Welcome back!

- You may need to log in to Gatech's Github for us to be able to add you to the classroom Github group. You can debug this with project 0.
- Project 1 will be out soon.
- Read Szeliski 2.1, especially 2.1.4
- First quiz will be Thursday, October 6th.
- Today
 - Image projection
 - Filtering

From the 3D to 2D

Chapter 2

Image formation

2.1	Geometric primitives and transformations		36
	2.1.1	2D transformations	39
	2.1.2	3D transformations	43
	2.1.3	3D rotations	45
	2.1.4	3D to 2D projections	50
	2.1.5	Lens distortions	62
2.2	Photometric image formation		64
	2.2.1	Lighting	65
	2.2.2	Reflectance and shading	66
	2.2.3	Optics	73
2.3	The digital camera		78
	2.3.1	Sampling and aliasing	82
	2.3.2	Color	85
	2.3.3	Compression	97
2.4	Additi	Additional reading	
2.5	Exerci	ses	99

Projective Geometry

What is lost?

Length

Length and area are not preserved

Projective Geometry

What is lost?

- Length
- Angles

Projective Geometry

What is preserved?

• Straight lines are still straight

Projection: world coordinates image coordinates

If
$$x = 2$$
, $y = 3$, $z = 5$, and $f = 2$
What are u' and v'?

$$u' = -x * \frac{f}{z} \qquad u' = -2 * \frac{2}{5}$$

$$\frac{v'}{-f} = \frac{y}{z} \qquad v' = -y * \frac{f}{z} \qquad v' = -3 * \frac{2}{5}$$

Projection: world coordinates \rightarrow image coordinates

How do we handle the general case?

Interlude: why does this matter?

Relating multiple views

Photo Tourism Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski

University of Washington Microsoft Research

SIGGRAPH 2006

Projection: world coordinates \rightarrow image coordinates

How do we handle the general case?

Homogeneous coordinates

Conversion

Converting to *homogeneous* coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous scene coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous coordinates

Invariant to scaling

$$k \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$
Homogeneous
Coordinates
Coordinates

Point in Cartesian is ray in Homogeneous

Projection matrix

$$x = K[R \ t]X$$

x: Image Coordinates: (u,v,1)

K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)

Projection matrix

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Savarese

Projection matrix

- Unit aspect ratio
- Optical center at (0,0)
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Slide Credit: Savarese

Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

- Unit aspect ratio
- No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions

No skew

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Oriented and Translated Camera

Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

$$\mathbf{X} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_{z}(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Allow camera rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$w\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Field of View (Zoom, focal length)

From London and Upton

Beyond Pinholes: Radial Distortion

Corrected Barrel Distortion

Things to remember

 Vanishing points and vanishing lines

 Pinhole camera model and camera projection matrix

Homogeneous coordinates

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

Reminder: read your book

- Lectures have assigned readings
- Szeliski 2.1 and especially 2.1.4 cover the geometry of image formation

Image Filtering

Computer Vision
James Hays

BBC Clip: https://www.youtube.com/watch/OlumoQ05gS8

From the 3D to 2D

Extract useful building blocks

Hybrid Images

 A. Oliva, A. Torralba, P.G. Schyns, <u>"Hybrid Images,"</u> SIGGRAPH 2006

Upcoming classes: two views of filtering

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture

- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression

Image filtering (or convolution)

 Image filtering: compute function of local neighborhood at each position

- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Detect patterns
 - Template matching
 - Deep Convolutional Networks

Example: box filter

$$g[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

$$g[\cdot,\cdot]^{\frac{1}{9}}$$

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

$$g[\cdot,\cdot]_{\frac{1}{9}}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

$$h[m,n] = \sum_{k,l} g[k,l] f[m+k,n+l]$$

Credit: S. Seitz

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

	٤	Z[· ,·	J
1	1	1	1
<u> </u>	1	1	1
9	1	1	1

Smoothing with box filter

Original

0	0	0
0	1	0
0	0	0

Original

Filtered (no change)

0	0	0
0	0	1
0	0	0

?

Original

Shifted left By 1 pixel

Original

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1

(Note that filter sums to 1)

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before after

Other filters

1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge (absolute value)

Other filters

1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge (absolute value)

Filtering vs. Convolution

2d filtering

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

2d convolution

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

Key properties of linear filters

Linearity:

```
imfilter(I, f_1 + f_2) =
imfilter(I, f_1) + imfilter(I, f_2)
```

Shift invariance: same behavior regardless of pixel location

```
imfilter(I, shift(f)) = shift(imfilter(I, f))
```

Any linear, shift-invariant operator can be represented as a convolution

More properties

- Commutative: a * b = b * a
 - Conceptually no difference between filter and signal
 - But particular filtering implementations might break this equality
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: $(((a * b_1) * b_2) * b_3)$
 - This is equivalent to applying one filter: a * $(b_1 * b_2 * b_3)$
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [0, 0, 1, 0, 0],
 a * e = a

Important filter: Gaussian

• Weight contributions of neighboring pixels by nearness

0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

$$5 \times 5$$
, $\sigma = 1$

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)^2}{2\sigma^2}}$$

Smoothing with Gaussian filter

Smoothing with box filter

Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width σ V2
- Separable kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^{2}} \exp^{-\frac{x^{2}+y^{2}}{2\sigma^{2}}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^{2}}{2\sigma^{2}}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^{2}}{2\sigma^{2}}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of *x* and the other a function of *y*

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution (center location only)

The filter factors into a product of 1D filters:

1	2	1		1	Х	1	2	
2	4	2	=	2				
1	2	1		1				

Perform convolution along rows:

Followed by convolution along the remaining column:

Separability

• Why is separability useful in practice?

Some practical matters

Practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3 σ

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

To be continued...

Next class: Light and Color and Thinking in Frequency

