

Volumetric Segmentation of Clouds from Multi-Angle Satellite Imagery

Sean Foley, Kirk Knobelspiesse, Judy Hoffman, James Hays

About Me

- ML PhD 5th year, co-advised: James Hays & Judy Hoffman
- Recent Research Interests:
 - applying CV to satellite data
 - volumetric segmentation
 - neural rendering
- Hobbies:
 - o piano
 - video games
 - hanging out with my cat

Contact: seanremy@gmail.com

What are clouds?

- floating water drops or ice crystals
- condensation nuclei
- many kinds

Data from PARASOL / POLDER (CNES). Interpolated false color.

Where are clouds?

- ~67% coverage
- most at 4-8 km

Ground-based RADAR

- constant
- real-time
- fixed
- no ocean

Finding clouds from space

- active sensors
 - RADAR
 - LIDAR
 - accurate!
- passive sensors
 - 'cameras' (sort of)
 - multi-angle
 - wide coverage!

Why care about clouds?

Visible / UV

Sun's EM spectrum. Credit: <u>Dr. Chris Baird</u>

Warning: next slide has some flickering

Goal: 3D cloud segmentation in passive sensor data

Questions?

What if we already know camera poses?

Problem:

Clouds lack good keypoints!

Problem:

Thin clouds can be *translucent*

A pixel may correspond to *multiple* 3D locations

So, now what?

Throw deep learning at the problem!

What about training data?

PARASOL / POLDER

Data from PARASOL / POLDER (CNES). Interpolated false color.

A-Train Cloud Segmentation Dataset (ATCS)

- 20k train/val instances
- Python API
- Pytorch training/evaluation code

https://github.com/seanremy/atrain-cloudseg

Multi-angular imagery

- pixel -> surface location (latitude longitude)
- 16 angled cameras
- up to 13 for one pixel

POLDER's spectra

Polarization


```
Why?
```

- clouds vs bright surfaces
- clouds vs icy clouds

Geometry

for each pixel:

- solar azimuth angle
- for each angle:
 - solar zenith angle
 - view zenith angle
 - view azimuth angle

Azimuth: 8 overlapping bins

Questions?

RGB: 3 ATCS: 289

That's alotta channels!

\checkmark

Translational Invariance

- Motivation for convolutions
- things that break it:
 - scale (distance)
 - lighting
 - \circ rotation

What output representation?

Semantic Segmentation

Person Bicycle Background

Volumetric Segmentation

dense segmentation

apply trained 3D u-net

raw image

Training Details

- U-Net
- 50 epochs
- Binary Cross Entropy
- Adam

Binary Cross Entropy

 $\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = -w_n\left[y_n\cdot\log x_n + (1-y_n)\cdot\log(1-x_n)
ight]$

Questions?

Qualitative results on multiple patches. Top of each row: predicted. Bottom: true profile.

<3D qualitative example>

$$Dice = \frac{2 \times TP}{(TP + FP) + (TP + FN)}$$

Architecture	# Params.	Dice Score
Single-Pixel	1.3E5	75.8
Simple ConvNet	6.88E5	77.5
U-Net	2.76E8	78.1

$\phi_{ m sol}$	$\phi_{\rm rel}$	$\theta_{\rm sol}$	$\theta_{\rm sen}$	Dice Score
				58.4
\checkmark	\checkmark	\checkmark	\checkmark	78.1

Some other findings

- more angles = better
 - $\circ \quad \text{diminishing returns} \\$
- 3D convs don't work... yet
- some geometry essential

Can we do better?

Directions

• different architecture

Directions

Architecture	# Params.	Dice Score
Single-Pixel	1.3E5	75.8
Simple ConvNet	6.88E5	77.5
U-Net	2.76E8	78.1

Directions

- different architecture
- different representation

Radiative Transfer

matching & triangulation assumes no partial absorption

matching & triangulation assumes mostly direction-invariant scattering

Neural rendering: Challenges

- low spatial resolution
- high spectral resolution
- distant observation
- incorporate supervision

Questions?

- email:
- check out the dataset:

seanremy@gmail.com (happy to answer any questions) https://github.com/seanremy/atrain-cloudseg

Thank you!

