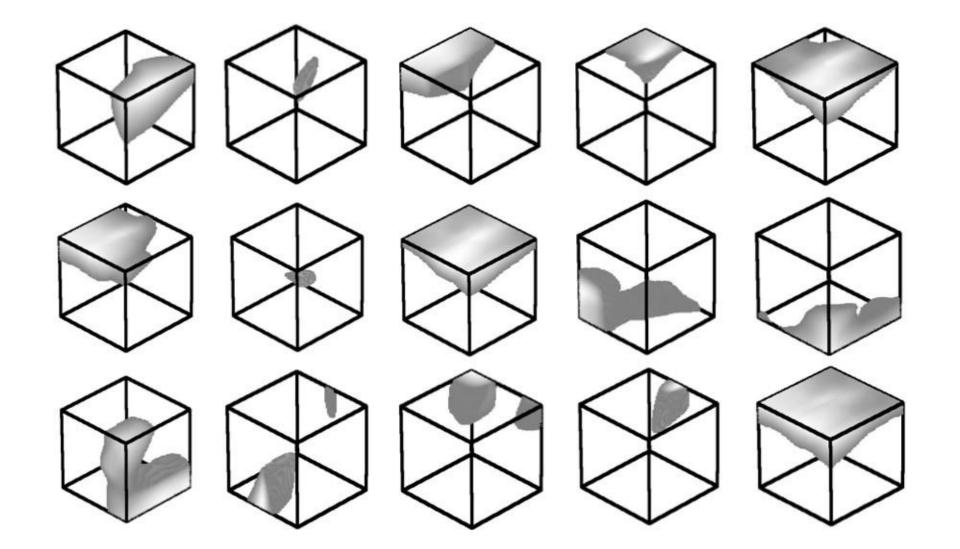
Critical Point Set:

Upper bound set:



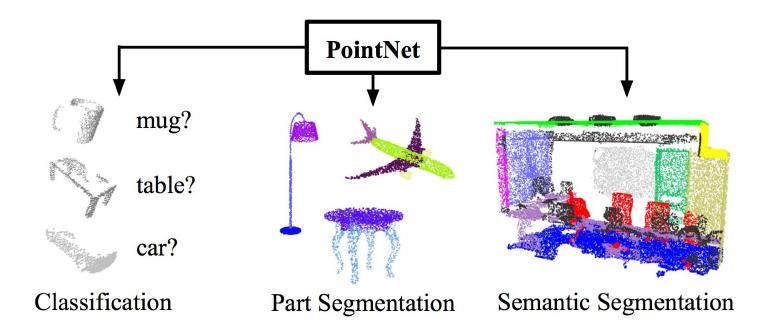


Visualizing Point Functions



Conclusion

- PointNet is a novel deep neural network that directly consumes point cloud.
- A unified approach to various 3D recognition tasks.
- Rich theoretical analysis and experimental results.



Code & Data Available! http://stanford.edu/~rqi/pointnet

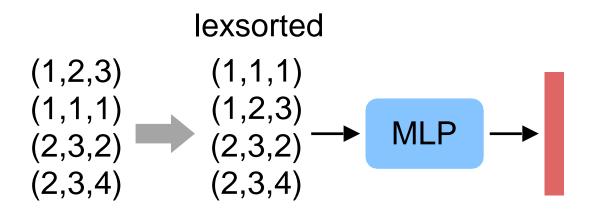
	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M
Subvolume [16]	16.6M	3633M
MVCNN [20]	60.0M	62057M

Inference time 11.6ms, 25.3ms GTX1080, batch size 8

Permutation Invariance: How about Sorting?

"Sort" the points before feeding them into a network.

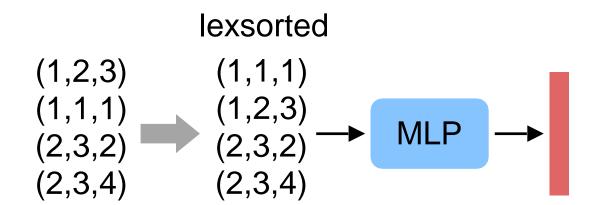
Unfortunately, there is no canonical order in high dim space.



Permutation Invariance: How about Sorting?

"Sort" the points before feeding them into a network.

Unfortunately, there is no canonical order in high dim space.



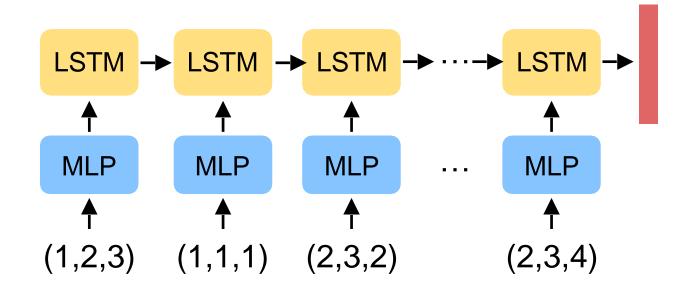
Multi-Layer Perceptron (ModelNet shape classification)

	Accuracy
Unordered Input	12%
Lexsorted Input	40%
PointNet (vanilla)	87%

Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

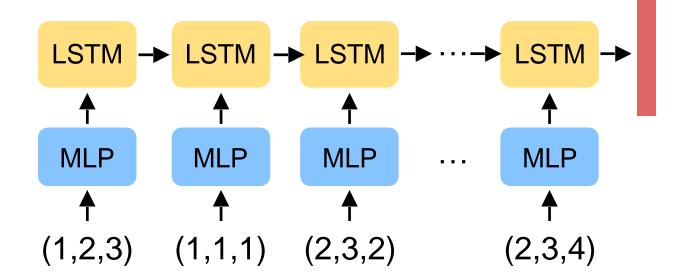
However, RNN forgets and order matters.



Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

However, RNN forgets and order matters.



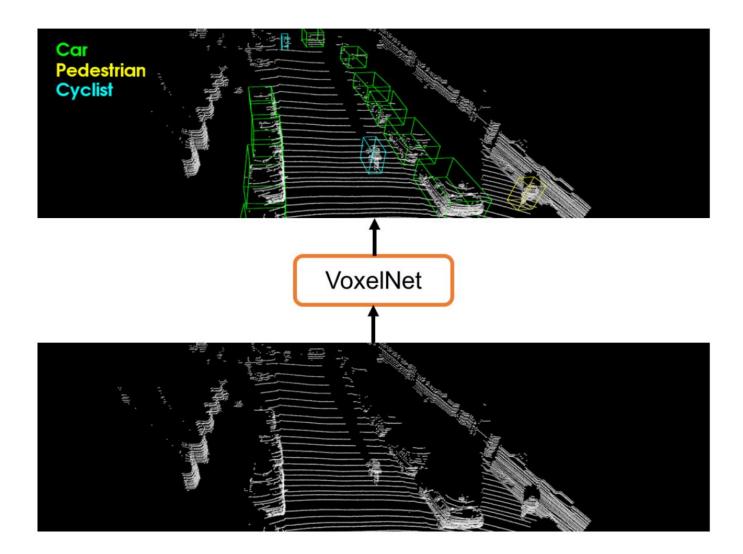
LSTM Network (ModelNet shape classification)

	Accuracy
LSTM	75%
PointNet (vanilla)	87%

Outline

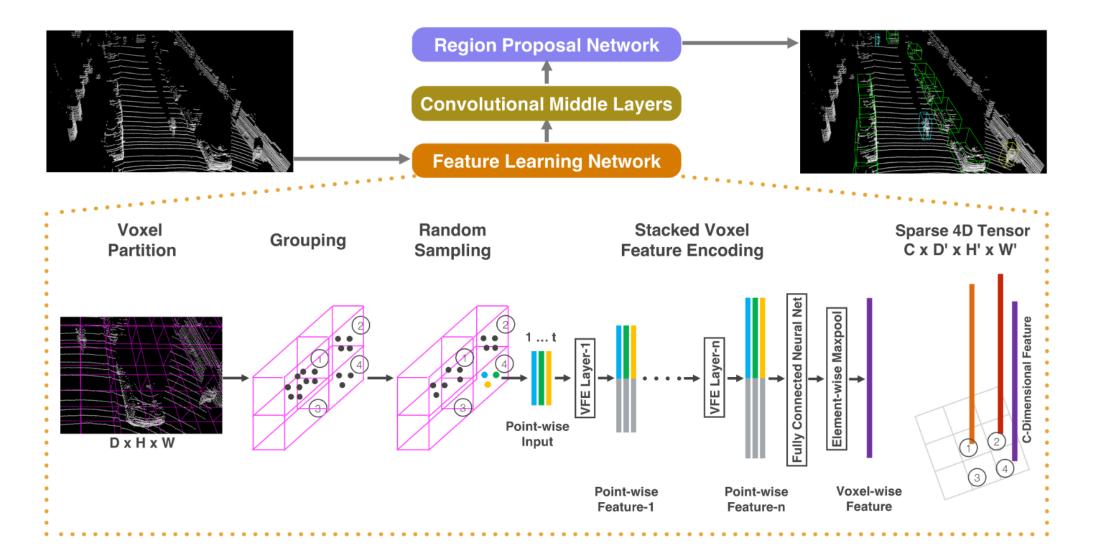
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

VoxelNet

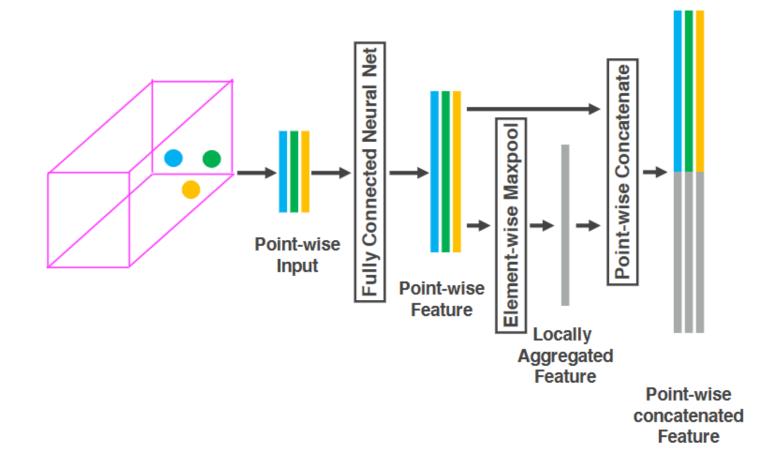


VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection Yin Zhou and Oncel Tuzel. CVPR 2018

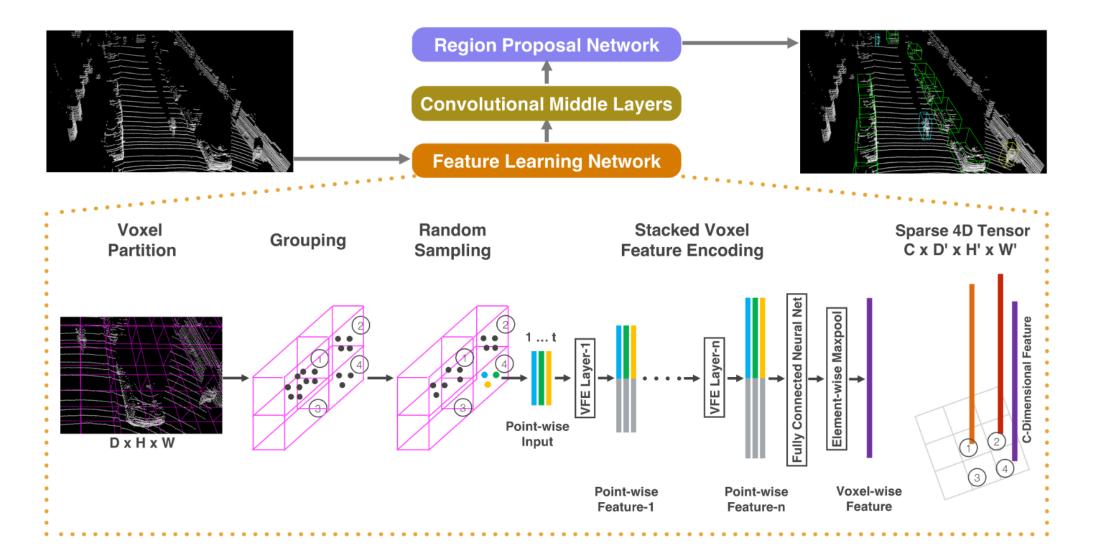
VoxelNet Overview



VoxelNet Voxel encoding looks a lot like PointNet



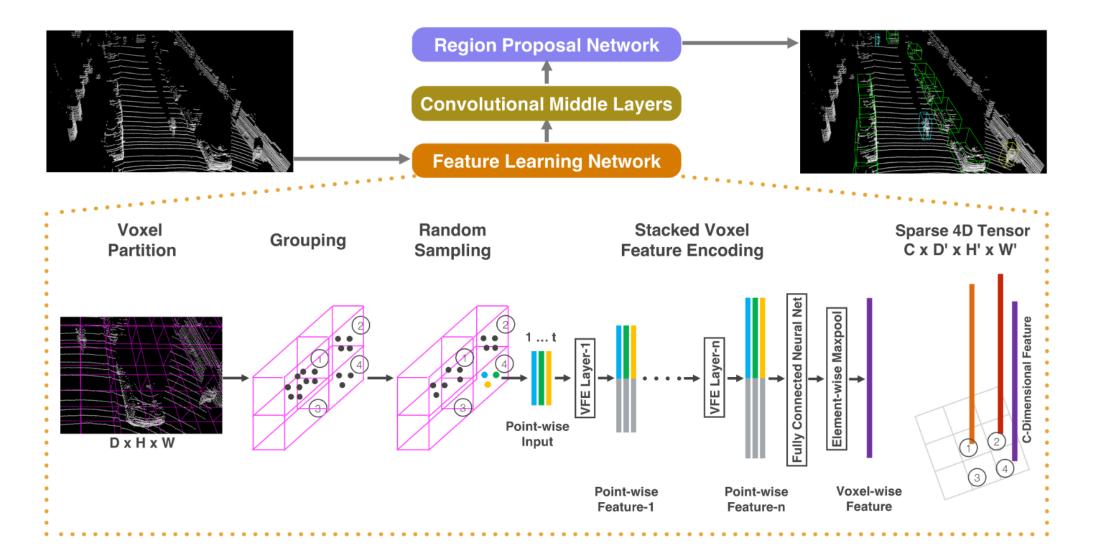
VoxelNet Overview



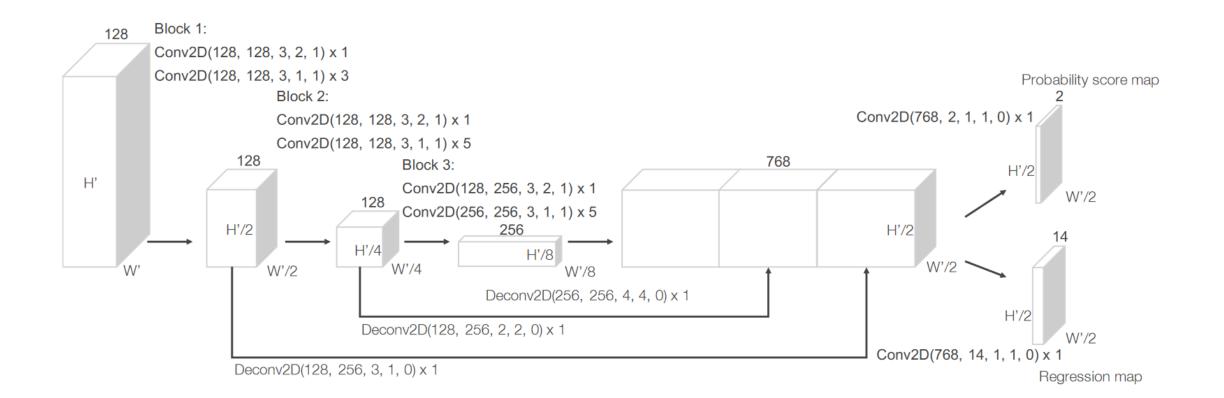
VoxelNet "Convolutional Middle Layers"

- For car detection, divide the world into 10 x 400 x 352 voxels, corresponding to voxels that are 40 cm tall and 20 cm in width/length.
- Uses **3D** convolutions instead of 2D as we've seen before.
- The Z / height dimension gets downsampled away after many layers

VoxelNet Overview

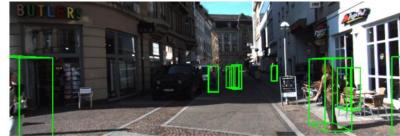


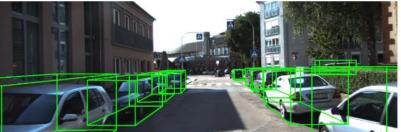
VoxelNet Region Proposal Network

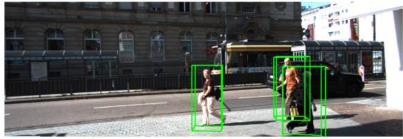


 $(x_c^g, y_c^g, z_c^g, l^g, w^g, h^g, \theta^g)$

VoxelNet qualitative results











Car

VoxelNet quantitative results

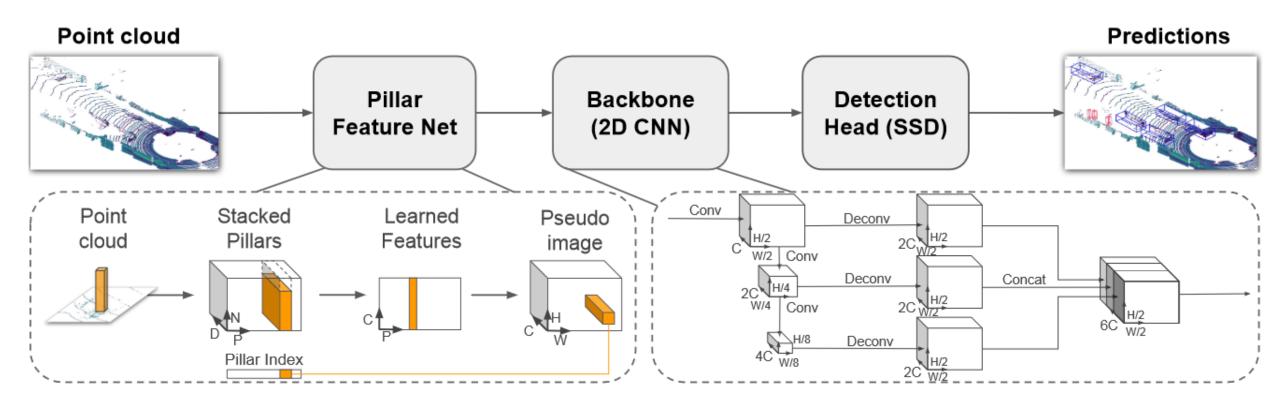
Method	Modality	Car			Pedestrian			Cyclist		
		Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
Mono3D [3]	Mono	2.53	2.31	2.31	N/A	N/A	N/A	N/A	N/A	N/A
3DOP [4]	Stereo	6.55	5.07	4.10	N/A	N/A	N/A	N/A	N/A	N/A
VeloFCN [22]	LiDAR	15.20	13.66	15.98	N/A	N/A	N/A	N/A	N/A	N/A
MV (BV+FV) [5]	LiDAR	71.19	56.60	55.30	N/A	N/A	N/A	N/A	N/A	N/A
MV (BV+FV+RGB) [5]	LiDAR+Mono	71.29	62.68	56.56	N/A	N/A	N/A	N/A	N/A	N/A
HC-baseline	LiDAR	71.73	59.75	55.69	43.95	40.18	37.48	55.35	36.07	34.15
VoxelNet	LiDAR	81.97	65.46	62.85	57.86	53.42	48.87	67.17	47.65	45.11

Evaluation on KITTI according to 3D IoU

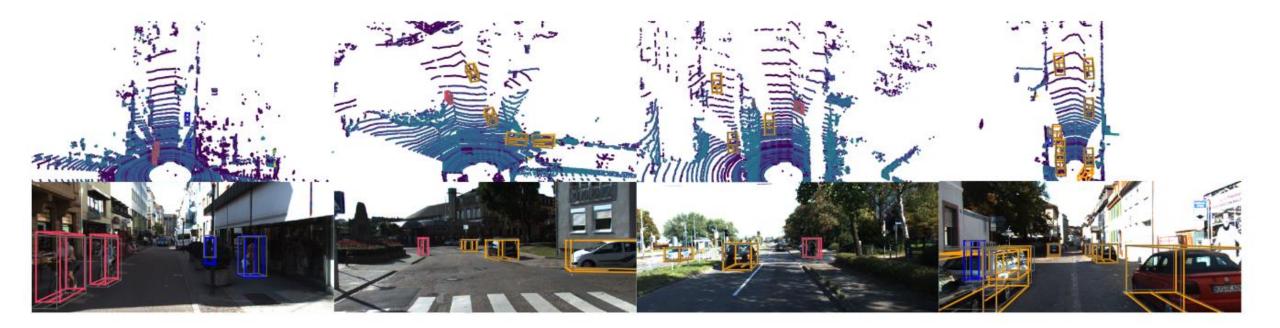
Outline

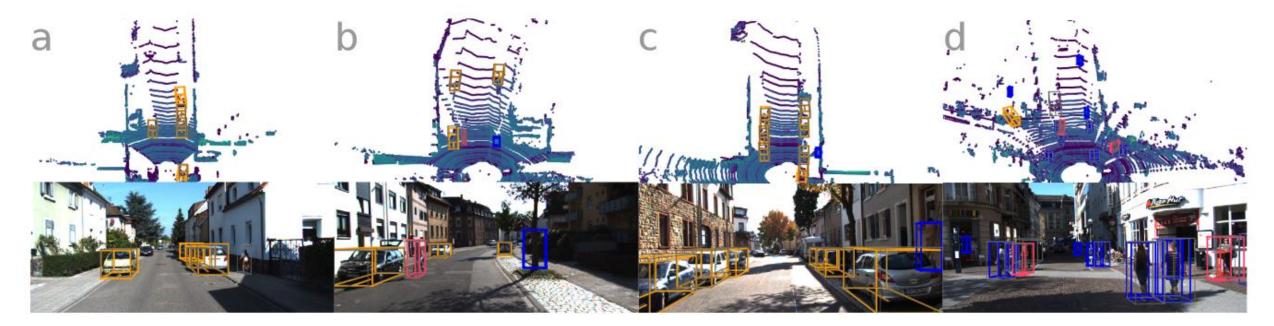
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

PointPillars

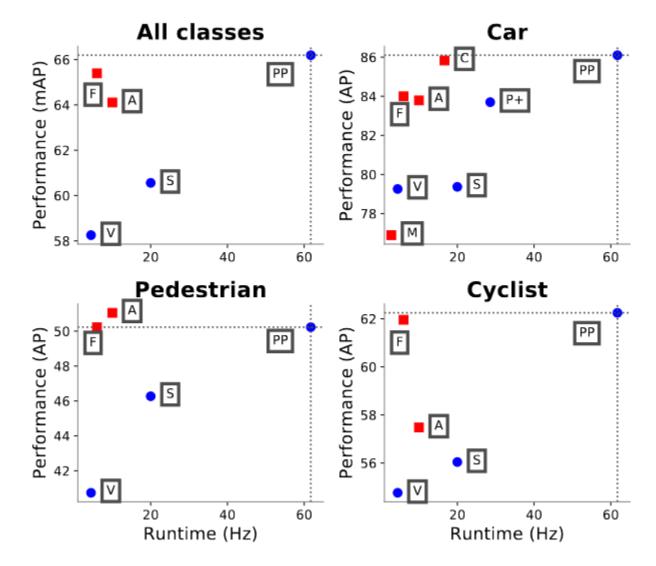


PointPillars: Fast Encoders for Object Detection from Point Clouds Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, Oscar Beijbom. CVPR 2019





Runtime / accuracy tradeoff



Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

What You See Is What You Get Exploiting Visibility for 3D Object Detection

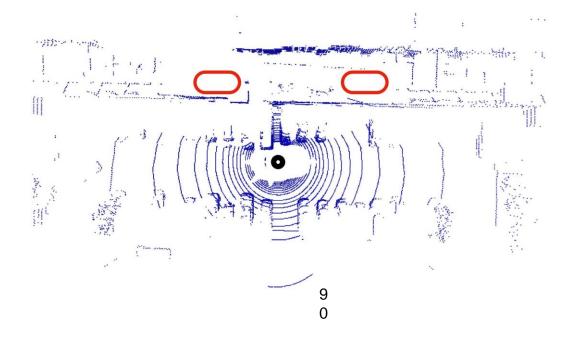
Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan

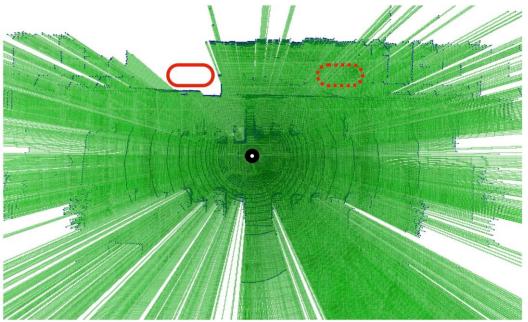
Carnegie Mellon University

Argo Al

CVPR 2020

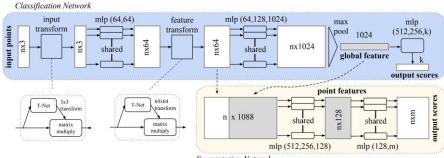
What is a good representation for LiDAR data?





- LiDAR data provides more than just point measurements
- Rays emanating from the sensor to each 3D point must pass through free space
- Representing LiDAR data as (x, y, z)s fundamentally destroys such freespace information

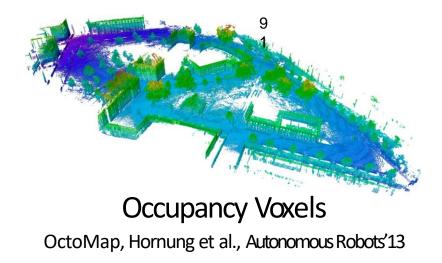
What representations do we have?

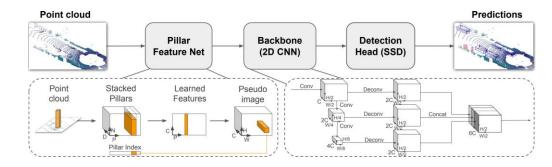


Segmentation Network

Deep Point Representation

PointNet, Qi et al., CVPR'17

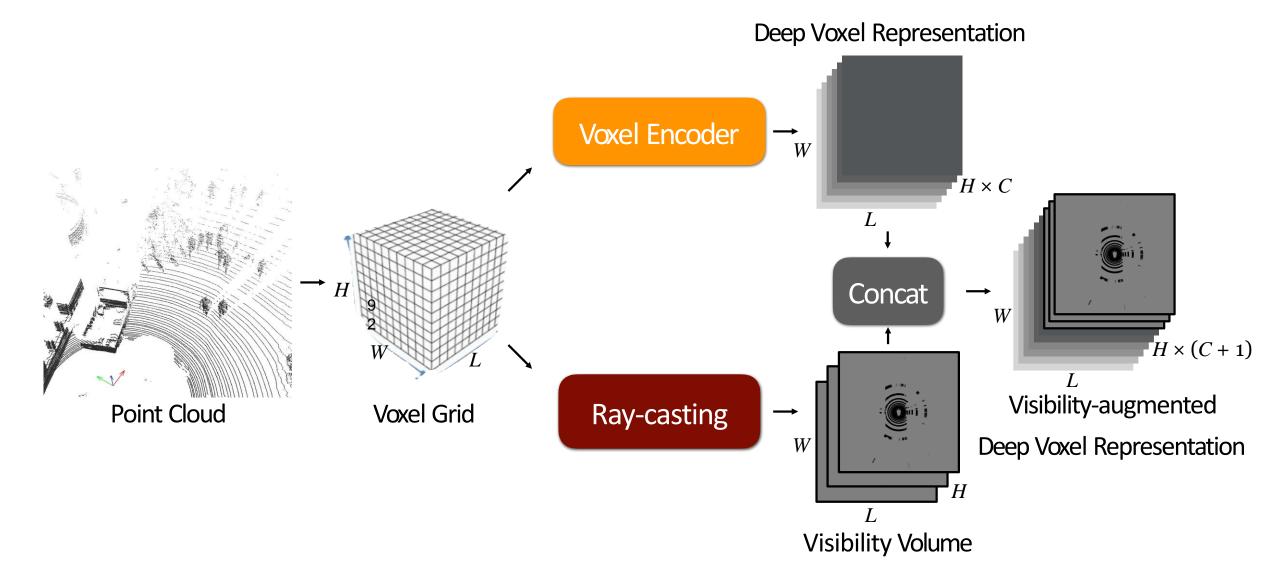




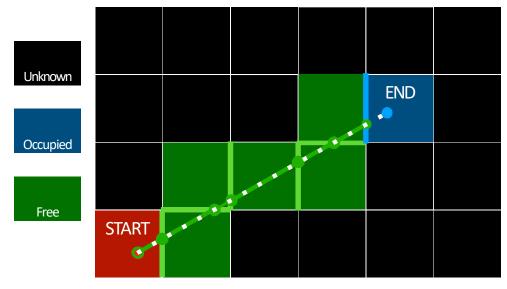
Deep Voxel Representation

PointPillars, Lang et al., CVPR'19

A Simple Approach to Augment Visibility



Efficient Ray-casting via Voxel Traversal



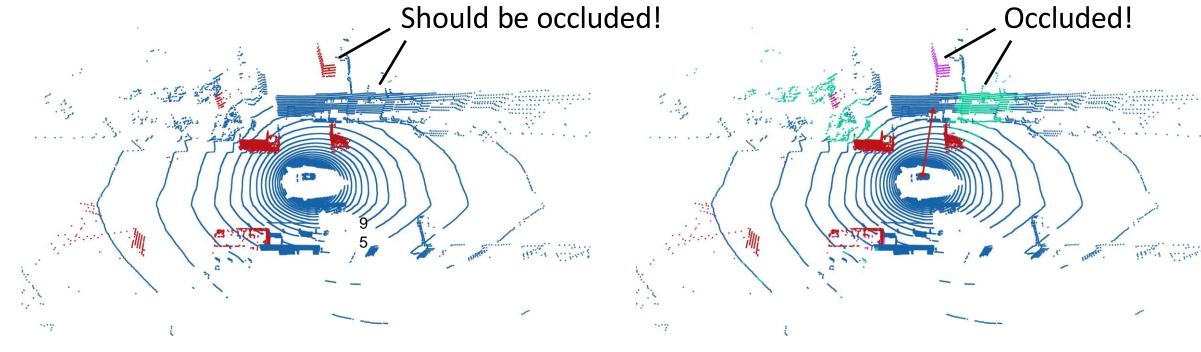
Though animated in 2D, the idea generalizes in 3D.

A Fast Voxel Traversal Algorithm for Ray Tracing John Amanatides, Andrew Woo

Eurographics 1987

3D Visibility Volume

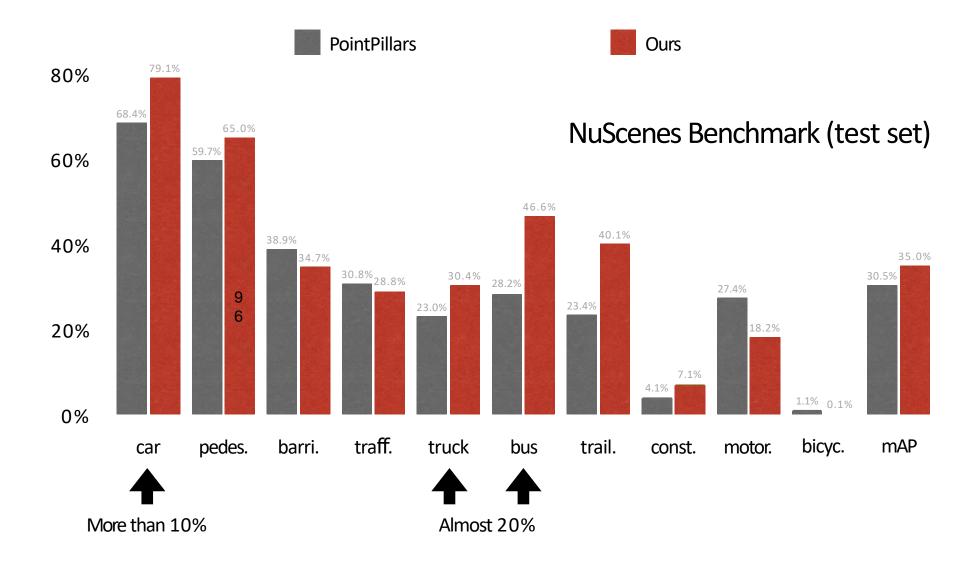
Visibility-aware LiDAR Synthesis

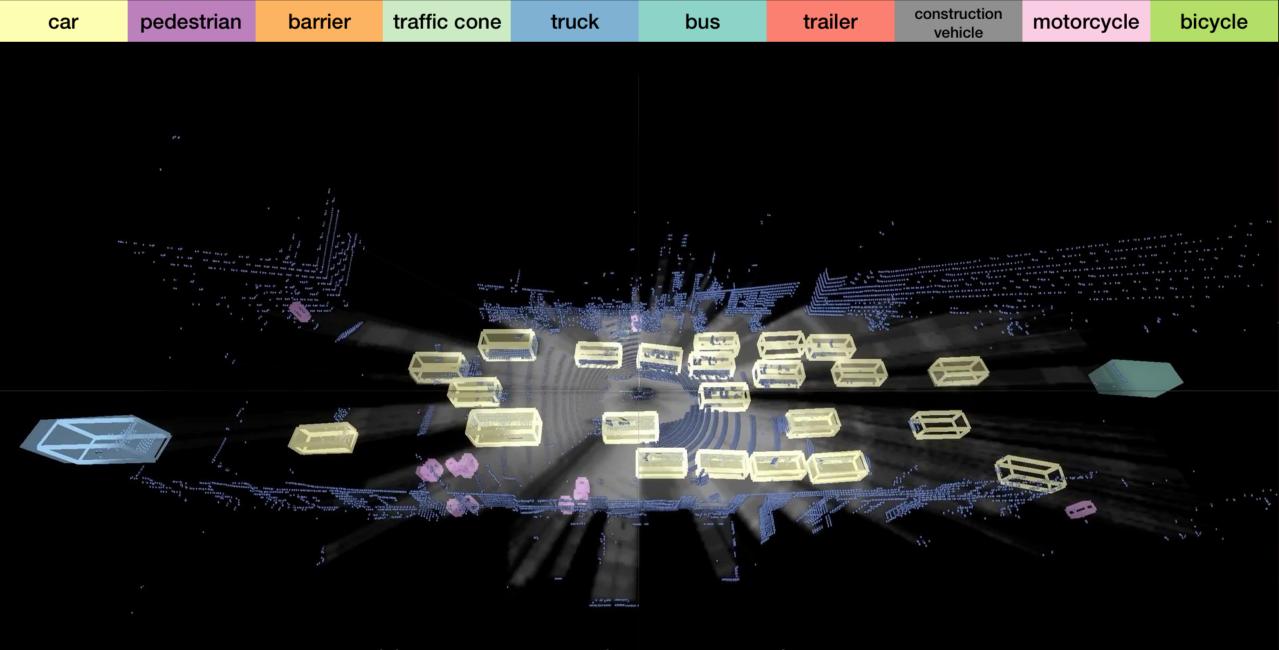


Naive Object Augmentation

PointPillars, Lang et al., CVPR'19 SECOND, Yan et al., Sensors'18 Visibility-aware Object Augmentation

Improve PointPillars by 4.5% in overall mAP





https://cs.cmu.edu/~peiyunh/wysiwyg

Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing

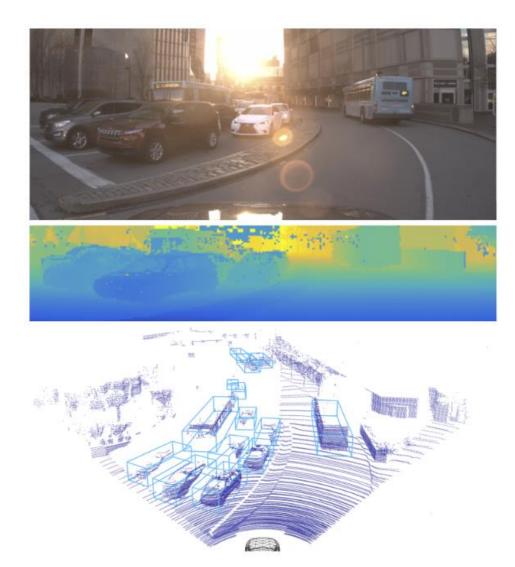


Table 4: BEV Object Detection Performance on KITTI

Method	Input	Vehicle $AP_{0.7}$				
Wieulou	Input	Easy	Moderate	Hard		
LaserNet (Ours)	LiDAR	78.25	73.77	66.47		
PIXOR 28	LiDAR	81.70	77.05	72.95		
PIXOR++ 27	LiDAR	89.38	83.70	77.97		
VoxelNet 30	LiDAR	89.35	79.26	77.39		
MV3D 5	LiDAR+RGB	86.02	76.90	68.49		
AVOD 15	LiDAR+RGB	88.53	83.79	77.90		
F-PointNet 22	LiDAR+RGB	88.70	84.00	75.33		
ContFuse 17	LiDAR+RGB	88.81	85.83	77.33		

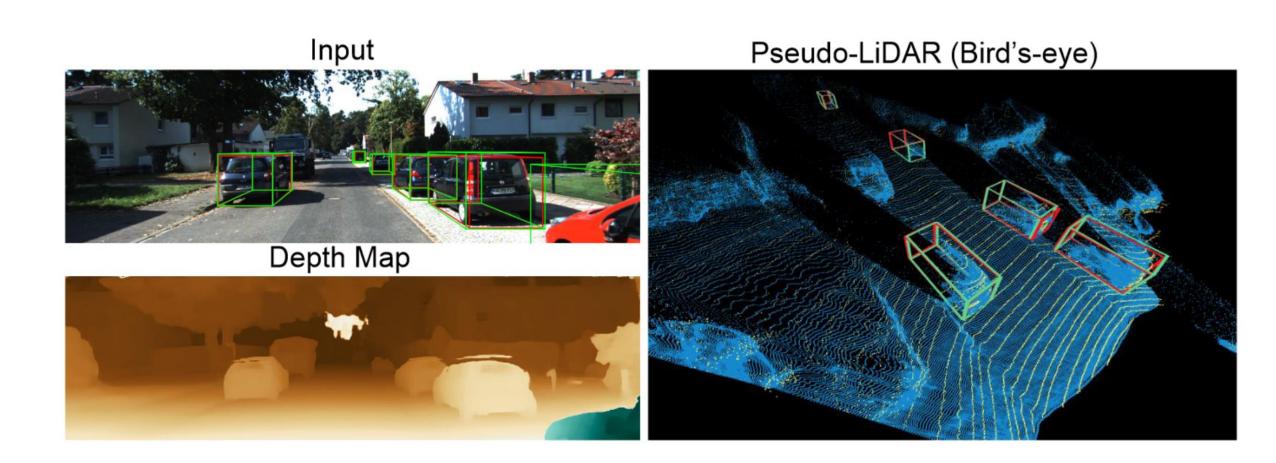
Table 3: Runtime Performance on KITTI

Method	Forward Pass (ms)	Total (ms)		
LaserNet (Ours)	12	30		
PIXOR 28	35	62		
PIXOR++ 27	35	62		
VoxelNet 30	190	225		
MV3D 30	-	360		
AVOD 15	80	100		
F-PointNet 22	-	170		
ContFuse 17	60	-		

LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving Gregory P. Meyer*, Ankit Laddha*, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington Uber Advanced Technologies Group. CVPR 2019

Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - LaserNet range image point processing
- PseudoLidar Bird's eye view depth map processing



Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariharan, Mark Campbell, and Kilian Q. Weinberger. CVPR 2019

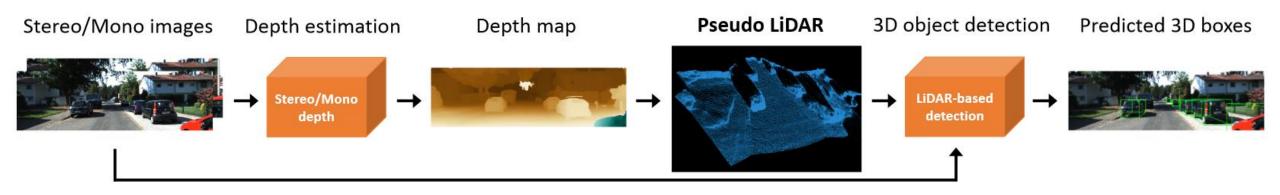
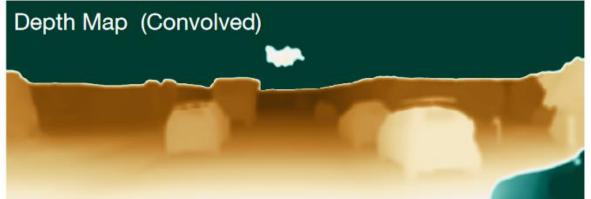
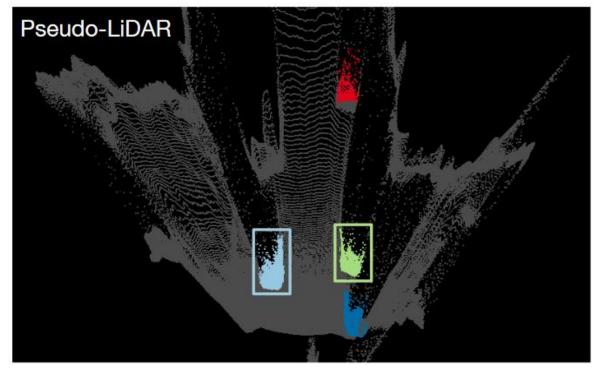
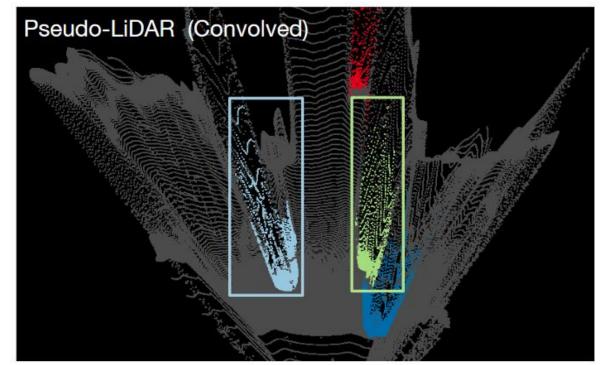


Table 1: 3D object detection results on the KITTI validation set. We report AP_{BEV} / AP_{3D} (in %) of the **car** category, corresponding to average precision of the bird's-eye view and 3D object box detection. Mono stands for monocular. Our methods with *pseudo-LiDAR* estimated by PSMNET* [3] (stereo) or DORN [10] (monocular) are in blue. Methods with LiDAR are in gray. Best viewed in color.

			IoU = 0.5		IoU = 0.7			
Detection algorithm	Input signal	Easy	Moderate	Hard	Easy	Moderate	Hard	
Mono3D [4]	Mono	30.5 / 25.2	22.4 / 18.2	19.2 / 15.5	5.2/2.5	5.2/2.3	4.1 / 2.3	
MLF-MONO [33]	Mono	55.0 / 47.9	36.7 / 29.5	31.3 / 26.4	22.0 / 10.5	13.6 / 5.7	11.6 / 5.4	
AVOD	Mono	61.2 / 57.0	45.4 / 42.8	38.3 / 36.3	33.7 / 19.5	24.6 / 17.2	20.1 / 16.2	
F-POINTNET	Mono	70.8 / 66.3	49.4 / 42.3	42.7 / 38.5	40.6 / 28.2	26.3 / 18.5	22.9 / 16.4	
3DOP [5]	Stereo	55.0 / 46.0	41.3 / 34.6	34.6 / 30.1	12.6 / 6.6	9.5 / 5.1	7.6 / 4.1	
MLF-STEREO [33]	Stereo	-	53.7 / 47.4	-	-	19.5 / 9.8	-	
AVOD	Stereo	89.0 / 88.5	77.5 / 76.4	68.7 / 61.2	74.9 / 61.9	56.8 / 45.3	49.0 / 39.0	
F-POINTNET	Stereo	89.8 / 89.5	77.6/75.5	68.2 / 66.3	72.8 / 59.4	51.8 / 39.8	44.0 / 33.5	
AVOD [17]	LiDAR + Mono	90.5 / 90.5	89.4 / 89.2	88.5 / 88.2	89.4 / 82.8	86.5 / 73.5	79.3 / 67.1	
F-POINTNET [25]	LiDAR + Mono	96.2 / 96.1	89.7 / 89.3	86.8 / 86.2	88.1 / 82.6	82.2 / 68.8	74.0 / 62.0	







Summary

- Popular CNN backbones aren't a direct fit for 3D point processing tasks.
- It's not clear how to use deep learning on 3D data
 - Use a truly permutation invariant representation (PointNet)
 - Use a voxel representation (VoxelNet)
 - Use a bird's a view representation (PointPillars)
 - Create a range image (LaserNet)
- These alternate representations might be applicable more broadly, e.g. reasoning about depth estimates might be easier in bird's eye view (PseudoLidar)