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Recap — 3D point processing

Popular CNN backbones aren’t a direct fit for 3D point
processing tasks.

It’s not clear how best to use deep learning on 3D data

—
* Use a truly permutation invariant representation (PointNet) 2 oo [
* Use a voxel representation (VoxelNet) < 3 ; g e
* Use a bird’s a view representation (PointPillars) = Ak ] I
* Create a range image (LaserNet) - .
* Project 3D data into fixed 2D views (MVCNN) i o R R
With lidar, multi-modal approaches (adding images,
radar) help surprisingly little compared to lidar-only j:t”;jt:f)‘:fx;g:f;;; ear state of the art for 3D oblect

approaches (~3 mAP).
Center-based 3D Object Detection and Tracking. Tianwei Yin,

These alternate representations might be applicable Xingyi Zhou, Philiop Krihenbihl, CVPR 2021
more broadly, e.g. reasoning about depth estimates
mlght be eaSier in bird’S eye VieW (PSEUdOLidar) https://paperswithcode.com/sota/3d-object-detection-on-nuscenes



https://paperswithcode.com/sota/3d-object-detection-on-nuscenes
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Language understanding

... SEerve ...



Language understanding

... great serve from Djokovic ...




Language understanding

... be right back after | serve these salads ...




-‘——j& Brendan Dolan-Gavitt

The latest generation of adversarial image attacks is,
uh, somewhat simpler to carry out

Attacks in the wild

We refer to these attacks as typographic attacks. We believe attacks such as those
described above are far from simply an academic concern. By exploiting the
model’s ability to read text robustly, we find that even photographs of hand-written
text can often fool the model. Like the Adversarial Patch,?? this attack works in the
wild; but unlike such attacks, it requires no more technology than pen and paper.
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When we put a label saying “iPod” on this Granny Smith apple, the model erroneously classifies it as

an iPod in the zero-shot setting.
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In case of Al uprising... Upon further reflection, neural language models aren’t

always so good with negations. | recommend this
instead




So how do we fix these problems?
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Receptive field

Input L1 L2
3x3 CNN (s=1) 3x3 max-pool 3x3 CNN (s=1)

L3

3x3 max-pool

/”

Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf
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Dilated Convolution

No padding, no stride, dilation No padding, no stride, dilation No padding, no stride, dilation

Figure source: https://github.com/vdumoulin/conv_arithmetic



Receptive field could also be an issue in 3D

32 filters 32 filters 32 filters 32 filters
of stride 1 of stride 1 of stride 1 of stride 1 Classification Network
e mpm mlp (6464) B f eamr R mlp(641281024) e max e mlp
: E transform transform pool 1024 (512,256,k)
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of stride 1 ' B ) . g o ,;;""__i; ______ ' poihf features N o .
" B x ‘ 4, ‘ g
_ : AT Nt onetor N . |5
} tdx matrix n|x 1088 shared ‘t_‘; shared g ;
el T P - o L (=) A = H
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_ - 32 3 Segmentation Network
32 in-category 32 50 fiters 32 64 filters 64 filters

prediction of stride 1 of stride 1 of stride 1 Figure 2. PointNet Architecture. The classification network takes n points as input, applies input and feature transformations, and then

aggregates point features by max pooling. The output is classification scores for £ classes. The segmentation network is an extension to the
Fi gure 10. Baseline 3D CNN Segmentation network. The classification net. It concatenates global and local features and outputs per point scores. “mlp” stands for multi-layer perceptron, numbers

. . . . . in bracket are layer sizes. Batchnorm is used for all layers with ReLU. Dropout layers are used for the last mlp in classification net.
network is fully convolutional and predicts part scores for each
voxel.
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Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar~ Jakob UszKkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
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Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,

vy [cs.CL] 6 Dec 2017
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q: query (giver)

% k: key (receiver)
ki=Wkai

V: value (info extractor)
=W'al
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LSC the
Input: LSC is the best!

From https://medium.com/Isc-psd/introduction-of-self-attention-layer-in-transformer-fc7bff63f3bc
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From https://medium.com/Isc-psd/introduction-of-self-attention-layer-in-transformer-fc7bff63f3bc
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Complexity Comparison

Layer Type Complexity per Layer  Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))
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Transformer Architecture

Linear
4 )
(CAdd & Norm J<~
Feed
Forward
Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost. - { ~ mﬁ
BLEU Training Cost (FLOPs) —{_Add & Norm J Moll-Heod
Model Feed Attention
EN-DE EN-FR EN-DE EN-FR Forward N
ByteNet [18] 2375 “ 2
Deep-Att + PosUnk [39)] 39.2 1.0-102%0 ] —_—l
GNMT + RL [38] 246  39.92 2.3-109  1.4-10% Nx | - (AdgaNom) —
ConvS2S [Y] 25.16  40.46 9.6-10"®  1.5-10% i L ile
MoE [32) 2603 40.56 2.0-101 1.2.10% Jrisai M};\‘t'f;:{?jrf
Deep-Att + PosUnk Ensemble [39] 40.4 8.0~ 10?0 R 7 y '\ y )
GNMT + RL Ensemble [38] 2630  41.16 1.8-10  1.1-10* \ N | )
ConvS2S Ensemble [9] 26.36 41.29 7.7-10"  1.2-10?%! - d
Transformer (base model) 21.3 38.1 3.3-10'8 EOSItlg,nal D @ Posﬁpnal
Transformer (big) 28.4 41.8 2.3-1019 neoding ] Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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N, 32) (N4, 64)  (N/16,128)  (N/64,256) (N236,512) (N/256,512)  (N/64,256)  (N/16.128)  (N/4,64) (N.32)  (N.Dg

Point Transformer
MLP

Transition Down
Global AvgPooling

Label: chair

Transition Up

N, 32) (N4 64) (N6 128)  (N/64.256) (N/256.512) (1.512) (1. Dud)

Figure 3. Point transformer networks for semantic segmentation (top) and classification (bottom).

mput: (X, p) mput: (X, p;) mput;: (x;,p;) mput,: (x5, p;)
linear farthest point sampl. linear linear
point transformer kENN, mlp interpolation
linear local max pooling summation  |¢
*output: (y, p) l output: (v, p) voutput: (V. p,)
(a) point transformer block (b) transition down (c) transition up

Point Transformer. Hengshuang Zhao, Li Jiang, Jiaya lJia, Philip Torr, Vladlen Koltun



Ground Truth Point Transformer

beam . column . window . sofa . bookcase board . clutter



Method OA mAcc mloU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet |22 - 49.0  41.1 88.8 973 698 0.1 39 46.3 108 59.0 526 59 40.3 264 332
SegCloud [ 7] - 574 489 90.1 96.1 69.9 0.0 18.4 384 231 704 759 409 584 130 416
TangentConv [31] - 622 526 905  97.7 740 00 20.7 39.0 313 775 694 573 38.5 43.8 39.8
PointCNN [ 1] 859 639 573 923 982 794 00 17.6 22.8 62.1 744 806 31.7 66.7 62.1 56.7
SPGraph [14] 86.4 665  58.0 894 969 78.1 00 42.8 48.9 61.6 847 754 6938 52.6 2.1 52.2
PCCN [37] - 67.0  58.3 923 962 759 03 6.0 69.5 635 669 656 473 68.9 59.1 46.2
PointWeb [50] 87.0 666 603 920 985 794 00 21.1 59.7 348 763 883 469 69.3 649 525
HPEIN [12] 872 683 619 91.5 982 814 00 233 65.3 40.0 755 877 585 67.8 65.6 494
MinkowskiNet [37] - 71.7 654 91.8 987 862 00 34.1 48.9 624 8l1.6 898 472 749 744 586
KPConv [37] - 728  67.1 928 973 824 00 23.9 58.0 69.0 815 910 754 75.3 66.7 58.9
PointTransformer 90.8 765 704 940 985 863 00 38.0 63.4 743 89.1 824 743 80.2 76.0 593

Table 1. Semantic segmentation results on the S3DIS dataset, evaluated on Area 5.

Method mput mAcc OA
3DShapeNets [+3] | voxel 773  84.7
VoxNet [70] voxel 83.0 859
Subvolume [23] voxel 86.0 89.2
MVCNN [20] image — 90.1
PointNet [22 point  86.2 89.2
PointNet++ [ 4] point - 91.9
SpecGCN [36] point - 92.1 https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40
PointCNN [ %] point 88.1 922
DGCNN [40] point 90.2 922
PointWeb [50] point 894 923
SpiderCNN [+4] point - 92.4
PointConv [42] point - 92.5
KPConv [33] point - 92.9
InterpCNN [ 19] point - 93.0
PointTransformer | point  90.6  93.7

Table 3. Shape classification results on the ModelNet4() dataset.


https://paperswithcode.com/sota/3d-point-cloud-classification-on-modelnet40
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Preprint. Under review.

AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* T, Lucas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlshy*T
*equal technical contribution, Tequal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google .com

ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to trainm

[cs.CV] 22 Oct 2020
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Model Layers Hidden size D MLP size Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Ours-JET Ours-JFT Ours-121K BiT-L Noisy Student

(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.95+0.04 87.76+0.03 85.30+0.02 87.94 +£0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.544+0.03 88.6240.05 90.54 90.55
CIFAR-10 99.50+0.06 99.424+0.03 99.15+0.03 99.37 +0.06 —
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56+0.03 97.32+0.11  94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02  99.74+0.00 99.61 +0.02 99.63 +0.03 —
VTAB (19 tasks) 77.63+0.23 76.284046 72.72+0.21 76.29+1.70 —
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k
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Figure 3: Transfer to ImageNet.  While

large VIiT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.

When trained on mid-sized datasets such
as ImageNet, such models yield modest
accuracies of a few percentage points
below ResNets of comparable size. This
seemingly discouraging outcome maybe
expected: Transformers lack some of the
inductive biases inherent to CNNs, such
as translation equivariance and locality,
and therefore do not generalize well
when trained on insufficient amounts of
data.

However, the picture changes if the
models are trained on larger datasets
(14M-300M images). We find that large
scale training trumps inductive bias.

Dosovitskiy et al.

https://paperswithcode.com/sota/image-classification-on-imagenet
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Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo



Instance Segmentation on COCO test-dev

Leaderboard Dataset

MAS K AP
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https://paperswithcode.com/sota/instance-segmentation-on-coco



https://paperswithcode.com/sota/instance-segmentation-on-coco

V] 2 Mar 2022

2201.03545v2 [cs.C

arXxXiv

A ConvNet for the 2020s

Zhuang Liu'?* Hanzi Mao' Chao-Yuan Wu! Christoph Feichtenhofer! Trevor Darrell? Saining Xie!'
"Facebook Al Research (FAIR)

“UC Berkeley

Code: https: //github.com/facebookresearch/ConvNeXt

Abstract

The “Roaring 205" of visual recognition began with the
introduction of Vision Transformers (ViTs), which quickly
superseded ConvNets as the state-of-the-art image classifica-
tion model. A vanilla ViT, on the other hand, faces difficulties
when applied to general computer vision tasks such as object
detection and semantic segmentation. It is the hierarchical
Transformers (e.g., Swin Transformers) that reintroduced sev-
eral ConviNet priors, making Transformers practically viable
as a generic vision backbone and demonstrating remarkable
performance on a wide variety of vision tasks. However,
the effectiveness of such hybrid approaches is still largely
credited to the intrinsic superiority of Transformers, rather
than the inherent inductive biases of convolutions. In this
work, we reexamine the design spaces and test the limits of
what a pure ConvNet can achieve. We gradually “modernize”
a standard ResNet toward the design of a vision Transformer,
and discover several key components that contribute to the
performance difference along the way. The outcome of this
exploration is a family of pure ConvNet models dubbed Con-
vNeXt. Constructed entirely from standard ConvNet modules,
ConvNeXis compete favorably with Transformers in terms of
accuracy and scalability, achieving 87.8% ImageNet top-1
accuracy and outperforming Swin Transformers on COCQ
detection and ADE20K segmentation, while maintaining the
simplicity and efficiency of standard ConvNets.

ImageMet-1K Acc,

a0
838
86 CaonyMexl
Swim Transfarmer
(20&1) Conviext

84 Swin Transformer

ReasMal el T Sl

ey (2020) (2020)
82 . @
80 .- FIEE 25 [FLL

L

Té

ImageMeat-1K Trained ImagaMet-22K Pre-trained

Figure 1. ImageNet-1K classification results for « ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family., ImageNet-1K/22K models here
take 224°/384” images respectively. ResNet and ViT results were
obtained with improved training procedures over the original papers.
‘We demonstrate that a standard ConvINet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.

visual feature learning. The introduction of AlexNet [40]
precipitated the “ImageNet moment™ [59], ushering in a new
cra of computer vision. The ficld has since evolved at a
rapid speed. Representative ConvNets like VGGNet [64],
Inceptions [68], ResNe(X)t |28, 87], DenseNet [36], Mo-
bileNet [34], EfficientNet [71] and RegNet [54] focused on
different aspects of accuracy, efficiency and scalability, and
popularized many useful design principles.
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Figure 2. We modernize a standard ConvINet (ResNet) towards
the design of a hierarchical vision Transformer (Swin), without
introducing any attention-based modules. The foreground bars are
model accuracies in the ResNet-50/Swin-T FLOP regime; results
for the ResNet-200/Swin-B regime are shown with the gray bars. A
hatched bar means the modification is not adopted. Detailed results
for both regimes are in the appendix. Many Transformer archi-
tectural choices can be incorporated in a ConvNet, and they lead
to increasingly better performance. In the end, our pure ConvNet
model, named ConvNeXt, can outperform the Swin Transformer.

backbone FLOPs FPS AP APXX APDY* Apmask ppmhask ppimask
Mask-RCNN 3x schedule
Swin-T 267G 23.1 460 68.1 503 416 651 449
o ConvNeXt-T 262G 256 46.2 679 508 417 650 449
Cascade Mask-RCNN 3 x schedule
* ResNet-50 739G 162 463 643 505 401 617 434
¢ X101-32 819G 138 48.1 665 524 416 639 452
° X101-64 972G 126 483 664 523 417 640 45.1
Swin-T 745G 122 504 692 547 437 66.6 413
e ConvNeXt-T 741G 135 504 69.1 548 437 665 473
Swin-S 838G 114 519 707 563 450 682 488
eConvNeXt-S 827G 120 519 708 565 450 684 49.1
Swin-B 982G 107 519 705 564 450 68.1 489
eConvNeXt-B 964G 114 527 713 572 456 689 495
Swin-B* 982G 10.7 53.0 7T1.8 575 458 694 497
e ConvNeXt-B+ 964G 11.5 540 73.1 588 469 706 513
Swin-L* 1382G 9.2 539 724 588 467 70.1 508
e ConyNeXt-L¥ 1354G 100 548 738 598 476 713 517
e ConvNeXt-XL¥ 1898G 8.6 552 742 599 477 716 522

Table 3. COCO object detection and segmentation results using
Mask-RCNN and Cascade Mask-RCNN. * indicates that the model
is pre-trained on ImageNet-22K. ImageNet-1K pre-trained Swin
results are from their Github repository [3]. AP numbers of the
ResNet-50 and X101 models are from [45]. We measure FPS on
an A100 GPU. FLOPs are calculated with image size (1280, 800).
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ConvNets Match Vision Transformers at Scale

Samuel L Smith!, Andrew Brock!, Leonard Berradal and Soham Del
1Google DeepMind

Many researchers believe that ConvNets perform well on small or moderately sized datasets, but are not
competitive with Vision Transformers when given access to datasets on the web-scale. We challenge this
belief by evaluating a performant ConvNet architecture pre-trained on JFT-4B, a large labelled dataset of
images often used for training foundation models. We consider pre-training compute budgets between
0.4k and 110k TPU-v4 core compute hours, and train a series of networks of increasing depth and width
from the NFNet model family. We observe a log-log scaling law between held out loss and compute
budget. After fine-tuning on ImageNet, NFNets match the reported performance of Vision Transformers
with comparable compute budgets. Our strongest fine-tuned model achieves a Top-1 accuracy of 90.4%.

Keywords: ConvNets, CNN, Convolution, Transformer, Vi
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Summary

e “Attention” models outperform recurrent models and convolutional
models for sequence processing. They allow long range interactions.

* These models do best with LOTS of training data

* Naive attention mechanisms have quadratic complexity with the
number of input tokens, but there are often workarounds for this.

e Attentional models seem to succeed when they copy the inductive
biases of convolutional models.

* For “traditional” image processing, it is not clear if Transformers
outperform convolutional networks.



