

Machine Learning Crash Course

Computer Vision
James Hays

Slides: Isabelle Guyon,

Erik Sudderth,

Mark Johnson,

Derek Hoiem

Photo: CMU Machine Learning

Department protests G20

Dimensionality Reduction

Simplest dimensionality reduction: drop a dimension

Credit: xkcd

Dimensionality Reduction

The Earth is pretty smooth

Credit: xkcd

Non-linear Dimensionality Reduction

Credit: xkcd

Dimensionality Reduction

• PCA, ICA, LLE, Isomap,
Autoencoder

• PCA is the most important technique to
know. It takes advantage of correlations in
data dimensions to produce the best possible
lower dimensional representation based on
linear projections (minimizes reconstruction
error).

• Be wary of trying to assign meaning to the
discovered bases.

Training data

16 256x256 images

The “Eigenfaces”
Reconstruction of in-

domain and out-of-domain

images

PCA as a data interpretation tool

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, Neil Houlsby. ICLR 2021

Credit: xkcd

• http://fakeisthenewreal.org/reform/

• http://fakeisthenewreal.org/reform/

Clustering example: image segmentation

Goal: Break up the image into meaningful or perceptually
similar regions

Segmentation for feature support or efficiency

[Felzenszwalb and Huttenlocher 2004]

[Hoiem et al. 2005, Mori 2005]
[Shi and Malik 2001]

Slide: Derek Hoiem

50x50

Patch

50x50

Patch

Types of segmentations

Oversegmentation Undersegmentation

Multiple Segmentations

 Clustering: group together similar points and represent them
with a single token

 Key Challenges:

 1) What makes two points/images/patches similar?

 2) How do we compute an overall grouping from pairwise similarities?

Slide: Derek Hoiem

How do we cluster?

• K-means

– Iteratively re-assign points to the nearest cluster center

• Agglomerative clustering

– Start with each point as its own cluster and iteratively merge the closest
clusters

• Mean-shift clustering

– Estimate modes of pdf

• Spectral clustering

– Split the nodes in a graph based on assigned links with similarity weights

Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

– Preserve information

() −=
N

j

K

i

jiN ij

21

,

** argmin, xcδc
δc



Whether xj is assigned to ci

Cluster center Data

Slide: Derek Hoiem

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly

select K centers

2. Assign each

point to nearest

center

3. Compute new

center (mean)

for each cluster

http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

Illustration: http://en.wikipedia.org/wiki/K-means_clustering

1. Randomly

select K centers

2. Assign each

point to nearest

center

3. Compute new

center (mean)

for each cluster

Back to 2

http://en.wikipedia.org/wiki/K-means_clustering

K-means

1. Initialize cluster centers: c0 ; t=0

2. Assign each point to the closest center

3. Update cluster centers as the mean of the points

4. Repeat 2-3 until no points are re-assigned (t=t+1)

() −= −
N

j

K

i

j

t

iN

t

ij

211argmin xcδ
δ



() −=
N

j

K

i

ji

t

N

t

ij

21argmin xcc
c



Slide: Derek Hoiem

K-means converges to a local minimum

K-means: design choices

• Initialization

– Randomly select K points as initial cluster center

– Or greedily choose K points to minimize residual

• Distance measures

– Traditionally Euclidean, could be others

• Optimization

– Will converge to a local minimum

– May want to perform multiple restarts

Image Clusters on intensity Clusters on color

K-means clustering using intensity or color

How to evaluate clusters?

• Generative

– How well are points reconstructed from the clusters?

• Discriminative

– How well do the clusters correspond to labels?

• Purity

– Note: unsupervised clustering does not aim to be discriminative

Slide: Derek Hoiem

How to choose the number of clusters?

• Validation set

– Try different numbers of clusters and look at performance on some
downstream task

• When building dictionaries (discussed later), more clusters typically work
better

Slide: Derek Hoiem

K-Means pros and cons
• Pros

• Finds cluster centers that minimize
conditional variance (good
representation of data)

• Simple and fast*

• Easy to implement

• Cons

• Need to choose K

• Sensitive to outliers

• Prone to local minima

• All clusters have the same parameters
(e.g., distance measure is non-
adaptive)

• *Can be slow: each iteration is O(KNd)
for N d-dimensional points

• Usage

• Rarely used for pixel segmentation

Building Visual Dictionaries

1. Sample patches from
a database

– E.g., 128 dimensional
SIFT vectors

2. Cluster the patches
– Cluster centers are

the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster

Examples of learned codewords

Sivic et al. ICCV 2005http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf

Most likely codewords for 4 learned “topics”

http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf

Which algorithm to try first?

• Quantization/Summarization: K-means

– Aims to preserve variance of original data

– Can easily assign new point to a cluster

Quantization for

computing histograms

Summary of 20,000 photos of Rome using

“greedy k-means”

http://grail.cs.washington.edu/projects/canonview/

http://grail.cs.washington.edu/projects/canonview/

The machine learning framework

• Apply a prediction function to a feature representation of

the image to get the desired output:

 f() = “apple”

 f() = “tomato”

 f() = “cow”
Slide credit: L. Lazebnik

Learning a classifier

Given some set of features with corresponding labels, learn a
function to predict the labels from the features

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

Generalization

• How well does a learned model generalize from
the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

Very brief tour of some classifiers

• K-nearest neighbor
• SVM
• Boosted Decision Trees
• Neural networks
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• RBMs
• Deep Convolutional Network
• Attentional models or “Transformers”
• Etc.

Classification

• Assign input vector to one of two or more

classes

• Any decision rule divides input space into

decision regions separated by decision

boundaries

Slide credit: L. Lazebnik

Nearest Neighbor Classifier

• Assign label of nearest training data point to each test data

point

Voronoi partitioning of feature space
for two-category 2D and 3D data

from Duda et al.

Source: D. Lowe

K-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

1-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

3-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

5-nearest neighbor

x x

x
x

x

x

x

x

o

o
o

o

o

o

o

x2

x1

+

+

Using K-NN

• Simple to implement and interpret, a good classifier to try first

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

 f(x) = sgn(w  x + b)

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

 f(x) = sgn(w  x + b)

Classifiers: Linear SVM

x x

x
x

x

x

x

x

o

o
o

o

o

o

x2

x1

• Find a linear function to separate the classes:

 f(x) = sgn(w  x + b)

• Datasets that are linearly separable work out great:

• But what if the dataset is just too hard?

• We can map it to a higher-dimensional space:

0 x

0 x

0 x

x2

Nonlinear SVMs

Slide credit: Andrew Moore

Φ: x → φ(x)

Nonlinear SVMs

• General idea: the original input space can

always be mapped to some higher-dimensional

feature space where the training set is

separable:

Slide credit: Andrew Moore

Nonlinear SVMs

• The kernel trick: instead of explicitly computing

the lifting transformation φ(x), define a kernel

function K such that

 K(xi , xj) = φ(xi) · φ(xj)

 (to be valid, the kernel function must satisfy

Mercer’s condition)

• This gives a nonlinear decision boundary in the

original feature space:

bKyby
i

iii

i

iii +=+ ),()()(xxxx 

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining

and Knowledge Discovery, 1998

http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

SVMs: Pros and cons

• Pros
• Linear SVMs are surprisingly accurate, while being

lightweight and interpretable

• Non-linear, kernel-based SVMs are very powerful, flexible

• SVMs work very well in practice, even with very small

training sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Computation, memory

– During training time, must compute matrix of kernel values for

every pair of examples. Quadratic memory consumption.

– Learning can take a very long time for large-scale problems

Very brief tour of some classifiers

• K-nearest neighbor
• SVM
• Boosted Decision Trees
• Neural networks
• Naïve Bayes
• Bayesian network
• Logistic regression
• Randomized Forests
• RBMs
• Deep Convolutional Network
• Attentional models or “Transformers”
• Etc.

Generalization

• How well does a learned model generalize from

the data it was trained on to a new test set?

Training set (labels known) Test set (labels

unknown)

Slide credit: L. Lazebnik

Generalization
• Components of generalization error

– Bias: how much the average model over all training sets differ

from the true model?

• Error due to inaccurate assumptions/simplifications made by

the model. “Bias” sounds negative. “Regularization” sounds

nicer.

– Variance: how much models estimated from different training

sets differ from each other. Typical of more “expressive” models.

• Underfitting: model is too “simple” to represent all the

relevant class characteristics

– High bias (few degrees of freedom) and low variance

– High training error and high test error

• Overfitting: model is too “complex” and fits irrelevant

characteristics (noise) in the data

– Low bias (many degrees of freedom) and high variance

– Low training error and high test error
Slide credit: L. Lazebnik

Bias-Variance Trade-off

• Models with too few
parameters are
inaccurate because of a
large bias (not enough
flexibility).

• Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).

Slide credit: D. Hoiem

Bias-variance tradeoff

Training error

Test error

Underfitting Overfitting

Complexity Low Bias

High Variance

Expressive model

High Bias

Low Variance

Strong Regularization

E
rr

o
r

Slide credit: D. Hoiem

Bias-variance tradeoff

Many training examples

Few training examples

Complexity Low Bias

High Variance

Expressive model

High Bias

Low Variance

Strong Regularization

T
e
s
t
E

rr
o
r

Slide credit: D. Hoiem

Effect of Training Size

Testing

Training

Generalization Error

Number of Training Examples

E
rr

o
r

Fixed prediction model

Slide credit: D. Hoiem

Remember…

• No classifier is inherently better
than any other: you need to
make assumptions to generalize

• Three kinds of error
– Inherent: unavoidable

– Bias: due to over-simplifications /
regularization

– Variance: due to inability to
perfectly estimate parameters
from limited data

Slide credit: D. Hoiem

• How to reduce variance?

– Choose a simpler classifier

– Regularize the parameters

– Get more training data

• How to reduce bias?

– Choose a more complex, more expressive classifier

– Remove regularization

– (These might not be safe to do unless you get more training data)

Slide credit: D. Hoiem

What to remember about classifiers

• No free lunch: machine learning algorithms are tools, not dogmas

• Try simple classifiers first

• Better to have smart features and simple classifiers than simple features
and smart classifiers

• Use increasingly powerful classifiers with more training data (bias-
variance tradeoff)

Slide credit: D. Hoiem

Machine Learning Considerations

• 3 important design decisions:
1) What data do I use?

2) How do I represent my data (what feature)?

3) What classifier / regressor / machine learning tool
do I use?

• These are in decreasing order of importance

• Deep learning addresses 2 and 3
simultaneously (and blurs the boundary
between them).

• You can take the representation from deep
learning and use it with any classifier.

• Andrew Ng’s ranking of machine learning
impact

1. Supervised Learning

2. Transfer Learning

3. Unsupervised Learning (I prefer “self-
supervised” learning)

4. Reinforcement Learning

James thinks 2 and 3 might

have switched ranks.

Usage in recent computer vision papers

• “PCA” 3,610

• “K-means” 2,950

• “ResNet” 14,900

• “ViT” 5,540

• “Reinforcement learning” 3,320

• “Self-supervised” 11,300

• “Unsupervised” 18,400

site:https://openaccess.thecvf.com “search term” seems to search

ICCV, CVPR, and WACV papers

	Slide 1
	Slide 2: Machine Learning Crash Course
	Slide 3
	Slide 4: Dimensionality Reduction
	Slide 5: Dimensionality Reduction
	Slide 6: Non-linear Dimensionality Reduction
	Slide 7: Dimensionality Reduction
	Slide 8
	Slide 9: PCA as a data interpretation tool
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Clustering example: image segmentation
	Slide 16: Segmentation for feature support or efficiency
	Slide 18: Types of segmentations
	Slide 20
	Slide 22: How do we cluster?
	Slide 23: Clustering for Summarization
	Slide 24: K-means algorithm
	Slide 25: K-means algorithm
	Slide 26: K-means
	Slide 27: K-means converges to a local minimum
	Slide 28: K-means: design choices
	Slide 29: K-means clustering using intensity or color
	Slide 31: How to evaluate clusters?
	Slide 32: How to choose the number of clusters?
	Slide 34: K-Means pros and cons
	Slide 35: Building Visual Dictionaries
	Slide 36: Examples of learned codewords
	Slide 67: Which algorithm to try first?
	Slide 71
	Slide 72: The machine learning framework
	Slide 73: Learning a classifier
	Slide 74: Generalization
	Slide 75: Very brief tour of some classifiers
	Slide 77: Classification
	Slide 78: Nearest Neighbor Classifier
	Slide 79: K-nearest neighbor
	Slide 80: 1-nearest neighbor
	Slide 81: 3-nearest neighbor
	Slide 82: 5-nearest neighbor
	Slide 83: Using K-NN
	Slide 88: Classifiers: Linear SVM
	Slide 89: Classifiers: Linear SVM
	Slide 90: Classifiers: Linear SVM
	Slide 91: Nonlinear SVMs
	Slide 92: Nonlinear SVMs
	Slide 93: Nonlinear SVMs
	Slide 98: SVMs: Pros and cons
	Slide 107: Very brief tour of some classifiers
	Slide 108: Generalization
	Slide 109: Generalization
	Slide 111: Bias-Variance Trade-off
	Slide 113: Bias-variance tradeoff
	Slide 114: Bias-variance tradeoff
	Slide 115: Effect of Training Size
	Slide 117: Remember…
	Slide 118
	Slide 119: What to remember about classifiers
	Slide 120: Machine Learning Considerations
	Slide 121
	Slide 122
	Slide 123: Usage in recent computer vision papers

