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Local Image Features

Computer Vision
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“Flashed Face Distortion”
2nd Place in the 8th Annual

, VSS 2012


https://en.wikipedia.org/wiki/Best_Illusion_of_the_Year_Contest

Keep your eyes
on the cross
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Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching



This section: correspondence and alighment

* Correspondence: matching points, patches, edges, or regions
across images




SIFT is 20+ years old. Is it still useful?
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README.md

e Let’s look at
some trendy
research on
Neural Radiance
Fields (NERF)

Instant Neural Graphics Primitives o« E=m

Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a
factory robot? Of course you have!

Here you will find an implementation of four neural graphics primitives, being neural radiance fields (NeRF), signed
distance functions (SDFs), neural images, and neural volumes. In each case, we train and render a MLP with
multiresolution hash input encoding using the framework.




SIFT is 20+ years old. Is it still useful?

:= README.md

e Let’s look at
some trendy
research on
Neural Radiance
Fields (NERF)

e Let’s look under
the hood

Instant Neural Graphics Primitives ©c &=

Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a
factory robot? Of course you have!

Tips for training NeRF models with Instant Neural Graphics Primitives

Our NeRF implementation expects initial camera parameters to be provided in a transforms.json file in a format compatible with

. We provide a script as a convenience, , that can be used to process a video file or sequence of images,

using the open source structure from motion software to extract the necessary camera data.



SIFT is 20+ years old. Is it still useful?

* COLMAP is the
“standard” way
to do structure
from motion Wl
these days B
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Dense models of several landmarks produced by COLMAP’s MVS pipeline. |

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations



SIFT is 20+ years old. Is it still useful?

e COLMAP is the
“standard” way
to do structure
from motion
these days

Images Correspondence Search Incremental Reconstruction Reconstruction
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Matching

Geometric Verification

Triangulation Bundle Adjustment

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
3k+ citations



SIFT is 20+ years old. Is it still useful?

° CO L M A P iS t h e You can either detect and extract new features from the images or import existing features from
text files. COLMAP extracts SIFT [lowe04] features either on the GPU or the CPU. The GPU version
((Sta n d a rd ) Wa requires an attached display, while the CPU version is recommended for use on a server. In general,
y the GPU version is favorable as it has a customized feature detection mode that often produces
to d O St r u Ct u re higher quality features in the case of high contrast images. If you import existing features, every
image must have a text file next to it (e.g., /path/to/imagel.jpg and /path/to/imagel.jpg.txt) in the
fro m m Ot i O n following format:
t h ese d a NUM_FEATURES 128
yS X Y SCALE ORIENTATION D_1 D_2 D_3 ... D_128
X Y SCALE ORIENTATION D.1D_2D_3 ... D_128
Images Correspondence Search — NI SIS G 1 1SUUT IS u uLTUTT rmevunsuaction

5 Initialization o [ ——————— >
1 I
1

Matching

Image Registration Outlier Filtering I.i) B

Geometric Verification

Triangulation Bundle Adjustment

B w =

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
3k+ citations
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Distributed Global Structure-from-Motion with a Deep Front-End

Ayush Baid *1 John Lambert*! Travis Driver* Akshay Krishnan*
Hayk Stepanyan Frank Dellaert
Georgia Tech
Abstract

While initial approaches to Structure-from-Motion (SfM)
revolved around both global and incremental methods, most
recent applications rely on incremental systems to estimate
camera poses due to their superior robustness. Though there
has been tremendous progress in SfM ‘front-ends’ powered
by deep models learned from data, the state-of-the-art (in-
cremental) SfM pipelines still rely on classical SIFT features,
developed in 2004. In this work, we investigate whether
leveraging the developments in feature extraction and match-
ing helps global SfM perform on par with the SOTA incre-
mental SfM approach (COLMAP). To do so, we design a
modular SfM framework that allows us to easily combine
developments in different stages of the SfM pipeline. Our
experiments show that while developments in deep-learning
based two-view correspondence estimation do translate to
improvements in point density for scenes reconstructed with
global SfM, none of them outperform SIFT when comparing
with incremental SfM results on a range of datasets. Our
SfM system is designed from the ground up to leverage dis-
tributed computation, enabling us to parallelize computation
on multiple machines and scale to large scenes. Our code is
publicly available at github.com/borglab/gtsfm.

Figure 1. A sparse reconstruction of the UNC South Building using
GTSfM with a deep LoFTR-based [64] front-end, with an example
image input. Multi-view stereo is not used.

[53, 57], Gaussian Splatting [32], accurate monocular depth
predictions for humans [39], and more.

Incremental SfM is the dominant paradigm, as global
StM suffers from a lack of accuracy, largely due to diffi-
culty in reasoning about outliers globally in a single pass.
However, to our knowledge, almost all global SfM systems



Input

Ground Truth

SIFT

SuperGlue LightGlue LoFTR
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measured by Pose AUC @N deg. after bundle adjustment (higher
is better).

Front-End @l deg. @25deg. @5deg. @10deg. @20deg.

LightGlue 39.2 53.7 63.8 72.1 719
SuperGlue 433 57.8 67.0 74.2 79.0
LoFTR 40.0 58.0 70.8 80.3 86.2

SIFT 53.1 67.7 76.5 84.3 90.3




Overview of Keypoint Matching

1. Find a set of distinctive
keypoints

2. Compute a local
descriptor from the
region around each
keypoint

3. Match local
descriptors

d(f,, fz)<T

K. Grauman, B. Leibe



Review: Harris corner detector

* Define distinctiveness by local auto-
correlation.

* Approximate local auto-correlation by
second moment matrix

« Quantify distinctiveness (or cornerness)

as function of the eigenvalues of the
second moment matrix.

* But we don’t actually need to
compute the eigenvalues. Instead, we
use the determinant and trace
of the second moment matrix.

E(u, v)

5

T,
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Review: Harris corner detector

 We want to find distinctive patches that don’t
look self-similar to neighboring patches

 |f there are gradients in a patch, those
gradients indicate distinctiveness in a
particular direction.

 We want to check that we have strong,
independent gradients in all directions.

* The eigenvalues of a the collection of
gradients in a patch tell us this.



I (I
P O FRPOOORFRERO®

What do the gradients / structure matrix look like?
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If you're not comfortable with Eigenvalues and
Eigenvectors, Gilbert Strang’s linear algebra lectures are
linked from the course homepage

Lecture 21: Eigenvalues and eigenvectors
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Harris Detector [Harrisss]

e Second moment matrix

2
1 (op) ley(O-D) 1. Image

|x|y(O'D) |§(O'D) derivatives
(optionally, blur first)

oy, 0p) = g(‘ﬂ)’{

2. Square of

detM = 44, derivatives

traceM =4+ 4, 3. Gaussian

'y
filter g(o;) a

(
B e
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4. Cornerness function — both eigenvalues are strong

har = det] (o, .o o)] - aftrace( (o, o)1 =
g(1)9(15)—[a(L 1) —ala(15) + 9]

5. Non-maxima suppression 19




Harris Detector: Steps




Harris Detector: Steps

Compute corner response R




Harris Detector: Steps

Find points with large corner response: R>threshold




Harris Detector: Steps

Take only the points of local maxima of R




Harris Detector: Steps




Invariance and covariance

e We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
— Invariance: image is transformed and corner locations
do not change

— Covariance: if we have two transformed versions of the
same image, features should be detected in
corresponding locations




Affine intensity change

RA

threshold

— [ l>al+b

« Only derivatives are used =>
Invariance to intensity shiftl > 1+Db

 [Intensity scaling: 1 > al

/

W AVAN

X (image coordinate) X (image coordinate)

Partially invariant to affine intensity change




Image translation

| .

* Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation




Scaling

— T ——_
7 I
Corner
All points will
be classified
as edges

Corner location is not covariant to scaling!




Image rotation

Second moment ellipse rotates but its shape
(l.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation




So far: can localize in x-y, but not scale




Automatic Scale Selection

f(l,. (xo0)) = f(lil...im(X”G’))

How to find corresponding patch sizes?

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

d3le
f(1, ;. (x,0)

K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)
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K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

T
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K. Grauman, B. Leibe



Automatic Scale Selection

* Function responses for increasing scale (scale signature)

T
f(l, ., (<o)

K. Grauman, B. Leibe



Automatic Scale Selection

Function responses for increasing scale (scale signature)

K. Grauman, B. Leibe




Orientation Normalization

 Compute orientation histogram lLowe, SIFT. 1999]
e Select dominant orientation
e Normalize: rotate to fixed orientation

! e

o 1t 27



Maximally Stable Extremal Regions
* Based on Watershed segmentation algorithm
e Select regions that stay stable over a large parameter range

"Robust Wide Baseline Stereo from Maximally Stable Extremal Regions",
Matas, Chum, Urban, and Pajdla, BMVC 2002
6k+ citations

K. Grauman, B. Leibe



Example Results: MSER

48



Comparison ____Hessian




Canvas Quiz: Are these Harris Corners?
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gradients at pixels in the patch
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Light and dark regions are a single
pixel in width




Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



lmage representations

 Templates
— Intensity, color, gradients, etc.
— Keeps spatial layout

* Histograms

— Distribution of intensity, color, texture,
SIFT descriptors, etc.

— Discards spatial layout
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Image Representations: Histograms

Histogram: Probability or count of data in each bin

P P

= = .
feature 1 feature 1

ﬂ N

E E -

- . E .

® ' © )

2 2
feature 1 feature 1

 Joint histogram Marginal histogram

— Requires lots of data * Requires independent features
— Loss of resolution to « More data/bin than

avoid empty bins joint histogram

Images from Dave Kauchak



Image Representations: Histograms

Clustering

feature 2
feature 2

feature 1 feature 1

Use the same cluster centers for all images

Images from Dave Kauchak



What kind of things do we compute
histograms of?

e Color

L*a*b* color space HSV color space

e Texture (filter banks or HOG over regions)



What kind of things do we compute histograms of?

* Histograms of oriented gradients
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SIFT vector formation

« 4x4 array of gradient orientation histogram weighted
by magnitude

8 orientations X 4x4 array = 128 dimensions

« Motivation: some sensitivity to spatial layout, but not
too much.

* ¥
| 2F

Image gradients Keypoint descriptor

showing only 2x2 here, but typical feature would be 4x4



Ensure smoothness

 (Gaussian weight

* Interpolation

— a glven gradient contributes to 8 bins:
4 In space times 2 In orientation

* ¥
|k

Image gradients Keypoint descriptor



Reduce effect of illumination

e 128-dim vector normalized to 1

» Optionally, threshold gradient magnitudes to avoid

excessive influence of high gradients
— after normalization, clamp gradients >0.2
— renormalize

*

¥

K

X

Image gradients Keypoint descriptor
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6.4 Matching to large databases Image noise

An 1mportant remaining issue for measuring the distinctiveness of features is how the re-
liability of matching varies as a function of the number of features in the database being

matched. Most of the examples in this paper are generated using a database of 32 images
with about 40,000 keypoints. Figure 10 shows how the matching reliability varies as a func- Lowe IJCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Repeatability (%)

SIFT Repeatability
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Lowe 1JCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

SIFT Repeatability

Correct nearest descriptor (%)

20

40

30

20

With 16 orientations
With 8 orientations

With 4 orientations

+
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2 3 4

Width n of descriptor (angle 50 deg, noise 4%)

[

Lowe 1JCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Local Descriptors: Shape Context

Count the number of points
Inside each bin, e.g.:

Count=4

Count =10

Log-polar binning: more
precision for nearby points,
more flexibility for farther
points.

Belongie & Malik, ICCV 2001



Shape Context Descriptor




Self-similarity Descriptor
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Figure 1. These images of the same object (a heart) do NOT share

common image properties (colors, textures, edges), but DO share
a similar geometric layout of local internal self-similarities.

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Input image Correlation Image
surface descriptor

Image L

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007



Self-similarity Descriptor

Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007




Learning Local Image Descriptors, Winder
and Brown, CVPR 2007

Image Smooth | | T-Block | | SBlock | | N-Block |
Patch ™ G(xo) [T Fiter [™ Pooling [™ Normalize [F Descriptor
‘. 64x64 ' ~64x64 vectors N histograms

Pixels of dimension k of dimension k

St: SIFT grid with <2 GLOH polar grid S3: 3x3 grid with $4: 17 polar samples
bilinear weights with bilinear radial Gaussian weights  with Gaussian weights
and angular weights



http://matthewalunbrown.com/papers/cvpr2007b.pdf

Learning Local Image Descriptors, Winder and

Brown, CVPR 2007/
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Figure 5. Selected ROC curves for the trained descriptors with four
dimensional T-blocks (kK = 4). Those that perform better than
SIFT all make use of the S2 log-polar summation stage. See Ta-
ble 4 for details.

We obtained a mixed training set consisting of tourist
photographs of the Trevi Fountain and of Yosemite Val-
ley (920 images), and a test set consisting of images of
Notre Dame (500 images). We extracted interest points and
matched them between all of the images within a set using
the SIFT detector and descriptor [9]. We culled candidate
matches using a symmetry criterion and used RANSAC
[5] to estimate initial fundamental matrices between image
pairs. This stage was followed by bundle adjustment to re-
construct 3D points and to obtain accurate camera matrices
for each source image. A similar technique has been de-
scribed by [17].


http://matthewalunbrown.com/papers/cvpr2007b.pdf

Local Descriptors

* Most features can be thought of as templates, histograms

(counts), or combinations
* The ideal descriptor should be

— Robust

— Distinctive

— Compact

— Efficient
* Most available descriptors focus on edge/gradient information

— Capture texture information

— Color rarely used

K. Grauman, B. Leibe



Local features: main components

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor surrounding X, =
each interest point.

3) Matching: Determine
correspondence between
descriptors in two views

Kristen Grauman



Matching

* Simplest approach: Pick the nearest neighbor. Threshold on
absolute distance

* Problem: Lots of self similarity in many photos



Distance: 0.34, 0.30, 0.40 Distance: 0.61
Distance: 1.22



Nearest Neighbor Distance Ratio

NN1 . . . .
2 where NN1 is the distance to the first nearest neighbor

and NN2 is the distance to the second nearest neighbor.

e Sorting by this ratio (into ascending order) puts matches in
order of confidence (in descending order of confidence).



Matching Local Features

* Nearest neighbor (Euclidean distance)

* Threshold ratio of nearest to 2"9 nearest descriptor

PDF
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1

Lowe IJCV 2004



https://people.eecs.berkeley.edu/~malik/cs294/lowe-ijcv04.pdf

Comparison of Keypoint Detectors

Table 7.1 Overview of feature detectors.

Feature Detector

Corner Blob  Region

Rotation
invariant

Scale
invariant

A ﬂ'l e
invariant

Localization
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Tuytelaars Mikolajczyk 2008



Choosing a descriptor

e Again, need not stick to one

* For object instance recognition or stitching, SIFT or variant is a
good choice

* Learning-based methods are taking over this space, although
not as quickly as one might expect.



Things to remember

* Keypoint detection: repeatable
and distinctive

— Corners, blobs, stable regions
— Harris, DoG

e Descriptors: robust and selective

— spatial histograms of orientation
— SIFT




Canvas Quizlet



Can we invert SIFT descriptors?

Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings

6.06634v3 [cs.CV] 30 Mar 2021

Mihai Dusmanu!

Abstract

Many computer vision systems require users to upload im-
age features to the cloud for processing and storage. These
features can be exploited to recover sensitive information
about the scene or subjects, e.g., by reconstructing the ap-
pearance of the original image. To address this privacy
concern, we propose a new privacy-preserving feature repre-
sentation. The core idea of our work is to drop constraints
[from each feature descriptor by embedding it within an affine
subspace containing the original feature as well as adver-
sarial feature samples. Feature matching on the privacy-
preserving representation is enabled based on the notion of
subspace-to-subspace distance. We experimentally demon-
strate the effectiveness of our method and its high practical
relevance for the applications of visual localization and
mapping as well as face authentication. Compared to the
original features, our approach makes it significantly more
difficult for an adversary to recover private information.

1. Introduction

- i~ » . . q g e - L) 1

Johannes L. Schénberger?
! Department of Computer Science, ETH Ziirich

Sudipta N. Sinha? Marc Pollefeys!+?
2 Microsoft

Reconstruction

Descriptors

Inversion

Traditional

Proposed
o

® Inversion

Keypoints Subspaces Reconstruction

Figure 1: Privacy-Preserving Image Features. Inversion
of traditional local image features is a privacy concern in
many applications. Our proposed approach obfuscates the
appearance of the original image by lifting the descriptors to
affine subspaces. Distance between the privacy-preserving
subspaces enables efficient matching of features. The same
concept can be applied to other domains such as face fea-
tures for biometric authentication. Image credit: laylam-
orandbattersea (Layla Moran).



Can we invert SIFT descriptors?

raw descriptors  rand. lifting sub-hyb. lifting sub-hybrid lifting
dim. 2 dim. 2 im. 2 dim. 4 |

nearest neighbor attack direct inversion attack



