


Recap: projection
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Relating multiple views

Figure Credit: Bundler: Structure from Motion (SfM) for Unordered Image Collections



Recap of Filtering

• Linear filtering is dot product at 
each position
– Not a matrix multiplication

– Can smooth, sharpen, translate 
(among many other uses)

• We can use the Fourier transform 
to represent images in the 
frequency domain. 
– Filtering in the spatial domain is 

multiplication in the frequency 
domain.
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Canvas Quiz

Fill in the blanks:
1) _ = D * B 

2) A = _ * C

3) F = D * _

4) _ = D * D

A

B

C

D

E

F

G

H

I

Filtering Operator

Slide: Hoiem



Other signals

• We can also think of all kinds of other signals the same way

xkcd.com



Fourier analysis in images

Intensity Image

Fourier Image

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering



Fourier Transform

• Fourier transform stores the magnitude and phase at each frequency
– Magnitude encodes how much signal there is at a particular frequency

– Phase encodes spatial information (indirectly)

– For mathematical convenience, this is often notated in terms of real and complex numbers
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Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea, 

which at 20 meters becomes the portrait 

of Abraham Lincoln”, 1976







Fourier Bases

This change of basis is the Fourier Transform

Teases away fast vs. slow changes in the image.



Fourier Bases



This looks a lot like DCT in JPEG compression

8x8 image patch

DCT bases

Patch representation after 

projecting on to DCT bases



Man-made Scene



Can change spectrum, then reconstruct



Low and High Pass filtering



Computing the Fourier Transform

Continuous

Discrete

k = -N/2..N/2

Fast Fourier Transform (FFT): NlogN

Euler’s Formula



https://youtu.be/spUNpyF58BY?si=93x8YxT5n45OA3CD



The Convolution Theorem

• The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

• Convolution in spatial domain is equivalent to 
multiplication in frequency domain!
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Filtering in spatial domain
-101

-202

-101

* =



Filtering in frequency domain

FFT

FFT

Inverse FFT

=

Slide: Hoiem



Why does the Gaussian give a nice smooth 
image, but the square filter give edgy artifacts?

Gaussian Box filter

Filtering



Gaussian



Box Filter



Is convolution invertible?

• If convolution is just multiplication in the Fourier domain, isn’t 
deconvolution just division?

• Sometimes, it clearly is invertible (e.g. a convolution with an 
identity filter)

• In one case, it clearly isn’t invertible (e.g. convolution with an 
all zero filter)

• What about for common filters like a Gaussian?



But you can’t invert multiplication by 0

• But it’s not quite zero, is it…



Let’s experiment on Novak



Convolution

* =

FFT FFT

.* =

iFFT



Deconvolution?

iFFT FFT

./=

FFT



But under more realistic conditions

iFFT FFT

./=

FFT

Random noise, .000001 magnitude



But under more realistic conditions

iFFT FFT

./=

FFT

Random noise, .0001 magnitude



But under more realistic conditions

iFFT FFT

./=

FFT

Random noise, .001 magnitude



With a random filter…

iFFT FFT

./=

FFT

Random noise, .001 magnitude



Deconvolution is hard

• Active research area.

• Even if you know the filter (non-blind deconvolution), it is still 
very hard and requires strong regularization.

• If you don’t know the filter (blind deconvolution) it is harder 
still. 



Blind Deconvolution Example

Edge-based Blur Kernel Estimation Using Patch Priors.

Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.

IEEE International Conference on  Computational Photography 2013.



Edge-based Blur Kernel Estimation Using Patch Priors.

Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.

IEEE International Conference on  Computational Photography 2013.
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