The blue and green colors are actually the same



http://blogs.discovermagazine.com/badastronomy/2009/06/24/the-blue-and-the-green/



Hybrid Images

. = ¢ 16
le = frequency (c/i) i

1
g
gﬂ' Cmee s
0

fre%gmcy (c/)

* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Why do we get different, distance-dependent
interpretations of hybrid images?

Slide: Hoiem
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Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5 0=1

Slide credit: Christopher Rasmussen



Smoothing with Gaussian filter




Smoothing with box filter




Gaussian filters

e Remove “high-frequency” components from the image (low-
pass filter)

— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and get same result
as larger-width kernel would have

— Convolving two times with Gaussian kernel of width o is same as
convolving once with kernel of width oVv2

e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Xty
G,(x — 1 207
(X y) = 52 oXP -
1 X2 y2
— ( —— exp 2—52) L exp 2—52
V2o V2o

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Separability example

2D convolution > la 12 <3 [5 Is
(center location only)

The filter factors 112 ] T x| 1]2]?
into a product of 1D 2 14 12]=]|>2
filters: 112 |1 1
_ 21313 11
Perform convolution T2T111%0 15 15 1= 8
along rows:
4 14 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman



Separability

e Why is separability useful in practice?



Some practical matters



Practical matters
How big should the filter be?

* Values at edges should be near zero

e Rule of thumb for Gaussian: set filter half-width to
about3 o



Practical matters

 What about near the edge?
— the filter window falls off the edge of the image
— need to extrapolate

— methods: 4 N "

e clip filter (black)

* wrap around

e copy edge

* reflect across edge

Source: S. Marschner



Recap of Filtering

* Linear filtering is dot product at

each position

— Not a matrix multiplication

— Can smooth, sharpen, translate
(among many other uses)

 Be aware of details for filter size,
extrapolation, cropping




Median filters

* A Median Filter operates over a window by
selecting the median intensity in the window.

 What advantage does a median filter have over
a mean filter?

e |s a median filter a kind of convolution?

© 2006 Steve Marschner ¢ 18 Slide by Steve Seitz



Comparison: salt and pepper noise

CGraussian MMedian

TT

© 2006 Steve Marschner ¢ 19 Slide by Steve Seitz



Review: questions

1. Write down a 3x3 filter that returns a positive value if the
average value of the 4-adjacent neighbors is less than the
center and a negative value otherwise

2. Write down a filter that will compute the gradient in the x-
direction:

gradx(y,x) = im(y,x+1)-im(y,x) for each x, vy

Slide: Hoiem



Review: guestions

.— Filtering Operator
B A

3. Fill in the blanks:

> |

Q Q O W
* ok ok of

Slide: Hoiem



Thinking in Frequency

Slides: Hoiem, Efros, and others



This lecture

* Fourier transform and frequency domain

— Frequency view of filtering

* Reminder: Read your textbook

— Today’s lecture covers material in 3.4

Slide: Hoiem



Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Box filter n

Gaussian




Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide: Hoiem



http://www.flickr.com/photos/igorms/136916757/

Thinking in terms of frequency



Background: Change of Basis

mit.edu

STUDY MATERIALS

RELATED
RESOURCES

DOWNLOAD COURSE
MATERIALS

» Lecture 4: Factorization into A= LU

» Lecture 5: Transposes, permutations, spaces R"n

» Lecture 6: Column space and nullspace

» Lecture 7: Solving Ax = 0: pivotvariables, special solutions

» Lecture 8: Solving Ax = b: row reduced form R

» Lecture 9: Independence, basis, and dimension



Background: Change of Basis

For vectors and for image patches



Related concept: Image Compression

How is it that a 4MP image can be compressed
to a few hundred KB without a noticeable
change?



Lossy Image Compression (JPEG)

2 (&

Block-based Discrete Cosine Transform (DCT)
https://en.wikipedia.org/wiki/JPEG



Using DCT in JPEG

* The first coefficient B(0,0) is the DC component, the average
Intensity

* The top-left coeffs represent low frequencies, the bottom right
— high frequencies

0 1 2 3 4 5 6 7
gl IIIEIIIIIIIIII III -

iil II-IIII

Ll m— - Flllﬂ_l!lull LLLY RRER

I
l
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-
-
= .




8x8 image patch

Lossy Image Compression (JPEG)

i 1

DCT bases

u

—

[ —415.38 -30.19 —61.20 2724 56.13 —20.10

447 -21.86 —-60.76 1025 1315 -—7.09
—46.83 737 7713 2456 —28.91 9.93
—48.53 1207 3410 —-1476 -10.24 6.30

1212 -6.55 -13.20 —-3.95 —1.88 1.75

—7.73 291 238 594 238 0.94
—1.03 0.18 042 -242 088 —-3.02
—0.17 014 -107 -—-419 -117 -0.10

Patch representation after
projecting on to DCT bases

—2.39
—8.54
5.42
1.83
—-2.79
4.30
4.12
0.50

0.46 1

4.88
—5.65
1.95
3.14
1.85
—0.66

1.68 |




Image compression using DCT

e Quantize

— More coarsely for high frequencies (which also tend to have smaller values)

— Many quantized high frequency values will be zero

e Encode

— Can decode with inverse dct

Filter responses

[ —415.38 -30.19 —61.20
447 -—-21.86 —60.76
_ —46.83 7.37
G = —48.53 12,07
1212 -6.55 -13.20
—7.73 291
—1.03 0.18
—0.17 014 —1.07

Quantized values

-3
-3
1

0
0
0

77.13
34.10

2.38
0.42

1

o s Y s I s

[ 26 -3 -6
0 -2 -4

5

B e B s B s Y

27.24
10.25
—24.56
—14.76
—3.95
—5.94
—2.42
—4.19

!

oD O D e D

—

OO O O O = D

56.13
13.15
—2891
—10.24
—1.88
—2.38
—0.88
—1.17

oo o oooaoo—

—20.10

oo o oo ooo

—7.09
9.93
6.30
1.75
0.94

—3.02

—0.10

co oo oo oo
L 1

—2.39
—8.54
5.42
1.83
—2.79
4.30
412
0.50

0.46 1

4.88
—5.65
1.95
3.14
1.85
—0.66

1.68 |

16
12
14
14
18
24
49
72

Quantization table

11
12
13
17
22
35
64
92

10
14
16
22
37
%3]
78
95

16
19
24
29
56
64
87
98

24
26
40
91
68
81
103
112

40
58
57
87
109
104
121
100

51
60
69
80
103
113
120
103

61
55
96
62
77
92
101
99




JPEG Compression Summary

1. Convert image to YCrCb
2. Subsample color by factor of 2

— People have bad resolution for color

3. Split into blocks (8x8, typically), subtract 128
4. For each block

a. Compute DCT coefficients
b. Coarsely quantize

 Many high frequency components will become zero

c. Encode (e.g., with Huffman coding)

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/ JPEG



http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

Jean Baptiste Joseph Fourier (1768-1830)

-

. . ...the manner in which the author arrives at these
had cra Zy idea (1807) ) equations is not exempt of difficulties and...his

Any univariate function can | analysis to integrate them still leaves something to be

rewritten as a weighted sum|  desired on the score of generality and even rigour.
sines and cosines of differen:

frequencies.
 Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

 Butit’s (mostly) true!
— called Fourier Series

— there are some subtle
restrictions

~




Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a
superposition of sinusoidal and cosinusoidal vibrations. He developed a
mathematical theory of heat & in Théorie Analytique de la Chaleur (Analytic
Theory of Heat), (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon. [7:/ /=
pr e e EEE G R ER Rl EE Tl The paper of Galois which he had
taken home to read shortly before his death was never recovered.

m Galois

Additional biographies: MacTutor (St. Andrews), Bonn

© 1996-2007 Eric W. Weisstein

'L

How would math |
have changed if the
Slanket or Snuggie E _— -
had been invented? » Vo OB it |



A sum of sines

Our building block:

AsIn(awX + @)

Add enough of them to get
any signal g(x) you want!

f(target)=

f1 + f2+ fg...+ fn+...




Frequency Spectra

« example : g(t) = sin(2xf t) + (1/3)sin(2z(3f) t)

>

) A
NENEBRVEVML L

Slides: Efros



Frequency Spectra




Frequency Spectra
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Frequency Spectra
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Frequency Spectra
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Frequency Spectra




Frequency Spectra

AZ%sin(Zﬂkt)
k=1

[T—




Example: Music

* We think of music in terms of frequencies at different
magnitudes

voice waveform example Spectrum of a voice signal {15 seconds)

Slide: Hoiem



Other signals

 We can also think of all kinds of other signals the same way

Hi De. EF zaloeth ¢
Yeak b £ ae cadcnh\lj TeoK
the FEuner transfocm of @y cat ...

gﬂ Meow

xkcd.com



Fourier analysis in images

4 il
]

http://sharp.bu.edu/~slehar/fourier/fourier.ntml#filtering

Intensity Image

Fourier Image




Fourier Transform

* Fourier transform stores the magnitude and phase at each frequency
— Magnitude encodes how much signal there is at a particular frequency
— Phase encodes spatial information (indirectly)
— For mathematical convenience, this is often notated in terms of real and complex numbers

1@

Amplitude: A= i\/R(Cf))2 + | (0))2 Phase: ¢ = tan
R(w)



Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 20 meters becomes the portrait

of Abraham Lincoln”, 1976










Fourier Bases

Teases away fast vs. slow changes in the image.

| | 1 i1l IIIIII‘
U0 il
l II I PN \HH'

l-|
@

This change of basis is the Fourier Transform




Fourier Bases

rier Transform 13



This looks a lot like DCT in JPEG compression

8x8 image patch

DCT bases

[ —415.38 -30.19 —61.20 2724 56.13 —20.10 —-239 046 ]

u

—

447 -21.86 —-60.76 1025 1315 -—-7.09 —-854 4.88
—46.83 737 7713 2456 —28.91 993 542 565
—48.53 1207 3410 —-1476 -10.24 630 183 195 v

1212 -6.55 -13.20 —-3.95 —1.88 1.75 -279 3.4

—7.73 291 238 594 238 094 430 1.85
—1.03 0.18 042 -242 088 —-3.02 412 -0.66
—0.17 014 -107 —-419 -117 010 050 168 |

Patch representation after
projecting on to DCT bases



Man-made Scene




Can change spectrum, then reconstruct

+FFT of ARCOSL.TGA

JFFT of ARCOSL.TGA JARCOSL.TGA 1 JFFT of ARCOSL.TGA JARCOSL.TGA 1 - [0O] x|

it




Low and High Pass filtering

1ARCOSL. TGA O] x| {FFT of ARCOSL.TGA O x| ARCOSL.TGA 1 _ (O] x|
= ‘




Computing the Fourier Transform
H(w) = F{h(x)} = Ae’?

Continuous

Discrete

2wkx
"\IT

1 N—1 |
H”‘) — ? Z I’E(J'){-‘:_j ]
1Y I:D

k =-N/2..N/2

Fast Fourier Transform (FFT): NlogN



The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg *h]=F[g]F[h]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!

g*h=F[F[g]F[h]]



Filtering in spatial domain

intensity image




Filtering in frequency domain

intensity image

log fit magnitude

FFT

Inverse FFT

Slide: Hoiem




Filtering

Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Box filter n

Gaussian




intensity image

Gaussian

filter: gaussian

filtered image

filter: gaussian

log fit magnitude of filtered image

s

"




intensity image

lew Insert Tools Desktop Window Help
2 [% *-\-'-\-5"?'@@‘%'@ DE = O
log fft magnitude of image

Box Filter

filter: box

P
B Figure 4

Do de

File Edit View Insert Tools Desktop Window Help

MAKRODEL-S|0E| =T

filter: box

filtered image

B Figure 6

File Edit View Insert Tools Desktop Window Help
DEEe RO DEL- |2 |[ME|aD

log fft magnitude of filtered image




Is convolution invertible?

* |f convolution is just multiplication in the Fourier domain, isn’t
deconvolution just division?

 Sometimes, it clearly is invertible (e.g. a convolution with an
identity filter)

* |n one case, it clearly isn’t invertible (e.g. convolution with an
all zero filter)

e What about for common filters like a Gaussian?



But you can’t invert multiplication by O

* Butit’s not quite zero, is it...

intensity image

filter: gaussian

filtered image

filter: gaussian

.lH.ﬂ!l

log fft magnitude of filtered image




Let’s experiment on Novak




Convolution
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Deconvolution?
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But under more realistic conditions

Random noise, .000001 magnitude
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But under more realistic conditions

Random noise, .0001 magnitude
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But under more realistic conditions

Random noise, .001 magnitude
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With a random filter...

Random noise, .001 magnitude

10
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Deconvolution is hard

e Active research area.

* Even if you know the filter (non-blind deconvolution), it is still
very hard and requires strong regularization.

* |f you don’t know the filter (blind deconvolution) it is harder
still.



Blind Deconvolution Example

intermediate build . edge refinement . blur output
strong gradients

latent image

edge mask

kernel

flnd example
patches

restore patch
contrasts |

4 x-step iteratively refine <

Figure 1. Algorithm pipeline. Our algorithm iterates between x-step and k-step with the help of a patch prior for edge refinement process.
In particular, we coerce edges to become sharp and increase local contrast for edge patches. The blur kernel is then updated using the
strong gradients from the restored latent image. After kernel estimation, the method of [20] is used for final non-blind deconvolution.

Edge-based Blur Kernel Estimation Using Patch Priors.
Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.
IEEE International Conference on Computational Photography 2013.



Groqnd Truth  Cho & Lee ‘ Our-Synth

m_; SR ‘*ﬁ%4
XX | XX

NN 1IN

Edge-based Blur Kernel Estimation Using Patch Priors.
Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.
IEEE International Conference on Computational Photography 2013.
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