Welcome back!

* You may need to log in to Gatech’s Github for us to be able to
add you to the classroom Github group. You can debug this
with project O.

* Project 1 will be out soon.

* Read Szeliski 2.1, especially 2.1.4

* First quiz will be Thursday, October 6.
* Today

— Image projection
— Filtering



From the 3D to 2D

P =[xy.zZ]

3D world

Slide credit Fei Fei Li
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Projective Geometry

What is lost?
* Length
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Length and area are not preserved

Figure by David Forsyth



Projective Geometry

What is lost?
* Length
* Angles

Perpendicular?




Projective Geometry

What is preserved?
e Straight lines are still straight




Projection: world coordinates—2>image coordinates
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Projection: world coordinates—>image coordinates

Optical
Center
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How do we handle the general case?




Interlude: why does this matter?



Relating multiple views




Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006




Projection: world coordinates—>image coordinates

Optical
Center
4 (Ug, Vo) =
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How do we handle the general case?




Homogeneous coordinates

Conversion

Converting to homogeneous coordinates
.

T
Yy
(z,y) = | ¥y (z,y,2) = | 7
1 1
homogeneous image homogeneous scene
coordinates coordinates

Converting from homogeneous coordinates

y | = (@/w,y/w) | = @/ y/w.zfw)



Homogeneous coordinates

Invariant to scaling

x| [ kx| - - _ _
kx X

. kw | | w
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wl| |kw| L4 Lwo
Homogeneous Cartesian
Coordinates Coordinates

Point in Cartesian is ray in Homogeneous



Slide Credit: Savarese

Projection matrix

X: Image Coordinates: (u,v,1)
X = K[R t] X K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World Coordinates: (X,Y,Z,1)



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« Optical center at (0,0)  * Cameraat (0,0,0)
* No skew K
e 2 __X_
ul f 0 00 y
X:K[I o]x-}wv=:o fooi0|
1] 0_0_1:0 .

Slide Credit: Savarese



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« Optical center at (0,0)  * Cameraat (0,0,0)
* No skew
I I x]
u f 0 0 O y
X:K[I o]x-}wv=o f o of
1] [0 0 1 0] .

Slide Credit: Savarese



Remove assumption: known optical center

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
« No skew « Camera at (0,0,0)

x=K[l 0]X mpwv|=j0 f v o0

P N < X




Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions
* No skew * No rotation
« Camera at (0,0,0)

0
x=K[l 0]X mpwv|=f0 g v o
0

L N < X




Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions
* No rotation
« Camera at (0,0,0)

Ul o s w0
x=K[l O]X = wvi=l0 £ v o0
1] [0, 0 110

Note: different books use different notation for parameters

N < X




Oriented and Translated Camera




Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
* No rotation

u a 0 u, (1 O
x=K[l t|X = wv|=jo g v]o 1
1] |0 0 1]0 0

—, O O

P N < X




3D Rotation of Points

Slide Credit: Saverese

Rotation around the coordinate axes, counter-clockwise:
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Allow camera rotation

o s
r22 r23
r'32 r33

R N < X




Degrees of freedom




Field of View (Zoom, focal length)

1000 mm

300 mm

138 mm

1w

17 o

47

75*

04"

VTmm

From London and Upton

85mm



Beyond Pinholes: Radial Distortion
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No Distortion Barrel Distortion Pincushion Distortion

Corrected Barrel Distortion

Image from Martin Habbecke



Things to remember

* Vertical vanishing
i point
&5 (at infinity)

Vanishing @

* Vanishing pointsand N\ SSesEE=c
vanishing lines P B

P

Vanishing
point

* Pinhole camera model ..
and camera projection
matrix

* Homogeneous
coordinates




Reminder: read your book

* Lectures have assigned readings

e Szeliski 2.1 and especially 2.1.4 cover the geometry of image
formation



Image Filtering

Computer Vision

Ja mes H ayS Many slides by Derek Hoiem



P »l ) 017/2038

P /[l ) 029/203

BBC Clip: https://www.youtube.com/watch/OlumoQ05gS8



https://www.youtube.com/watch/OlumoQ05gS8

From the 3D to 2D

\ “ P = [x,y,Z]

3D world

|_et’'s now focus on 2D
Extract building blocks

Slide credit Fei Fei Li



Extract useful buiding blocks

Slide credit Fei Fei Li



e.g. DoG

- Feature | .. g7
Description

Matching /
Indexing /
Detection

database of local
descriptors

Slide credit Fei Fei Li



Hybrid Images

. = ¢ 16
le = frequency (c/i) i
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* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Upcoming classes: two views of filtering

* Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

* |Image filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression



Image filtering (or convolution)

* Image filtering: compute function of local
neighborhood at each position

* Really important!
— Enhance images
* Denoise, resize, increase contrast, etc.

— Extract information from images

* Texture, edges, distinctive points, etc.
— Detect patterns

* Template matching

— Deep Convolutional Networks



Example: box filter

1|11
1
—l1]1]|1
9

1|11

Slide credit: David Lowe (UBC)



Image filtering ABnE
g[ ,]5 1(1]1

f[.,.] l.,.]

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering ABnE
g[ ,]5 1(1]1

f[.,.] l.,.]

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering ABnE
g[ ,]5 1(1]1

f[.,.] l.,.]

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering TS

f[.,.] l.,.]

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering ABnE
g[ ,]5 1(1]1

f[.,.] l.,.]

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering

o[
f[.,.] h.,.]
K

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering

g[ 1°] é

f[.,.] l.,.]

30

30

50

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Image filtering ql- -1

f[.,.]

h[m,n]=> g[k,1] f[m+k,n+1]

Credit: S. Seitz



Box Filter

What does it do?

» Replaces each pixel with 1|1 | 1
an average of its 1
neighborhood ol I

9
1] 11

« Achieve smoothing effect
(remove sharp features)

Slide credit: David Lowe (UBC)



Smoothing with box filter




Practice with linear filters

o|lo]|o 0
0[1]0 54
o|lo]|o

Original

Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

o|lo]|o 0
0|01 e
o|lo]|o

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

0|00 1

01210 - ?
9 o

0|00

(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters

0[{0|O0
1
0[2|0 -
9
00O

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Other filters

1(0]|-1

210]-2

110 ]|-1
Sobel

Vertical Edge
(absolute value)



Other filters

Horizontal Edge
(absolute value)



Filtering vs. Convolution

f=filter, size k x 1

I=image, size m X n

e 2d filtering

h[m,n] =" [k, 1] 1[m+k,n+1]

e 2d convolution

h[m,n]=>" f[k,I]1[m—k,n—1]

In Python you can use https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html



https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

Key properties of linear filters

Linearity:
imfilter (I, £, + £,) =
imfilter (I, f,) + 1Imfilter(I,f,)

Shift invariance: same behavior regardless of

pixel location
imfilter (I, shift(f)) = shift (imfilter (I, f))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik



More properties

e Commutative:a*b=b*a
— Conceptually no difference between filter and signal
— But particular filtering implementations might break this equality

e Associative:a*(b*c)=(a*b)*c
— Often apply several filters one after another: (((a * b,;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)

e Distributes over addition:a * (b+c)=(a * b) + (a * ¢)
e Scalars factorout: ka *b=a *kb =k (a * b)

e |dentity: unitimpulsee =10, 0, 1, O, 0],
a*e=a

Source: S. Lazebnik



Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5 0=1

Slide credit: Christopher Rasmussen



Smoothing with Gaussian filter




Smoothing with box filter




Gaussian filters

e Remove “high-frequency” components from the image (low-
pass filter)

— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and get same result
as larger-width kernel would have

— Convolving two times with Gaussian kernel of width o is same as
convolving once with kernel of width oVv2

e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Xty
G,(x — 1 207
(X y) = 52 oXP -
1 X2 y2
— ( —— exp 2—52) L exp 2—52
V2o V2o

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Separability example

2D convolution > la 12 <3 [5 Is
(center location only)

The filter factors 112 ] T x| 1]2]?
into a product of 1D 2 14 12]=]|>2
filters: 112 |1 1
_ 21313 11
Perform convolution T2T111%0 15 15 1= 8
along rows:
4 14 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman



Separability

e Why is separability useful in practice?



Some practical matters



Practical matters
How big should the filter be?

* Values at edges should be near zero

e Rule of thumb for Gaussian: set filter half-width to
about3 o



Practical matters

 What about near the edge?
— the filter window falls off the edge of the image
— need to extrapolate

— methods: 4 N "

e clip filter (black)

* wrap around

e copy edge

* reflect across edge

Source: S. Marschner



To be continued...



Next class: Light and Color and
Thinking in Frequency
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