Multi-stable Perception

/

"""""""

/

Necker Cube

Spinning dancer illusion, Nobuyuki Kayahara

Feature Matching and Robust Fitting
Read Szeliski 7.4.2 and 2.1

Computer Vision

James Hays

Project 2

® Take two images of a building or

have performed well or poorly for the g

helpful or detrimental to feature matching?

tructure near you. Save them in the additional_datas folder of the
project and run your SIFT pipeline on them. Analyze the results - why do you think our pipeline may
image pair? Is there anything about the building that is

Algorithm 1: 11

ris Corner Detector

Compute the horizontal and ver
image with a Sobel filter;

al derivatives [, and [, of the image by convolving the original

to the outer products of these gradients. (The matrix A is

Overview

Project 2: SIFT Local Feature Matching

CS 4476
Fall 2023

Brief

o Due: Check Canvas for up to date information
e Project materials including report template: Project 2
e Hand-in: through Gradescope

o Required files: <your_gt_username>.zip, <your_gt_username>_proj2.pdf

Figure 1: The top 100 most confident local feature matches from a baseline implementation of project 2. In
this case, 89 were correct (lines shown in green), and 11 were incorrect (lines shown in red).

The goal of this assignment is to create a local feature matehing algorithm using technig

ues described in

ied version of the famous SIFT pipeline. The
natching — multiple views of the same physical

r environment installation
~2.ipynb
ity checks are passing by running pytest tests

nbmission once you've finished the project using

sername>

s of a local feature matching algorithm (detecting
atching feature vectors). We'll implement two
anized as follows:

i 7.1.1)

ee Sz

jatch feature in part2_patch_descriptor.py (see

Szeliski 7.1.3)

rta_sift_descripter.py (see Szeliski 7.1.2)

 cormar.p3)

i in the lecture materials and Szeliski 7.1.1.

1 7.8 of book, p. 424)

* m L 1) (1)

screte convolutions with the weighting kernel w

jon matrix A as:

ace(A)? (2)

ed.);
ser Gaussian.;
the formuls
old and report. ther

(Equation 2) discussed abo
as detected feature point locatio

will have to fill out the following methods in part1_harris_corner

image gradients using the Sobel filter.

the raw corner responses over the entire image (the previously

maximum suppression using max-pooling. You can use PyTorch

s points from the entire image (the previously imple-

nethods in partl_harris_corner.py:

feates o 2D Gaussian kernel (this is essentially the
bnd moments of the input image. This makes use of your
hod.

ame as your

pling operation using just NumPy. This manual implementation

ming in the next step.

close to the border that we can't create a useful SIFT window

restions. You do not need to worry about scale invariance or
pline Harris corner detector. The original paper by Chris Harris
eteetor can be found here,

iscriptors (partz patch descriptor.py)

ckly, yvou will implement a bare-bones feature descriptor in
. grayscale image intensity patches as your local feature. See
mpute_normalized_patch_descriptors()

e choices for center of a square window, as shown in Figure

patches on Notre Dame is around 40 — 43% and Mt Rushmore

(plxtS_tlatun_mlt:hing. py)

m as the “nearest neighbor distance ratio test”) method of
lecture materials and Szeliski 7.1.3 (page 444). See equation
it pass the ratio test the easiest should have a greater tendency

dow, the yellow cells could all be considered the center. Please
nter throughout this project.

teature_matching.py, You will have to code
and match_features ratic_test () to perform

this is. In part:
e feature distanc
feature lists.

o (pmlfaiﬂ_iﬂaacnpm:, py)

re as described in the lecture materials and Szeliski 7.1.2. We'll
e-Root SI) from a 2012 CVPR paper (linked here) to get a
its in the file partd_sifr_descripror.py for more details.

n histograms. An unweighted 1D histogram with 3 bins could
1,2.5,58,5.9), and the bins are defined over half-open intervals
am o= [2,1,2].

13 bins and bin edges has each item weighted by some value.
5.8.5.9], with weights w = [2,3,1.0.0]. and the same bin edges
togram weight at a pixel is the magnitude of the image gradient

to implement the following:

tations of the

| Retriev

gradient magnitudes and orie

tchi): Retrieves a feature consisting of concatenated histograms.
ature from a single point.

ure vectors corresponding to our interest points from an image.

[T pipeline on the Notre Dame image is at least 80%. Note that
y (close to 0) and think about why this could be happening.

»r Exploration

parameters: How big should the window around each feature be?
How many orientations should each histogram have? Modify
out the corresponding items in the report.

do a project report using the template slides provided
move any slides, as this will affect the grading process

the report vou will describe your algorithm and ar
lar way. Then you will show and discuss the results of
ce for what you should include in your report. A good
me conclusions from the experiments, You must convert
then assign each PDF page to the relevant question

r the siides given in the tempiate deck to describe your
receive full eredit for your extra credit implementations

oym)

rovided in the starter code includes file handling, visual-
alls to placeholder versions of the three functions listed

ruth evaluation in the starter code as well. evaluate_
et or incorrect based on hand-provided matches . The
e (Mount Rushmore and
incommenting the appropriate lines in proj

es for two othe

age p
--2. ipynb.

jou should see your performance according to evaluate
pseful, but don’t overfit to the initial Notre Dame image
im suggested here and in the starter code will give you
images.

h functions

Eatenate (), np.fliplr(), np.£lipud(}, np.histogram(),
waxis, np.reshape (), np.sort ().

rch. from_numpy (), torch.median (), torch.nn. functional

), torch.nn.Parameter, torch.stack ().

mentation, you might find torch.meshagrid, torch.norm,

fe. Please use torch.nn.Conv2d OF torch.nn. functional
ctions from other libraries (e.g., cv.filter20(), scipy.

This section: correspondence and alighment

* Correspondence: matching points, patches, edges, or regions
across images

Review: Local Descriptors

* Most features can be thought of as templates, histograms
(counts), or combinations

* The ideal descriptor should be TN AR
— Robust and Distinctive (SRR) > [
NI DS \
— Compact and Efficient s

* Most available descriptors focus on edge/gradient information
— Capture texture information

— Color rarely used

K. Grauman, B. Leibe

What is “Geometric Verification”?

You can either detect and extract new features from the images or import existing features from

o CO L M A P iS t h e text files. COLMAP extracts SIFT [lowe04] features either on the GPU or the CPU. The GPU version
requires an attached display, while the CPU version is recommended for use on a server. In general,
Sta n d a rd Way to the GPU version is favorable as it has a customized feature detection mode that often produces

higher quality features in the case of high contrast images. If you import existing features, every
d O St r u Ct u re fro m image must have a text file next to it (e.g., /path/to/imagel.jpg and /path/to/imagel.jpg.txt) in the

following format:

motion these

NUM_FEATURES 128

days X Y SCALE ORIENTATION D_ 1 D 2 D 3 ... D_128
g.; SCALE ORIENTATION D_1 D_2 D_3 ... D_128
Images Correspondence Search Incremental Reconstruction Reconstruction
5 Initialization o rmm—————— >
1 I
1

Matching

Image Registration Outlier Filtering I_J) B

Geometric Verification

Triangulation Bundle Adjustment

B w =

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

Can we refine this further?

B "“l
.r*! ﬁ _‘ ‘

£
1 e

?.
&
é

o)

Can we refine this further?

Can we refine this further?

Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best
align matched points

Fitting and Alighment

* Design challenges

— Design a suitable goodness of fit measure
 Similarity should reflect application goals
* Encode robustness to outliers and noise

— Design an optimization method

* Avoid local optima
* Find best parameters quickly

Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Simple example: Fitting a line

Least squares line fitting

*Data: (Xg, Yy), -+ Xy Vi)
eLine equation:y, = mx; + b
*Find (M, b) to minimize

E= Zin:l(yi —mx; —b)*

fo {1

)fl 1 m Yl 2
SR NEH IS

b
X, 1 Y
=y y—2(Ap)"y +(Ap)" (Ap) Matlab:p = A \ vy;
d_E:2ATAp—2ATy=O Python: p =

dp

numpy.linalg.lstsqg (A, V)

ATAp=ATy=p=(ATA] ATy

Modified from S. Lazebnik

Least squares (global) optimization

Good
e Clearly specified objective
* Optimization is easy

Bad
 May not be what you want to optimize
e Sensitive to outliers

— Bad matches, extra points

* Doesn’t allow you to get multiple good fits
— Detecting multiple objects, lines, etc.

Least squares: Robustness to noise

* Least squares fit to the red points:

-0

-12k

14

1 1 1 1 1 1 1 1
-14 -12 -10 -8 -k -4 -2 0 2

Least squares: Robustness to noise

e Least squares fit with an outlier:

0 / i
P #

-0

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B

Problem: squared error heavily penalizes outliers

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Robust least squares (to deal with outliers)

General approach:
minimize Zp(ui(xi | 0), O') U2 :Zin:l(yi —mx, —b)2
i

u; (xi,) — residual of it" point w.r.t. model parameters ¢
p — robust function with scale parameter o

2 2

; . U~
18| P[_U': UJ —

o2 + u? | The robust function p
|« Favors a configuration
with small residuals

» Constant penalty for large
residuals

Slide from S. Savarese

Choosing the scale: Just right

=10}k

-12F

-14

1 1 1 1 1 1 1 1 1
-14 -12 -110 - -G -4 -2 1 2 4

The effect of the outlier is minimized

Choosing the scale: Too small

=10}k

-12F

_‘Iq. 1 1 1 1 1 1 1 1 1

-14 -12 -110 - -G -4 -2 1 2 4

The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too large

0 4
prs *
oL i

=10}k

-12F

-14

1 1 1 1 1 1 1 1 1 1
-14 -12 -110 - -G -4 -2 1 2 4 B

Behaves much the same as least squares

Robust estimation: Details

e Robust fitting is a nonlinear optimization problem that must be
solved iteratively

e Least squares solution can be used for initialization

e Scale of robust function should be chosen adaptively based on
median residual

Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Other ways to search for parameters (for
when no closed form solution exists)

* Line search (see also“coordinate descent”)

1. For each parameter, step through values and choose value
that gives best fit

2. Repeat (1) until no parameter changes

e @Grid search

1. Propose several sets of parameters, evenly sampled in the
joint set

2. Choose best (or top few) and sample joint parameters around
the current best; repeat

* Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)

Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those
values in grid

3. Find maximum or local maxima in grid

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese

Hough transform

) m

Slide from S. Savarese

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Slide from S. Savarese

Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Hough space

XCc0s@ +ysin@ =p

Slide from S. Savarese

Hough transform - experiments

features votes

Slide from S. Savarese

Hough transform - experiments

Noisy data

features votes

Need to adjust grid size or smooth

Slide from S. Savarese

Hough transform - experiments

features votes

Issue: spurious peaks due to uniform noise

Slide from S. Savarese

10N

1. Image = Canny Edge Detect

2. Canny = Hough votes

3. Hough votes - Edges

Find peaks and post-process

Hough transform example

7 “Image i Hough Transform

http://ostatic.com/files/images/ss_hough.jpg

Finding lines using Hough transform

e Using m,b parameterization
e Usingr, theta parameterization

— Using oriented gradients

* Practical considerations
— Bin size
— Smoothing
— Finding multiple lines
— Finding line segments

Hough Transform

 How would we find circles?
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation

Hough transform for circles

» Grid search equivalent procedure: for each (x,y,r), draw
the corresponding circle in the image and compute its
“support”

Ar

)

Hough Transform

 How would we find circles?
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation

Hough transform for circles

image space Hough parameter space

AT

(X, y)+rVI(X,Yy) j>|

/ (x.y)
(X, y)=rVI(X,y) \/

Hough transform conclusions

Good

* Robust to outliers: each point votes separately
* Fairly efficient (often faster than trying all sets of parameters)
* Provides multiple good fits

Bad

* Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and
speed/memory

— Can be hard to find sweet spot

* Not suitable for more than a few parameters
— grid size grows exponentially

Common applications

* Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
* Object category recognition (parameters are position/scale)

