

Semantic Segmentation, PSPNet, and MSeg

Many slides by John Lambert

Recap – Self-supervised learning

We looked at two of many ways to "self supervised" deep networks. These networks, trained on "pretext" tasks, generalize to other learning problems.

Semantic Segmentation

Measuring Performance: Intersection over Union

Applies to segmentations, as well

Figure source: http://cs230.stanford.edu/section/8/

Figure source: https://www.gettyimages.com/photos/moss-rock?phrase=moss%20rock&sort=mostpopular

Tasks: Semantic Segmentation

a classification network

Fully Convolutional Networks for Semantic Segmentation. Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015

becoming fully convolutional

 convolution

 227 × 227
 55 × 55
 27 × 27
 13 × 13
 1 × 1

Note: "Fully Convolutional" and "Fully Connected" aren't the same thing. They're almost opposites, in fact.

becoming fully convolutional

upsampling output

end-to-end, pixels-to-pixels network

Fully Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Fully Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Input		L1		L2		L3		L4
	3x3 CNN (s=1)		3x3 max-pool		3x3 CNN (s=1)		3x3 max-pool	
]]]]	
]			
	-	<u> </u>	-		-			
					-			
					-			
	1				1			
					-		-	
			-		-			
	-							
	-	<u> </u>	-		-			
]]	

Dilated Convolution

Figure source: https://github.com/vdumoulin/conv_arithmetic

Fully Convolutional Network

Design a network as a bunch of convolutional layers to make predictions for pixels all at once!

Input: 3 x H x W

Problem #1: Effective receptive field size is linear in number of conv layers: With L 3x3 conv layers, receptive field is 1+2L

Problem #2: Convolution on high res images is expensive!

Long et al, "Fully convolutional networks for semantic segmentation", CVPR 2015

Fully Convolutional Network

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation" CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

In-Network Upsampling: "Unpooling"

Upsampling: Bilinear Interpolation

Use two closest neighbors in x and y to construct linear approximations

Fully Convolutional Network

Design network as a bunch of convolutional layers, with **downsampling** and **upsampling** inside the network!

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

PSPNet

PSPNet uses a ResNet backbone

- 50, 101, or 152 Layers
- 50 Layers is already quite deep!

Figure 4. Illustration of auxiliary loss in ResNet101. Each blue box denotes a residue block. The auxiliary loss is added after the res4b22 residue block.

Framework overview of PSPNet

"Pyramid Scene Parsing Network", Zhao et al. CVPR 2017 [12,000+ citation]

Slide Credit: Hengshuang Zhao and Jiaya Jia

Georgia Tech

Regular feature extractor

"Pyramid Scene Parsing Network", Zhao et al. CVPR 2017 [4,000+ citation]

Slide Credit: Hengshuang Zhao and Jiaya Jia

Georgia Tech

Context modeling: pyramid pooling module

"Pyramid Scene Parsing Network", Zhao et al. CVPR 2017 [4,000+ citation]

Slide Credit: Hengshuang Zhao and Jiaya Jia

Convolutional classifier for pixel-wise prediction

"Pyramid Scene Parsing Network", Zhao et al. CVPR 2017 [4,000+ citation]

Slide Credit: Hengshuang Zhao and Jiaya Jia

Georgia Tech

Pyramid Pooling Module

PPM: spatial illustration

Slide Credit: Hengshuang Zhao and Jiava Jia

ImageNet Scene Parsing Challenge

Method	Mean IoU(%)	Pixel Acc.(%)
FCN [26]	29.39	71.32
SegNet [2]	21.64	71.00
DilatedNet [40]	32.31	73.55
CascadeNet [43]	34.90	74.52
ResNet50-Baseline	34.28	76.35
ResNet50+DA	35.82	77.07
ResNet50+DA+AL	37.23	78.01
ResNet50+DA+AL+PSP	41.68	80.04
ResNet269+DA+AL+PSP	43.81	80.88
ResNet269+DA+AL+PSP+MS	44.94	81.69

detailed performance analysis

consistent improvement over network depth

PSPNet: 1st place among totally 75 submissions worldwide.

Slide Credit: Hengshuang Zhao and Jiaya Jia

Result on PASCAL VOC 2012

Method	aero	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	mbike	person	plant	sheep	sofa	train	tv	mIoU
FCN [26]	76.8	34.2	68.9	49.4	60.3	75.3	74.7	77.6	21.4	62.5	46.8	71.8	63.9	76.5	73.9	45.2	72.4	37.4	70.9	55.1	62.2
Zoom-out [28]	85.6	37.3	83.2	62.5	66.0	85.1	80.7	84.9	27.2	73.2	57.5	78.1	79.2	81.1	77.1	53.6	74.0	49.2	71.7	63.3	69.6
DeepLab [3]	84.4	54.5	81.5	63.6	65.9	85.1	79.1	83.4	30.7	74.1	59.8	79.0	76.1	83.2	80.8	59.7	82.2	50.4	73.1	63.7	71.6
CRF-RNN [41]	87.5	39.0	79.7	64.2	68.3	87.6	80.8	84.4	30.4	78.2	60.4	80.5	77.8	83.1	80.6	59.5	82.8	47.8	78.3	67.1	72.0
DeconvNet [30]	89.9	39.3	79.7	63.9	68.2	87.4	81.2	86.1	28.5	77.0	62.0	79.0	80.3	83.6	80.2	58.8	83.4	54.3	80.7	65.0	72.5
GCRF [36]	85.2	43.9	83.3	65.2	68.3	89.0	82.7	85.3	31.1	79.5	63.3	80.5	79.3	85.5	81.0	60.5	85.5	52.0	77.3	65.1	73.2
DPN [25]	87.7	59.4	78.4	64.9	70.3	89.3	83.5	86.1	31.7	79.9	62.6	81.9	80.0	83.5	82.3	60.5	83.2	53.4	77.9	65.0	74.1
Piecewise [20]	90.6	37.6	80.0	67.8	74.4	92.0	85.2	86.2	39.1	81.2	58.9	83.8	83.9	84.3	84.8	62.1	83.2	58.2	80.8	72.3	75.3
PSPNet	91.8	71.9	94.7	71.2	75.8	95.2	89.9	95.9	39.3	90.7	71.7	90.5	94.5	88.8	89.6	72.8	89.6	64.0	85.1	76.3	82.6
CRF-RNN [†] [41]	90.4	55.3	88.7	68.4	69.8	88.3	82.4	85.1	32.6	78.5	64.4	79.6	81.9	86.4	81.8	58.6	82.4	53.5	77.4	70.1	74.7
BoxSup [†] [7]	89.8	38.0	89.2	68.9	68.0	89.6	83.0	87.7	34.4	83.6	67.1	81.5	83.7	85.2	83.5	58.6	84.9	55.8	81.2	70.7	75.2
Dilation 8^{\dagger} [40]	91.7	39.6	87.8	63.1	71.8	89.7	82.9	89.8	37.2	84.0	63.0	83.3	89.0	83.8	85.1	56.8	87.6	56.0	80.2	64.7	75.3
DPN [†] [25]	89.0	61.6	87.7	66.8	74.7	91.2	84.3	87.6	36.5	86.3	66.1	84.4	87.8	85.6	85.4	63.6	87.3	61.3	79.4	66.4	77.5
Piecewise [†] [20]	94.1	40.7	84.1	67.8	75.9	93.4	84.3	88.4	42.5	86.4	64.7	85.4	89.0	85.8	86.0	67.5	90.2	63.8	80.9	73.0	78.0
FCRNs [†] [38]	91.9	48.1	93.4	69.3	75.5	94.2	87.5	92.8	36.7	86.9	65.2	89.1	90.2	86.5	87.2	64.6	90.1	59.7	85.5	72.7	79.1
LRR [†] [9]	92.4	45.1	94.6	65.2	75.8	95.1	89.1	92.3	39.0	85.7	70.4	88.6	89.4	88.6	86.6	65.8	86.2	57.4	85.7	77.3	79.3
DeepLab [†] [4]	92.6	60.4	91.6	63.4	76.3	95.0	88.4	92.6	32.7	88.5	67.6	89.6	92.1	87.0	87.4	63.3	88.3	60.0	86.8	74.5	79.7
-																					

Result on Cityscapes

Method	road	swalk	build.	wall	fence	pole	tlight	sign	veg.	terrain	sky	person	rider	car	truck	bus	train	mbike	bike	mIoU
CRF-RNN [41]	96.3	73.9	88.2	47.6	41.3	35.2	49.5	59.7	90.6	66.1	93.5	70.4	34.7	90.1	39.2	57.5	55.4	43.9	54.6	62.5
FCN [26]	97.4	78.4	89.2	34.9	44.2	47.4	60.1	65.0	91.4	69.3	93.9	77.1	51.4	92.6	35.3	48.6	46.5	51.6	66.8	65.3
SiCNN+CRF [16]	96.3	76.8	88.8	40.0	45.4	50.1	63.3	69.6	90.6	67.1	92.2	77.6	55.9	90.1	39.2	51.3	44.4	54.4	66.1	66.3
DPN [25]	97.5	78.5	89.5	40.4	45.9	51.1	56.8	65.3	91.5	69.4	94.5	77.5	54.2	92.5	44.5	53.4	49.9	52.1	64.8	66.8
Dilation10 [40]	97.6	79.2	89.9	37.3	47.6	53.2	58.6	65.2	91.8	69.4	93.7	78.9	55.0	93.3	45.5	53.4	47.7	52.2	66.0	67.1
LRR [9]	97.7	79.9	90.7	44.4	48.6	58.6	68.2	72.0	92.5	69.3	94.7	81.6	60.0	94.0	43.6	56.8	47.2	54.8	69.7	69.7
DeepLab [4]	97.9	81.3	90.3	48.8	47.4	49.6	57.9	67.3	91.9	69.4	94.2	79.8	59.8	93.7	56.5	67.5	57.5	57.7	68.8	70.4
Piecewise [20]	98.0	82.6	90.6	44.0	50.7	51.1	65.0	71.7	92.0	72.0	94.1	81.5	61.1	94.3	61.1	65.1	53.8	61.6	70.6	71.6
PSPNet	98.6	86.2	92.9	50.8	58.8	64.0	75.6	79.0	93.4	72.3	95.4	86.5	71.3	95.9	68.2	79.5	73.8	69.5	77.2	78.4
LRR [‡] [9]	97.9	81.5	91.4	50.5	52.7	59.4	66.8	72.7	92.5	70.1	95.0	81.3	60.1	94.3	51.2	67.7	54.6	55.6	69.6	71.8
PSPNet [‡]	98.6	86.6	93.2	58.1	63.0	64.5	75.2	79.2	93.4	72.1	95.1	86.3	71.4	96.0	73.5	90.4	80.3	69.9	76.9	80.2

PSPNet paper

Pyramid Scene Parsing Network

Hengshuang Zhao¹ Jianping Shi² Xiaojuan Qi¹ Xiaogang Wang¹ Jiaya Jia¹ ¹The Chinese University of Hong Kong ²SenseTime Group Limited

{hszhao, xjqi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

Abstract

Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-regionbased context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixellevel prediction. The proposed approach achieves state-ofthe-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields the new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

(a) Image (b) Ground Truth Figure 1. Illustration of complex scenes in ADE20K dataset.

MSeg: A Composite Dataset for Multi-Domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun

https://www.youtube.com/watch?v=8wqNX7_4vAE

Which dataset to train on?

Driving: Cityscapes, Mapillary Vistas, CamVid, KITTI, VIPER, Indian Driving Dataset, Berkeley Driving Dataset, WildDash, ...

Indoors: NYU, SUN RGBD, ScanNet, InteriorNet, ...

Multi-domain: COCO, ADE20K, PASCAL VOC, ...

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020

Methodology: Dataset mixing and zero-shot transfer

- Perform a training/test split at the level of datasets
- Train on many diverse datasets
- Test on datasets that were never seen during training
- Zero-shot cross-dataset transfer is a proxy for generality and robustness in the real world

Dataset name	Origin domain	# Images
Training & Validation		
COCO [19] + COCO STUFF [4]	Everyday objects	123,287
ADE20K [46]	Everyday objects	22,210
MAPILLARY [25]	Driving (Worldwide)	20,000
IDD [40]	Driving (India)	7,974
BDD [43]	Driving (United States)	8,000
CITYSCAPES [7]	Driving (Germany)	3,475
SUN RGBD [36]	Indoor	5,285
Test		
PASCAL VOC [10]	Everyday objects	1,449
PASCAL CONTEXT [24]	Everyday objects	5,105
CAMVID [3]	Driving (U.K.)	101
WildDash [44]	Driving (Worldwide)	70
KITTI [11]	Driving (Germany)	200
SCANNET-20 [8]	Indoor	5,436

Georgia

Tech

Generality and Robustness

Train/Test	VOC	Context	CamVid	WildDash	KITTI	ScanNet	h. mean
СОСО	73.4	43.3	58.7	38.2	47.6	33.4	45.8
ADE20K	35.4	23.9	52.6	38.6	41.6	42.9	36.9
Mapillary	22.5	13.6	82.1	55.4	67.7	2.1	9.3
IDD	14.6	6.5	72.1	41.2	51.0	1.6	6.5
BDD	14.4	7.1	70.7	52.2	54.5	1.4	6.1
Cityscapes	13.3	6.8	76.1	30.1	57.6	1.7	6.8
SUN RGBD	10.0	4.3	0.1	1.9	1.1	42.6	0.3
MSeg-1m	70.7	42.7	83.3	62.0	67.0	48.2	59.2
MSeg-1m-w/o relabeling	70.2	42.7	82.0	62.7	65.5	43.2	57.6
Oracle	77.8	45.8	78.8	_	58.4	62.3	_

Accuracy on MSeg test datasets

Input image

ADE20K model

Mapillary model

COCO model

MSeg model

MSeg: A Composite Dataset for Multi-domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun

Project 6

