

RANSAC, ICP, Fitting and Alignment

Computer Vision

Szeliski 2.1 and 8.1

James Hays

Acknowledgment: Many slides from Derek Hoiem, Lana Lazebnik, and Grauman&Leibe 2008 AAAI Tutorial

Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

- **Hypothesize and test**
	- Hough transform

– RANSAC

• Iterative Closest Points (ICP)

Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters, incrementing those values in grid

3. Find maximum or local maxima in grid

Review: Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best

 $y = m x + b$

Review: Hough transform

Slide from S. Savarese

Hough transform for circles

• Conceptually equivalent (but maybe less efficient) grid search procedure: for each (x,y,r), draw the corresponding circle in the image and compute its

Is this more or less efficient than voting with features?

Hough Transform

- How would we find circles?
	- Of fixed radius
	- Of unknown radius
	- Of unknown radius but with known edge orientation

Hough transform for circles

• Circle: center (a,b) and radius r

$$
(x_i - a)^2 + (y_i - b)^2 = r^2
$$

• For an unknown radius r

Hough transform for circles

• Circle: center (a,b) and radius r

$$
(x_i - a)^2 + (y_i - b)^2 = r^2
$$

• For an unknown radius r

Kristen Grauman

Hough Transform

- How would we find circles?
	- Of fixed radius
	- Of unknown radius
	- Of unknown radius but with known edge orientation

Hough transform for circles

• Circle: center (a,b) and radius r

$$
(x_i - a)^2 + (y_i - b)^2 = r^2
$$

• For an unknown radius r, **known** gradient direction

Hough transform for circles

For every edge pixel (*x,y*) : For each possible radius value *r*: For each possible gradient direction *θ: // or use estimated gradient at (x,y) a* = *x* – *r* cos(*θ*) // column $b = y + r \sin(\theta)$ // row H[*a,b,r*] += 1

end

end

Example: detecting circles with Hough

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Example: detecting circles with Hough

Coin finding sample images from: Vivek Kwatra

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

- Hypothesize and test
	- Hough transform
	- RANSAC
- Iterative Closest Points (ICP)

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in '81.

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Line fitting example

Algorithm:

- **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

Algorithm:

- 1. **Sample** (randomly) the number of points required to fit the model (#=2)
- 2. **Solve** for model parameters using samples
- 3. **Score** by the fraction of inliers within a preset threshold of the model

How to choose parameters?

- Number of samples *N*
	- Choose *N* so that, with probability *p*, at least one random sample is free from outliers (e.g. *p*=0.99) (outlier ratio: *e*)
- Number of sampled points *s*
	- Minimum number needed to fit the model
- Distance threshold δ
	- Choose δ so that a good point with noise is likely (e.g., prob=0.95) within threshold

$$
N = \log(1-p)/\log(1-(1-e)^s)
$$

For $p = 0.99$ modified from M. Pollefeys

RANSAC conclusions

Good

- Robust to outliers
- Applicable for larger number of model parameters than Hough transform
- Optimization parameters are easier to choose than Hough transform

Bad

- Computational time grows quickly with fraction of outliers and number of parameters
- Not good for getting multiple fits

Common applications

- Computing a homography (e.g., image stitching)
- Estimating fundamental matrix (relating two views)

Can we use RANSAC instead of Hough transform?

Note: a different Hough transform (with separate accumulators) was used for each circle radius (quarters vs. penny).

Canvas Quiz: RANSAC

Let's find circles of any radius from 6 to 55 pixels

Let's assume that for a particular coin, 10% of the overall edge pixels are "inliers" (on the perimeter of that coin)

Recall this equation to estimate the number of RANSAC iterations needed, N

> $(1-p)/log(1-(1-e)^s)$ $N = log(1-p)/log(1-(1-e)^s)$

s = number of samples needed to fit a model $p =$ desired probability of finding an outlier free solution

e = proportion of outliers

How do we fit the best alignment?

How do we fit the best alignment?

How do we fit the best alignment?

Alignment

• Alignment: find parameters of model that maps one set of points to another

• Typically want to solve for a global transformation that accounts for *most* true correspondences

- Difficulties
	- Noise (typically 1-3 pixels)
	- Outliers (often 50%)
	- Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:

 $p' = T(p)$

What does it mean that *T* is global and parametric?

- Global: Is the same for any point p
- Parametric: can be described by just a few numbers

We're going to focus on *linear* transformations, we can represent T as a matrix multiplication

$$
p' = Tp
$$

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{T} \begin{bmatrix} x \\ y \end{bmatrix}
$$

Common transformations

original

Transformed

translation rotation aspect

affine **perspective**

Slide credit (next few slides): A. Efros and/or S. Seitz

Scaling

- *Scaling* a coordinate means multiplying each of its components by a scalar
- *Uniform scaling* means this scalar is the same for all components:

Scaling

• *Non-uniform scaling*: different scalars per component:

Scaling

• Scaling operation:
$$
x'=ax
$$

 $y'=by$

• Or, in matrix form: $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ \vert = $\overline{}$ \Box $\overline{}$ $\overline{}$ *y x b a y x* 0 0 ''*scaling matrix S*

2-D Rotation (around the origin)

2-D Rotation

This is easy to capture in matrix form:

Even though sin(θ) and cos(θ) are nonlinear functions of θ ,

- $-$ *For a particular* θ , x' is a linear combination of x and y
- $-$ *For a particular* θ , y' is a linear combination of x and y

What is the inverse transformation?

- Rotation by $-\theta$
- $-$ For rotation matrices $\mathbf{R}^{-1} = \mathbf{R}^{T}$

Basic 2D transformations

Scale Scale Shear Shear

s de la de la designación de la decembra de la decembra de la decembra de la de la de la de la de la de la de
En la de $\lfloor 1 \rfloor$ udiləldik
chaar $\parallel y \parallel$ \sim \sim \sim \sim \sim \sim \parallel intranslat 1 *y* | \cdots \cdots Affine is any combination of translation, scale, rotation, shear

$$
\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}
$$

Affine transformations are combinations of …

- Linear transformations, and
- Translations

Parallel lines remain parallel

Projective Transformations

$$
\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

Slide credit: Kristen Grauman

2D image transformations (reference table)

Given matched points in {A} and {B}, estimate the translation of the object

$$
\begin{bmatrix} x_i^B \\ y_i^B \end{bmatrix} = \begin{bmatrix} x_i^A \\ y_i^A \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}
$$

Least squares solution

- 1. Write down objective function
- 2. Derived solution
	- a) Compute derivative
	- b) Compute solution
- 3. Computational solution
	- a) Write in form Ax=b
	- b) Solve using pseudo-inverse or eigenvalue decomposition

 (t_x, t_y)

Problem: outliers

 (t_x, t_y)

RANSAC solution

- 1. Sample a set of matching points (1 pair)
- 2. Solve for transformation parameters
- 3. Score parameters with number of inliers
- 4. Repeat steps 1-3 N times

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution

- 1. Initialize a grid of parameter values
- 2. Each matched pair casts a vote for consistent values
- 3. Find the parameters with the most votes
- 4. Solve using least squares with inliers

Problem: no initial guesses for correspondence

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

- **Hypothesize and test**
	- Hough transform

– RANSAC

• Iterative Closest Points (ICP)

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: align brain scans or contours

Robotics: align point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets of points

- **1. Initialize** transformation (e.g., compute difference in means and scale)
- **2. Assign** each point in {Set 1} to its nearest spatial neighbor in {Set 2}
- **3. Estimate** transformation parameters
	- e.g., least squares or robust least squares
- **4. Transform** the points in {Set 1} using estimated parameters
- **5. Repeat** steps 2-4 until change is very small

Example: aligning boundaries

- 1. Extract edge pixels p_1 . pn and q_1 . qm
- 2. Compute initial transformation (e.g., compute translation and scaling by center of mass, variance within each image)
- 3. Get nearest neighbors: for each point p_i find corresponding $match(i) = argmin dist(p_i, q_j)$ j
- 4. Compute transformation *T* based on matches
- 5. Warp points *p* according to *T*
- 6. Repeat 3-5 until convergence

Problem: no initial guesses for correspondence

 (t_x, t_y)

ICP solution

- 1. Find nearest neighbors for each point
- 2. Compute transform using matches
- 3. Move points using transform
- 4. Repeat steps 1-3 until convergence

Sparse ICP

Sofien Bouaziz Andrea Tagliasacchi Mark Pauly

KISS-ICP: In Defense of Point-to-Point ICP $-$ Simple, Accurate, and Robust Registration If Done the Right Way

Tiziano Guadagnino **Benedikt Mersch** Ignacio Vizzo Louis Wiesmann **Jens Behley Cyrill Stachniss**

Reset

Algorithm Summaries

- Least Squares Fit
	- closed form solution
	- robust to noise
	- not robust to outliers
- Robust Least Squares
	- improves robustness to outliers
	- requires iterative optimization
- Hough transform
	- robust to noise and outliers
	- can fit multiple models
	- only works for a few parameters (1-4 typically)
- RANSAC
	- robust to noise and outliers
	- works with a moderate number of parameters (e.g, 1-8)
- Iterative Closest Point (ICP)
	- For local alignment only: does not require initial correspondences
	- Sensitive to initialization

Rough count of mentions in recent literature

- Keypoint 2,180 mentions
- SIFT 3,530 mentions
- "Least Squares" 2,290 mentions
- "Robust Least Squares" 4 mentions
- Hough: 901 mentions
- RANSAC: 1,690 mentions
- ICP: 895 mentions
- Affine 2,970
- ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term] Seems to find results since 2013.