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Feature Matching and Robust Fitting
Read Szeliski 7.4.2 and 2.1

Computer Vision

James Hays



Project 2
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Overview

Project 2: SIFT Local Feature Matching

CS 4476
Fall 2023

Brief

o Due: Check Canvas for up to date information
e Project materials including report template: Project 2
e Hand-in: through Gradescope

o Required files: <your_gt_username>.zip, <your_gt_username>_proj2.pdf

Figure 1: The top 100 most confident local feature matches from a baseline implementation of project 2. In
this case, 89 were correct (lines shown in green), and 11 were incorrect (lines shown in red).
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This section: correspondence and alighment

* Correspondence: matching points, patches, edges, or regions
across images




Review: Local Descriptors

* Most features can be thought of as templates, histograms
(counts), or combinations

* The ideal descriptor should be TN AR
— Robust and Distinctive ( SRR ) > [
NI DS \
— Compact and Efficient s

* Most available descriptors focus on edge/gradient information
— Capture texture information

— Color rarely used

K. Grauman, B. Leibe



What is “Geometric Verification”?

You can either detect and extract new features from the images or import existing features from

o CO L M A P iS t h e text files. COLMAP extracts SIFT [lowe04] features either on the GPU or the CPU. The GPU version
requires an attached display, while the CPU version is recommended for use on a server. In general,
Sta n d a rd Way to the GPU version is favorable as it has a customized feature detection mode that often produces

higher quality features in the case of high contrast images. If you import existing features, every
d O St r u Ct u re fro m image must have a text file next to it (e.g., /path/to/imagel.jpg and /path/to/imagel.jpg.txt) in the

following format:

motion these

NUM_FEATURES 128

days X Y SCALE ORIENTATION D_ 1 D 2 D 3 ... D_128
g.; SCALE ORIENTATION D_1 D_2 D_3 ... D_128
Images Correspondence Search Incremental Reconstruction Reconstruction
5 Initialization o rmm—————— >
1 I
1

Matching

Image Registration Outlier Filtering I_J) B

Geometric Verification

Triangulation Bundle Adjustment

B w =

“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations
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Can we refine this further?




Can we refine this further?




Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best
align matched points



Fitting and Alighment

* Design challenges

— Design a suitable goodness of fit measure
 Similarity should reflect application goals
* Encode robustness to outliers and noise

— Design an optimization method

* Avoid local optima
* Find best parameters quickly



Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)



Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)



Simple example: Fitting a line



Least squares line fitting

*Data: (Xg, Yy), -+ Xy Vi)
eLine equation:y, = mx; + b
*Find (M, b) to minimize

E= Zin:l(yi —mx; —b)*

fo {1

)fl 1 m Yl 2
SR NEH IS

b
X, 1 Y
=y y—2(Ap)"y +(Ap)" (Ap) Matlab:p = A \ vy;
d_E:2ATAp—2ATy=O Python: p =

dp

numpy.linalg.lstsqg (A, V)

ATAp=ATy=p=(ATA] ATy

Modified from S. Lazebnik



Least squares (global) optimization

Good
e Clearly specified objective
* Optimization is easy

Bad
 May not be what you want to optimize
e Sensitive to outliers

— Bad matches, extra points

* Doesn’t allow you to get multiple good fits
— Detecting multiple objects, lines, etc.



Least squares: Robustness to noise

* Least squares fit to the red points:
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Least squares: Robustness to noise

e Least squares fit with an outlier:

0 / i
P #

-0

-12k

_1.-.1. 1 1 1 1 1 1 1 1 1 1
-14 -12 -10 -3 -6 -4 -2 I 2 4 B

Problem: squared error heavily penalizes outliers



Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)



Robust least squares (to deal with outliers)

General approach:
minimize Zp(ui(xi | 0), O') U2 :Zin:l(yi —mx, —b)2
i

u; (xi, ) — residual of it" point w.r.t. model parameters ¢
p — robust function with scale parameter o

2 2

; . U~
18| P[_U': UJ —

o2 + u? | The robust function p
|« Favors a configuration
with small residuals

» Constant penalty for large
residuals

Slide from S. Savarese



Choosing the scale: Just right

=10}k
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The effect of the outlier is minimized



Choosing the scale: Too small

=10}k

-12F
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-14 -12 -110 - -G -4 -2 1 2 4

The error value is almost the same for every
point and the fit is very poor



Choosing the scale: Too large

0 4
prs *
oL i

=10}k
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-14 -12 -110 - -G -4 -2 1 2 4 B

Behaves much the same as least squares



Robust estimation: Details

e Robust fitting is a nonlinear optimization problem that must be
solved iteratively

e Least squares solution can be used for initialization

e Scale of robust function should be chosen adaptively based on
median residual



Fitting and Alignment: Methods

* Global optimization / Search for parameters
— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test
— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)



Other ways to search for parameters (for
when no closed form solution exists)

* Line search (see also“coordinate descent”)

1. For each parameter, step through values and choose value
that gives best fit

2. Repeat (1) until no parameter changes

e @Grid search

1. Propose several sets of parameters, evenly sampled in the
joint set

2. Choose best (or top few) and sample joint parameters around
the current best; repeat

* Gradient descent
1. Provide initial position (e.g., random)
2. Locally search for better parameters by following gradient



Fitting and Alignment: Methods

* Global optimization / Search for parameters

— Least squares fit
— Robust least squares
— Other parameter search methods

* Hypothesize and test

— Generalized Hough transform
— RANSAC

* |terative Closest Points (ICP)



Fitting and Alignment: Methods
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Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, incrementing those
values in grid

3. Find maximum or local maxima in grid



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains
the data points best

Hough space

y=mx+Db

Slide from S. Savarese



Hough transform

) m

Slide from S. Savarese



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Slide from S. Savarese



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High
Energy Accelerators and Instrumentation, 1959

Issue : parameter space [m,b] is unbounded...

Use a polar representation for the parameter space

Hough space

XCc0s@ +ysin@ =p

Slide from S. Savarese



Hough transform - experiments

features votes

Slide from S. Savarese



Hough transform - experiments

Noisy data

features votes

Need to adjust grid size or smooth

Slide from S. Savarese



Hough transform - experiments

features votes

Issue: spurious peaks due to uniform noise

Slide from S. Savarese



10N

1. Image = Canny Edge Detect




2. Canny = Hough votes




3. Hough votes - Edges

Find peaks and post-process



Hough transform example

7 “Image i Hough Transform

http://ostatic.com/files/images/ss_hough.jpg



Finding lines using Hough transform

e Using m,b parameterization
e Usingr, theta parameterization

— Using oriented gradients

* Practical considerations
— Bin size
— Smoothing
— Finding multiple lines
— Finding line segments



Hough Transform

 How would we find circles?
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation



Hough transform for circles

» Grid search equivalent procedure: for each (x,y,r), draw
the corresponding circle in the image and compute its
“support”

Ar

)




Hough Transform

 How would we find circles?
— Of fixed radius
— Of unknown radius
— Of unknown radius but with known edge orientation



Hough transform for circles

image space Hough parameter space

AT

(X, y)+rVI(X,Yy) j>|

/ (x.y)
(X, y)=rVI(X,y) \/




Hough transform conclusions

Good

* Robust to outliers: each point votes separately
* Fairly efficient (often faster than trying all sets of parameters)
* Provides multiple good fits

Bad

* Some sensitivity to noise

* Bin size trades off between noise tolerance, precision, and
speed/memory

— Can be hard to find sweet spot

* Not suitable for more than a few parameters
— grid size grows exponentially

Common applications

* Line fitting (also circles, ellipses, etc.)

* Object instance recognition (parameters are affine transform)
* Object category recognition (parameters are position/scale)



