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Motivation:
Why build and validate maps?
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Mapping Spatial AI
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Mapping Spatial AI

Geometric 
map

Semantic/ 
HD map

1. Davison. FutureMapping: The Computational Structure of Spatial AI Systems. Arxiv, ‘18.
2. Sarlin et al., Pixel-Perfect Structure-from-Motion, ICCV ‘21.

Autonomy

Algorithms
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Figure source: https://matterport.com/gallery/ngorongoro-oldeani-mountain-lodge
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Figure source: https://www.youtube.com/watch?v=2eYSzmjT6HI
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What is a map?

● Not just a geometric model.
● Any object or information that is localized in 2D or 

3D that can prove useful.

Figure Source: Rosinol, ICRA '20 Figure source: https://360.here.com/2015/07/20/here-introduces-hd-maps-for-highly-automated-vehicle-testing/Figure source: Cruz, Zillow Indoor Dataset, CVPR 2021
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Figure source: Zoox, https://www.youtube.com/watch?v=JAHva2-x1wg
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3D Geometric Maps

      GTSFM ContributionsWhy mapping?       Current Limitations (3D Geometry)
12



http://www.youtube.com/watch?v=eL7ulomX7Vs


Figure source: https://www.skydio.com/blog/3d-scan-sneak-peek-crane-mast/
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Incremental SfM Global SfM
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The Deep Front-End
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What’s the point?

Feature Detectors Feature Descriptors Feature Matchers Correspondence 
Verifiers

FAST, TILDE, QuadNet, 
DDet/CovDet, Key.Net, 
GLAMPoints, ...

PCA-SIFT, Winder 07, 
ConvOpt, MatchNet, 
DeepDesc, L2Net, TFeat, 
UCN, HardNet, SOSNet, 
BeyondCartesian, ...

SuperGlue Deep F-Matrix, 
LearnedCorr, Eig-Free, 
N3-Net, NM-Net, OA-Net, 
NGRANSAC, ...

ContextDesc, D2-Net, LF-Net, R2D2, IMIPS, LIFT, 
SuperPoint, ReinforcedSuperPoint, ...
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*CNN- or GNN-based.
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Correspondence: paper vs. practice

Figure sources: Lowe, Distinctive Image Features from Scale-Invariant Keypoints,  IJCV 2004.
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System Feature Matching Module

VisualSfM 
(2013)

SIFT

OpenMVG 
(2013)

SIFT + A-Contrario RANSAC

OpenSfM 
(2014)

Hessian Affine + SIFT 
Descriptor + RANSAC

COLMAP* 
(2016)

SIFT + LoRANSAC

*State of the Art (per Knapitsch et al., 2017)
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Correspondence: paper vs. practice

Figure sources: Lowe, Distinctive Image Features from Scale-Invariant Keypoints,  IJCV 2004.
                         Sarlin, SuperGlue, CVPR 2020.
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System Feature Matching Module

VisualSfM 
(2013)

SIFT

OpenMVG 
(2013)

SIFT + A-Contrario RANSAC

OpenSfM 
(2014)

Hessian Affine + SIFT 
Descriptor + RANSAC

COLMAP* 
(2016)

SIFT + LoRANSAC
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SuperGlue Network Architecture
Goal: design a neural network that predicts the assignment P from two sets of local 
features.



Building 3d Geometric Maps 
Using Deep Learning
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Feature Matching
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Feature 
Extractor

Two View 
Estimator

Outlier 
Rejection

Rotation 
Averaging

Translation 
Averaging

Data Association 
+ Triangulation

Bundle 
Adjustment

Multi-View 
Stereo

Global SfM Revisited
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Outlier 
Rejection

Approximate 
Camera Poses

Relative (R,t) 
measurements

Global 
Rotations
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Why is global SfM hard?

The noisy front-end! (Without noise, would be nearly exact)
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Rotation Averaging



How can we average rotations?



Single Rotation Averaging

Weiszfeld's algorithm

https://docs.google.com/file/d/15IlrIQRTqQpDc0bHuclLd5aX0kTcLQOt/preview


Single Rotation Averaging

Figure Source: Matias Mattamala



Multiple Rotation Averaging

Same principle, but now we’ll solve a least squares problem in the “tangent” space.

See Govindu, CVPR 04, Chatterjee ICCV 2013

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.6216&rep=rep1&type=pdf


Translation Averaging

Given camera rotations in a 
global frame, and pairwise 
translation directions, can 
we recover the position of 
each camera (translation in 
a global frame)?

Figure source: Kyle Wilson and Noah Snavely, Robust Global Translations with 1DSfM. ECCV ‘14.



Translation Averaging

Figure source: Kyle Wilson and Noah Snavely, Robust Global Translations with 1DSfM. ECCV ‘14.



Data Association

Find connected components in keypoint match graph -> Union Find Algorithm

Figure Source: Lindenberger et al., Pixel-Perfect Structure-from-Motion with Featuremetric Refinement, ICCV 21



Data Association: obtain point “tracks”

Track 1 Track 2 Track 3

Figure Source: Lindenberger et al., 
ICCV 21
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Triangulation



Triangulation



Triangulation
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Triangulation Results:
Refinement is Needed!



https://docs.google.com/file/d/16Wkf1TzTK-MOMHu4n16r85xdLCT2auM6/preview


Bundle Adjustment

Figure source: Frank Dellaert, Factor Graphs: Exploiting Structure in Robotics

https://www.annualreviews.org/doi/full/10.1146/annurev-control-061520-010504


Bundle Adjustment



https://docs.google.com/file/d/1ftLLOd4ydvt8icxeeV6QqMSOnelxtGP4/preview


The structure now looks clean,
but is too sparse



Multi-View Stereo (MVS)

● Problem definition: Given 
camera extrinsics and intrinsics 
for multiple cameras, and some 
possible range of depths, can 
we obtain dense structure?



Multi-View Stereo (MVS)

● Problem definition: Given 
camera extrinsics and intrinsics 
for multiple cameras, and some 
possible range of depths, can 
we obtain dense structure?

● Can we use every pixel value, 
instead of only sparse 
keypoints?

Robert T. Collins. A Space-Sweep Approach to True Multi-Image 
Matching. CVPR 1996



Multi-View Stereo (MVS)

● Problem definition: Given 
camera extrinsics and intrinsics 
for multiple cameras, and some 
possible range of depths, can 
we obtain dense structure?

● Can we use every pixel value, 
instead of only sparse 
keypoints?

● Predict depth at every pixel 
(depth map). Backproject into 
3d space.



Plane Sweep Stereo

Figure source: Dan Huttenlocher

https://www.cs.cornell.edu/courses/cs664/2008sp/handouts/cs664-10-stereo.pdf


MVS: PatchmatchNet

Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys. PatchmatchNet: Learned Multi-View Patchmatch Stereo. CVPR 2021
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Global SfM Revisited

Why mapping?       Current Limitations       GTSFM Contributions (3D Geometry)
80



Challenges: occlusion and large depth ranges







NeRF (Neural Radiance Fields)



http://www.youtube.com/watch?v=6lGMCAzBzOQ


Spatial AI will revolutionize the way 
we move and interact with the 
world.

The future is bright for spatial AI
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Collaborators

github.com/borglab/gtsfm


