

Deep Learning Neural Net Basics

Computer Vision

James Hays

Many slides by Marc'Aurelio Ranzato

Outline

- Neural Networks
- Convolutional Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

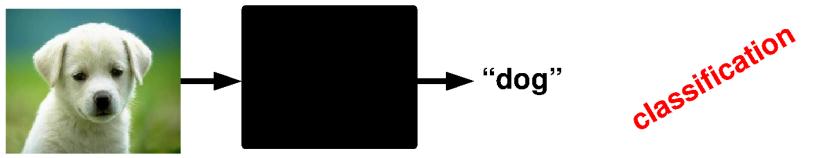
Supervised Learning

- $|(\mathbf{x}^{i}, \mathbf{y}^{i}), i=1...P|$ training dataset
- x^{i} i-th input training example
- y^i i-th target label
- *P* number of training examples

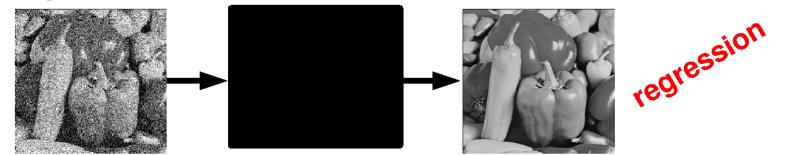
Goal: predict the target label of unseen inputs.

Supervised Learning: Examples

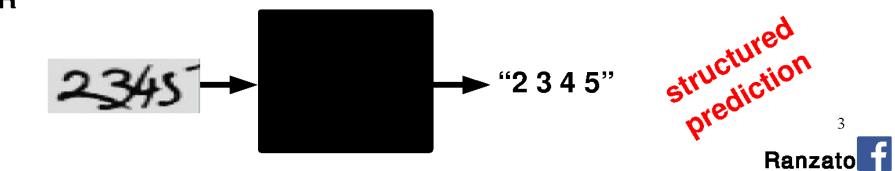
Classification



Denoising

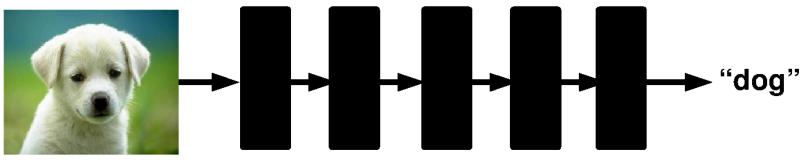


OCR

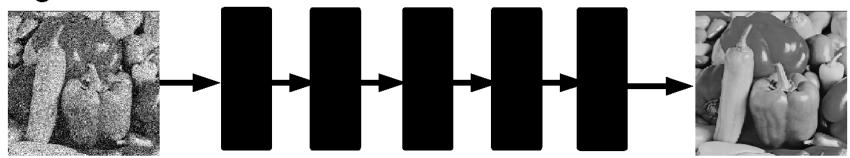


Supervised Deep Learning

Classification



Denoising



OCR $2345 \rightarrow 4$ 345'' 4Ranzato

Project 3: Scene Classification with Deep Nets Dataset

The dataset to be used in this assignment is the 15-scene dataset, containing natural images in 15 possible scenarios like bedrooms and coasts. It was first introduced by Lazebnik et al, 2006 [1]. The images have a typical size of around 200 by 200 pixels, and serve as a good milestone for many vision tasks. A sample collection of the images can be found below:

Figure 1: Example scenes from each of the categories of the dataset.

Download the data (link at the top), unzip it and put the data folder in the proj4 directory.

1 Part 1: SimpleNet

Introduction

In this project, scene recognition with deep learning, we are going to train a simple convolutional neural net from scratch. We'll be starting with some modification to the dataloader used in this project to include a few extra pre-processing steps. Subsequently, you will define your own model and optimization function. A trainer class will be provided to you, and you will be able to test out the performance of your model with this complete pipeline of classification problem.

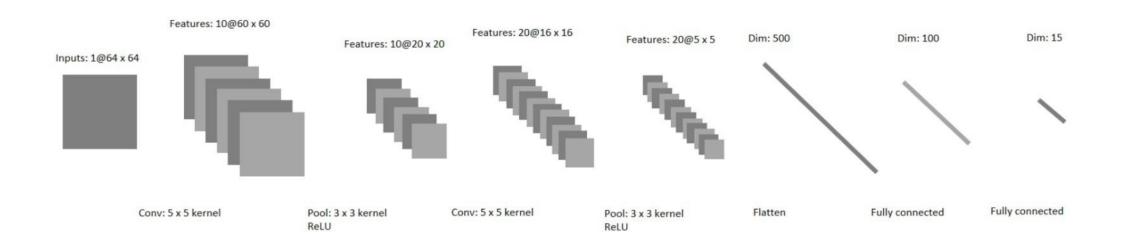


Figure 2: The base SimpleNet architecture for Part 1.

Outline

Neural Networks

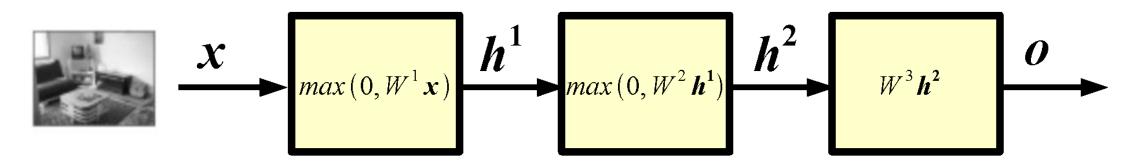
- Convolutional Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

Neural Networks

Assumptions (for the next few slides):

- The input image is vectorized (disregard the spatial layout of pixels)
- The target label is discrete (classification)

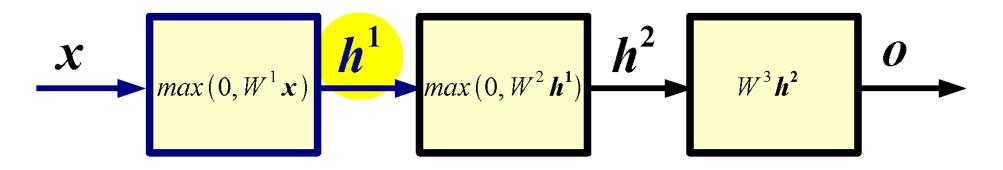
Neural Networks: example



- *x* input
- h^1 1-st layer hidden units
- h^2 2-nd layer hidden units
- *o* output

Example of a 2 hidden layer neural network (or 4 layer network, counting also input and output).

Def.: Forward propagation is the process of computing the output of the network given its input.



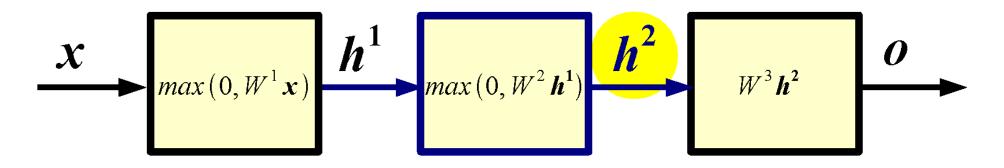
$$\boldsymbol{x} \in R^{D} \quad W^{1} \in R^{N_{1} \times D} \quad \boldsymbol{b}^{1} \in R^{N_{1}} \quad \boldsymbol{h}^{1} \in R^{N_{1}}$$

$$h^1 = max(0, W^1x + b^1)$$

 W^1 1-st layer weight matrix or weights **b**¹ 1-st layer biases

The non-linearity u = max(0, v) is called **ReLU** in the DL literature. Each output hidden unit takes as input all the units at the previous layer: each such layer is called "**fully connected**".

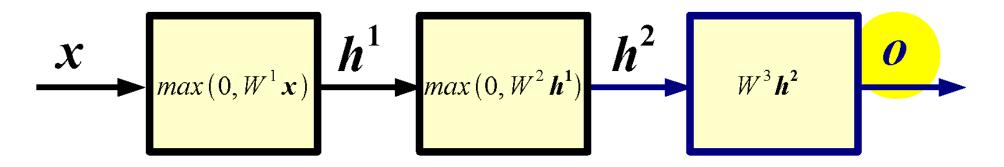
9



$$\boldsymbol{h}^{1} \in R^{N_{1}} \quad W^{2} \in R^{N_{2} \times N_{1}} \quad \boldsymbol{b}^{2} \in R^{N_{2}} \quad \boldsymbol{h}^{2} \in R^{N_{2}}$$

$$\boldsymbol{h}^2 = max\left(0, W^2 \boldsymbol{h}^1 + \boldsymbol{b}^2\right)$$

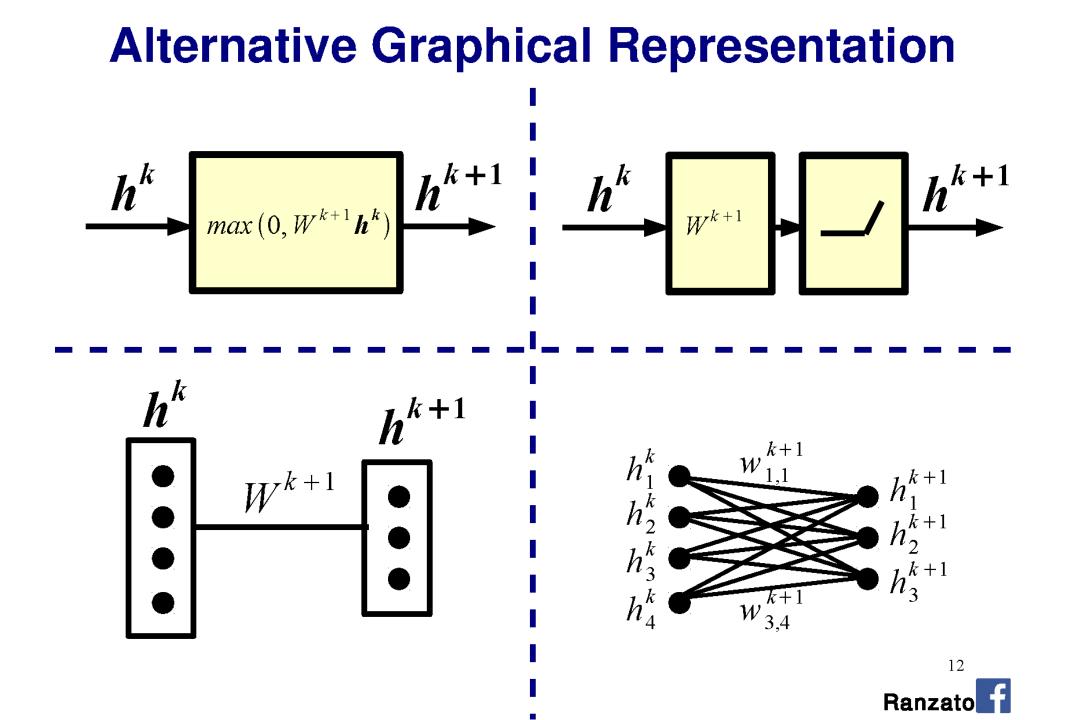
 W^2 2-nd layer weight matrix or weights **b**² 2-nd layer biases



$$\boldsymbol{h}^2 \in R^{N_2} \quad W^3 \in R^{N_3 \times N_2} \quad \boldsymbol{b}^3 \in R^{N_3} \quad \boldsymbol{o} \in R^{N_3}$$

$$\boldsymbol{o} = max\left(0, W^3 \, \boldsymbol{h}^2 + \boldsymbol{b}^3\right)$$

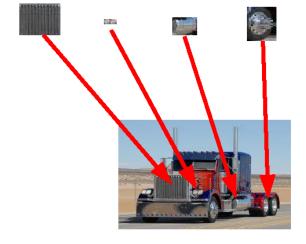
 W^3 3-rd layer weight matrix or weights **b**³ 3-rd layer biases



Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a hierarchical architecture is potentially more efficient because intermediate computations can be re-used. DL architectures are efficient also because they use **distributed representations** which are shared across classes.

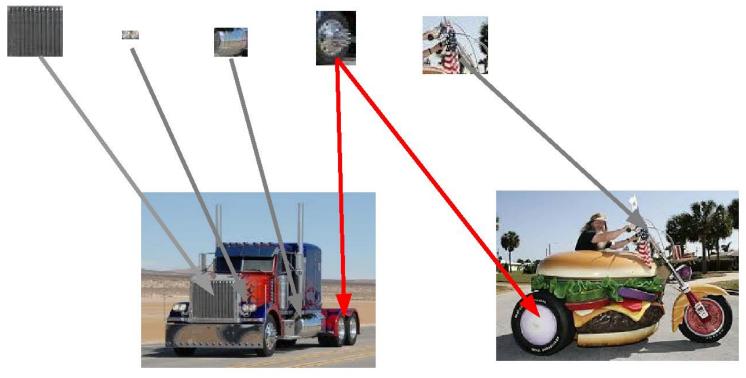
[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck feature

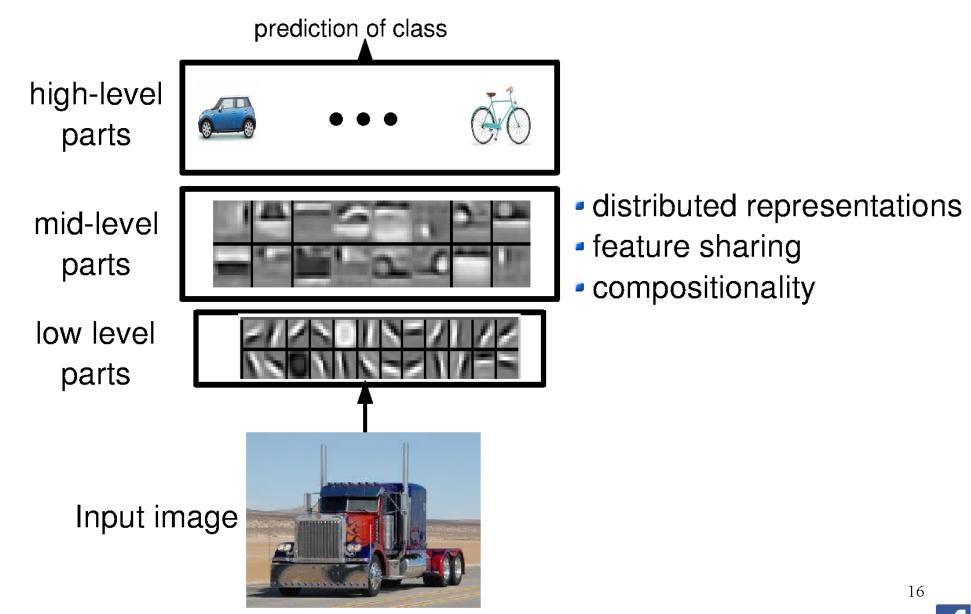


Exponentially more efficient than a 1-of-N representation (a la k-means)

[1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1...] motorbike

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0 ...] truck





Ranzato

Lee et al. "Convolutional DBN's ..." ICML 2009

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

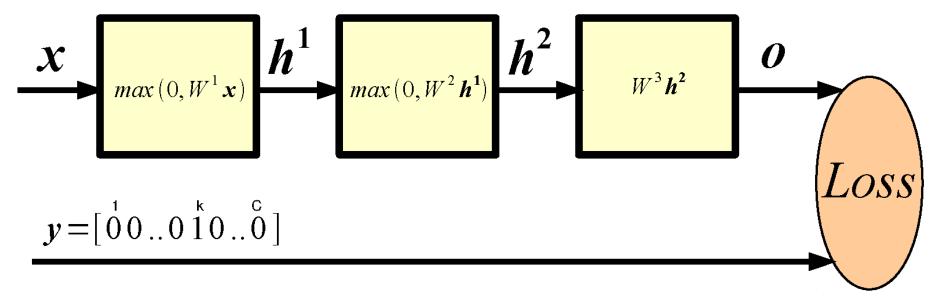
Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned. First, we need to define a measure of quality of the current mapping. Then, we need to define a procedure to adjust the parameters.

Ranzato

How Good is a Network?



Probability of class k given input (softmax):

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_{j=1}^{C} e^{o_j}}$$

(Per-sample) **Loss**; e.g., negative log-likelihood (good for classification of small number of classes):

$$L(\mathbf{x}, y; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j} | \mathbf{x})$$
Ranzato

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = \operatorname{arg\,min}_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = \operatorname{arg\,min}_{\boldsymbol{\theta}} \sum_{n=1}^{P} L(\boldsymbol{x}^n, y^n; \boldsymbol{\theta})$$

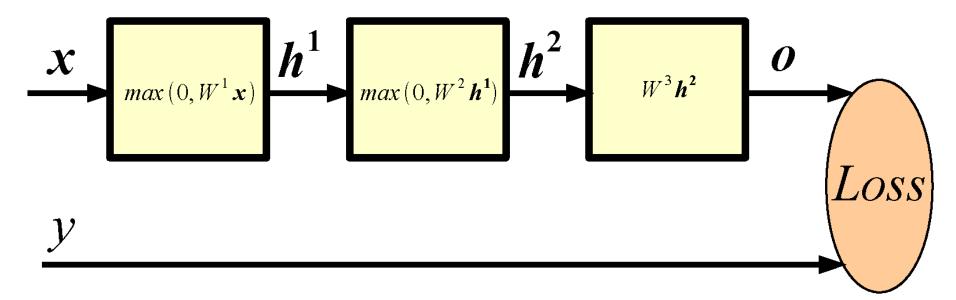
Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. **Backpropagation**! That is the procedure to compute gradients of the loss w.r.t. parameters in a multi-layer neural network.

Rumelhart et al. "Learning internal representations by back-propagating.." Nature 1986

19

Key Idea: Wiggle To Decrease Loss



Let's say we want to decrease the loss by adjusting $W_{i,j}^1$. We could consider a very small $\epsilon = 1e-6$ and compute:

$$L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})$$
$$L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \boldsymbol{\epsilon})$$

Then, update:

$$W_{i,j}^{1} \leftarrow W_{i,j}^{1} + \epsilon \, sgn(L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) - L(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta} \setminus W_{i,j}^{1}, W_{i,j}^{1} + \epsilon)) ^{20}$$
Ranzato f

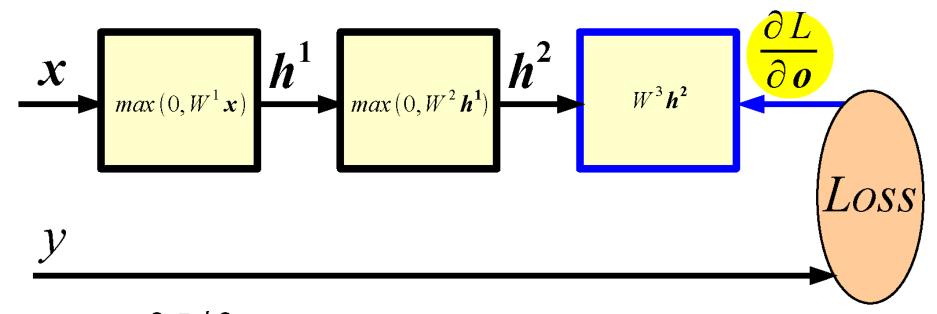
Derivative w.r.t. Input of Softmax

$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_j e^{o_j}}$$

$$L(\mathbf{x}, y; \boldsymbol{\theta}) = -\sum_{j} y_{j} \log p(c_{j} | \mathbf{x}) \qquad \mathbf{y} = [\overset{1}{0} 0 .. 0 \overset{k}{1} 0 .. \overset{c}{0}]$$

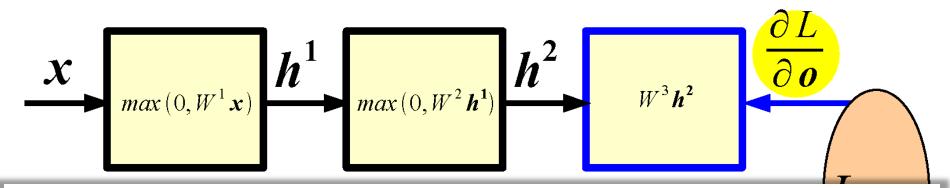
By substituting the fist formula in the second, and taking the derivative w.r.t. o we get:

$$\frac{\partial L}{\partial o} = p(c|\mathbf{x}) - \mathbf{y}$$



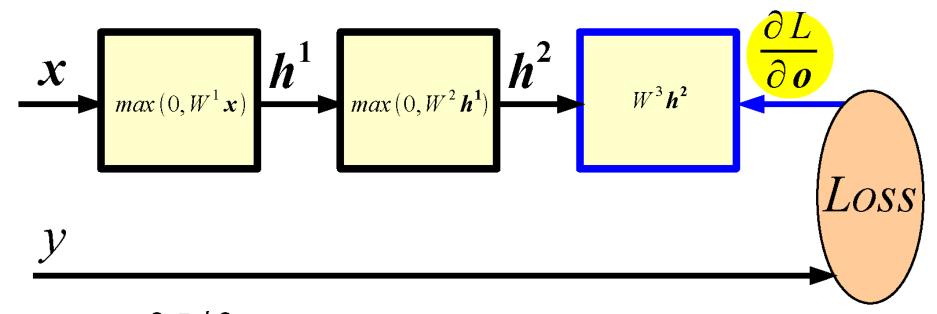
Given $\partial L/\partial o$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial W^3} \qquad \qquad \frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial h^2}$$



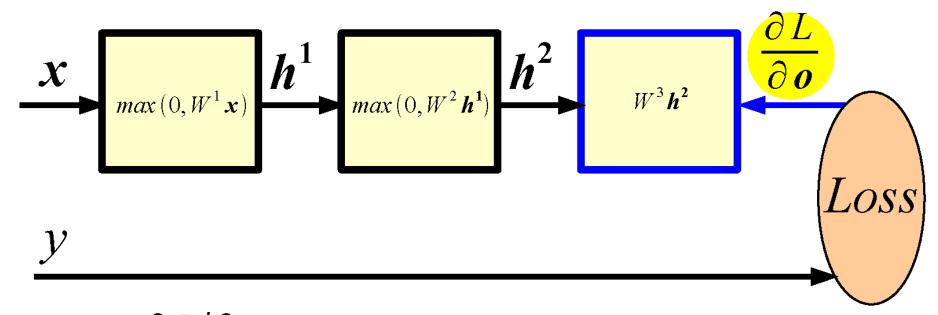
Suppose $\mathbf{f} : \mathbf{R}^n \to \mathbf{R}^m$ is a function such that each of its first-order partial derivatives exist on \mathbf{R}^n . This function takes a point $\mathbf{x} \in \mathbf{R}^n$ as input and produces the vector $\mathbf{f}(\mathbf{x}) \in \mathbf{R}^m$ as output. Then the Jacobian matrix of \mathbf{f} is defined to be an $m \times n$ matrix, denoted by \mathbf{J} , whose (i,j)th entry is $\mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_j}$, or explicitly

$$\mathbf{J} = egin{bmatrix} rac{\partial \mathbf{f}}{\partial x_1} & \cdots & rac{\partial \mathbf{f}}{\partial x_n} \end{bmatrix} = egin{bmatrix}
abla^{\mathrm{T}} f_1 \ dots \
abla^{\mathrm{T}} f_m \end{bmatrix} = egin{bmatrix} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & \ddots & dots \ rac{\partial f_m}{\partial x_1} & \cdots & rac{\partial f_m}{\partial x_n} \end{bmatrix}$$



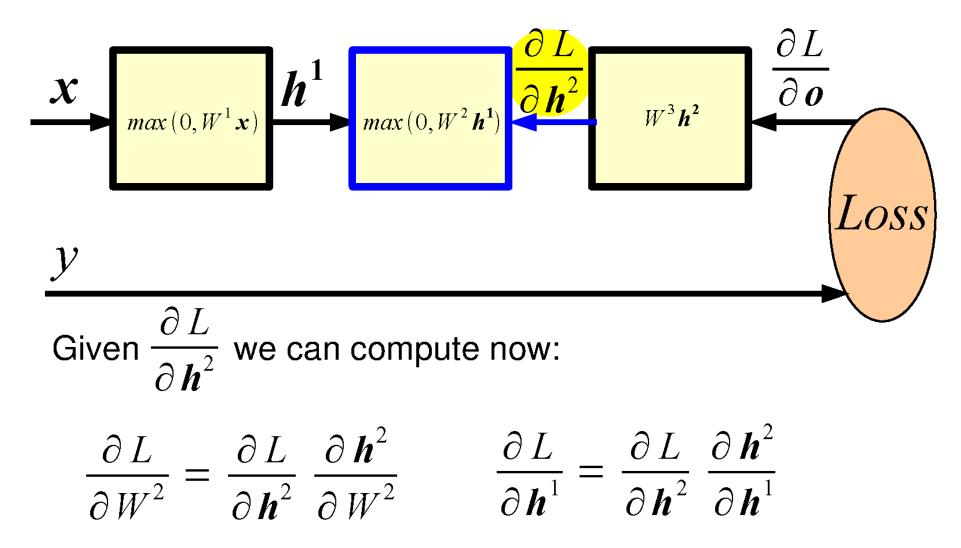
Given $\partial L/\partial o$ and assuming we can easily compute the Jacobian of each module, we have:

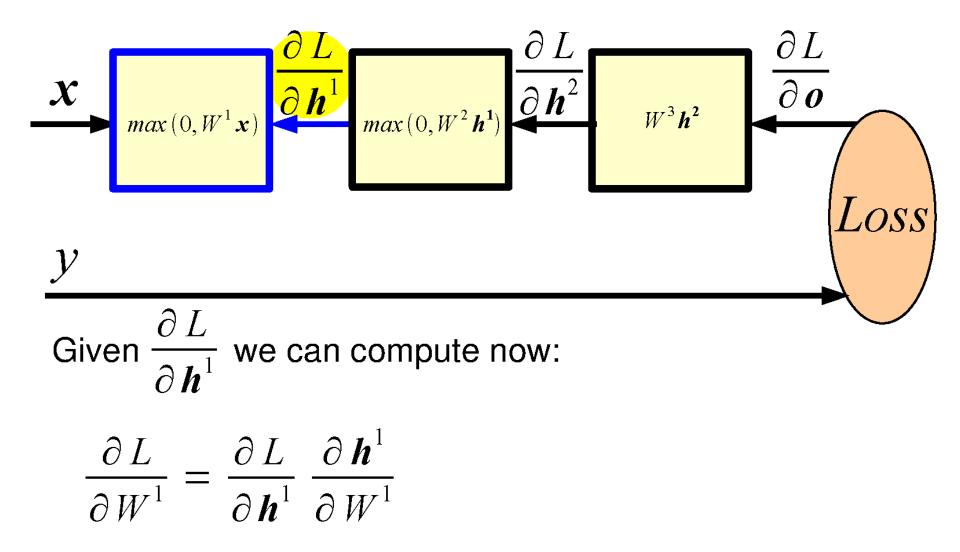
$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial W^3} \qquad \qquad \frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial h^2}$$



Given $\partial L/\partial o$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^{3}} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial W^{3}} \qquad \frac{\partial L}{\partial h^{2}} = \frac{\partial L}{\partial o} \frac{\partial o}{\partial h^{2}}$$
$$\frac{\partial L}{\partial W^{3}} = (p(c|\mathbf{x}) - \mathbf{y}) \mathbf{h}^{2T} \qquad \frac{\partial L}{\partial h^{2}} = W^{3T} (p(c|\mathbf{x}) - \mathbf{y})_{23}$$





Question: Does BPROP work with ReLU layers only? Answer: Nope, any a.e. differentiable transformation works.

Question: Does BPROP work with ReLU layers only? **Answer:** Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input and parameters at every layer).

Optimization

Stochastic Gradient Descent (on mini-batches):

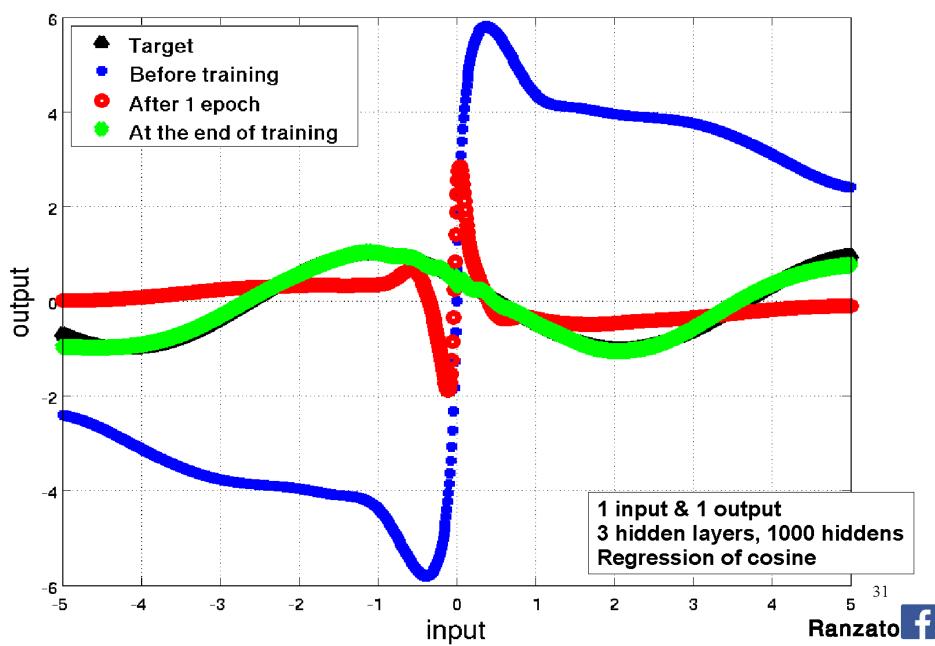
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial L}{\partial \boldsymbol{\theta}}, \eta \in (0, 1)$$

Stochastic Gradient Descent with Momentum:

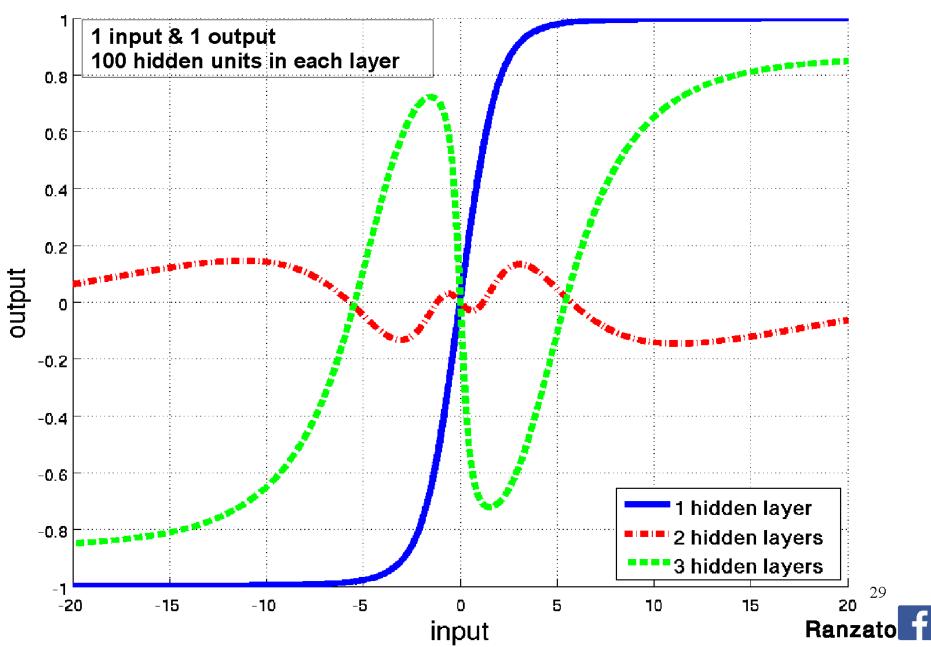
$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\eta} \, \boldsymbol{\Delta}$$
$$\boldsymbol{\Delta} \leftarrow 0.9 \, \boldsymbol{\Delta} + \frac{\partial L}{\partial \boldsymbol{\theta}}$$

Note: there are many other variants...

Toy Example: Synthetic Data



Toy Example: Synthetic Data



Outline

Supervised Neural Networks

Convolutional Neural Networks

Examples

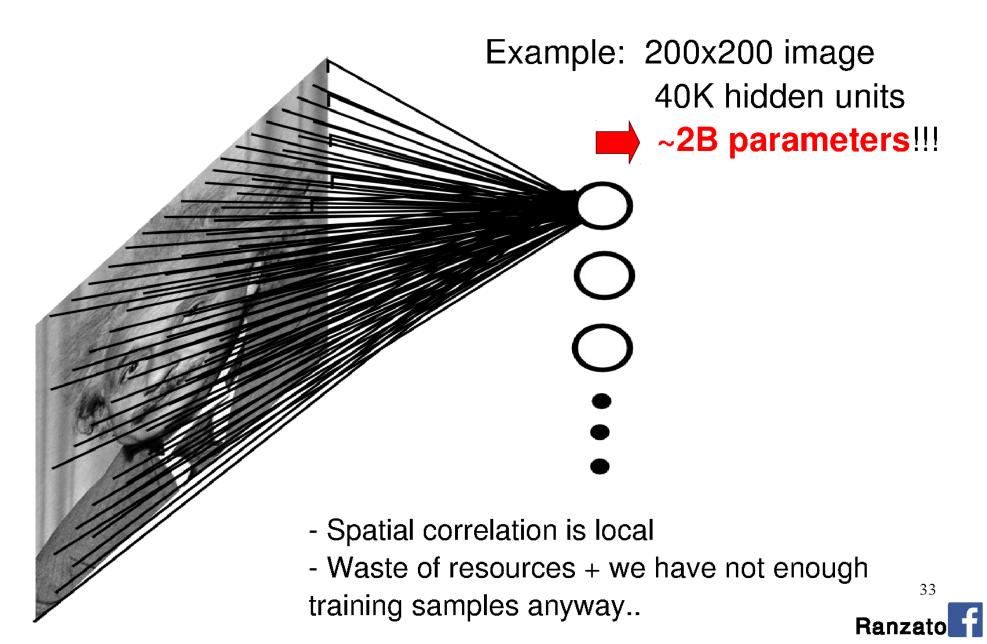
Outline

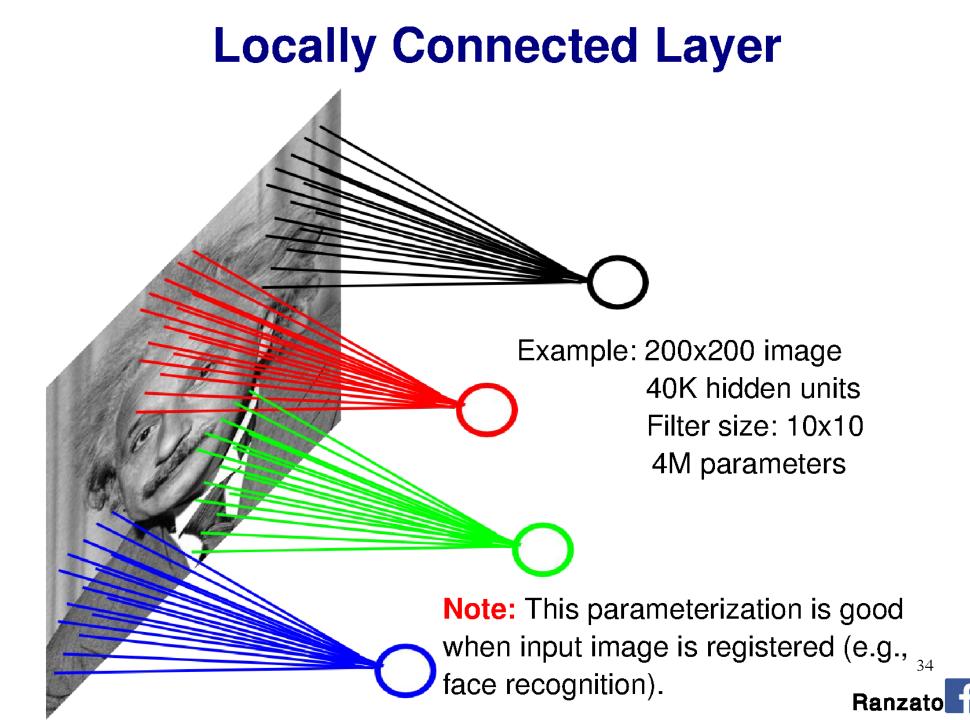
Supervised Neural Networks

Convolutional Neural Networks

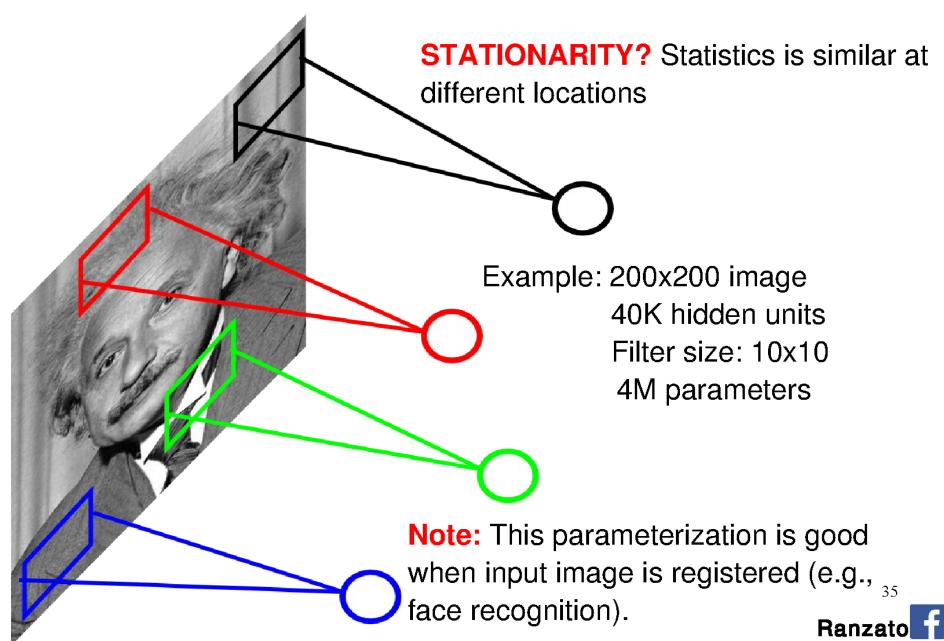
Examples

Fully Connected Layer

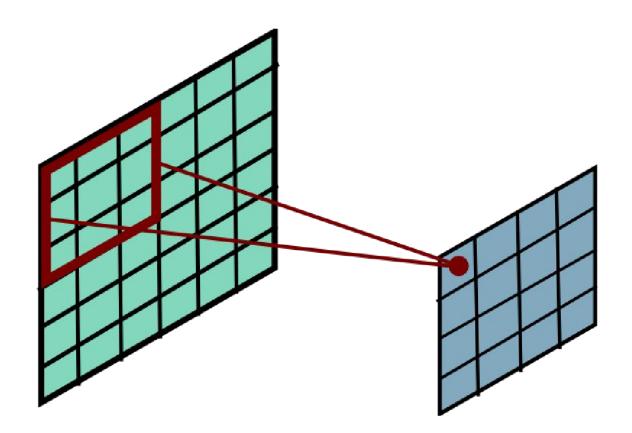


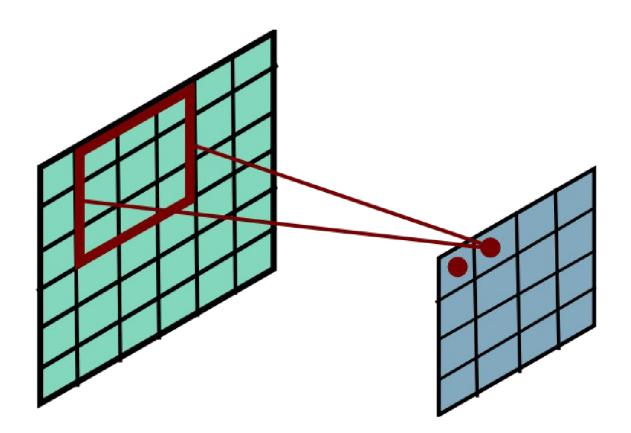


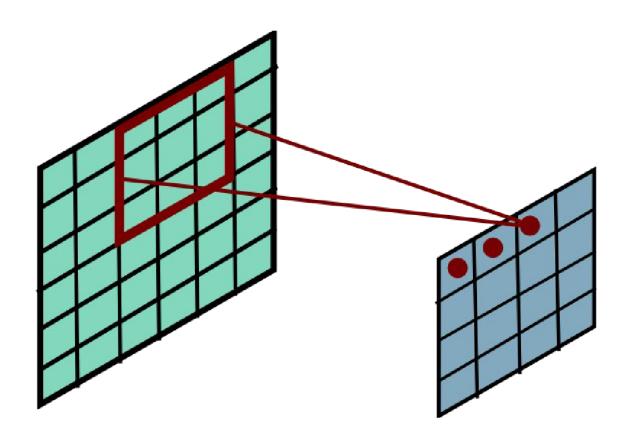
Locally Connected Layer

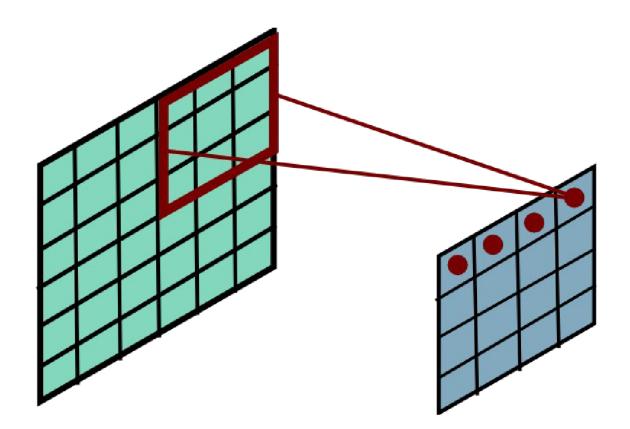


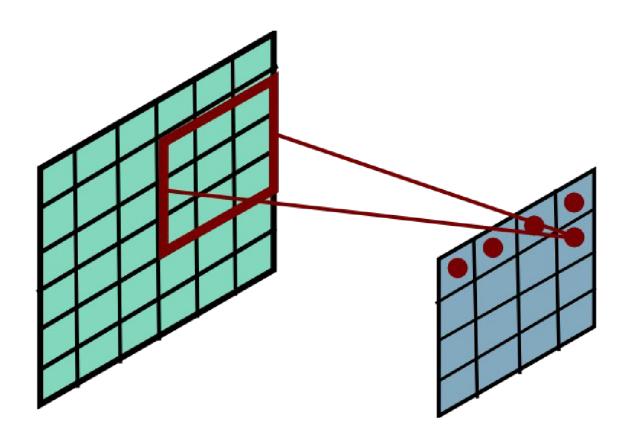
Share the same parameters across different locations (assuming input is stationary): Convolutions with learned kernels

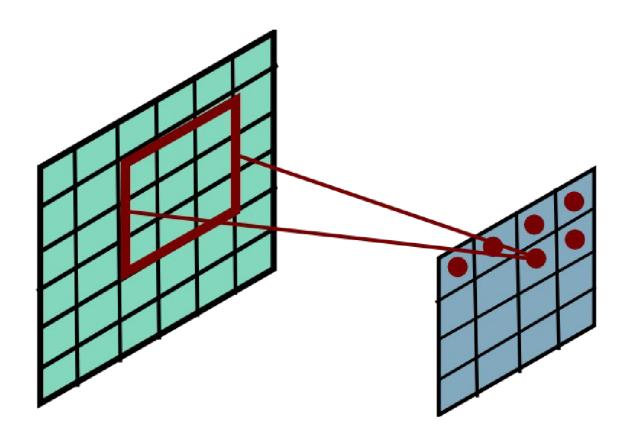


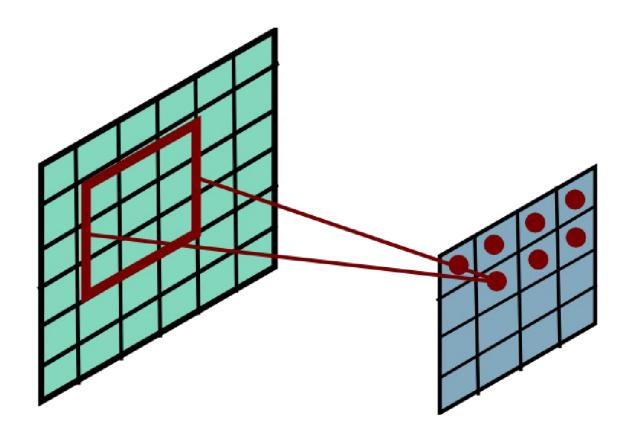


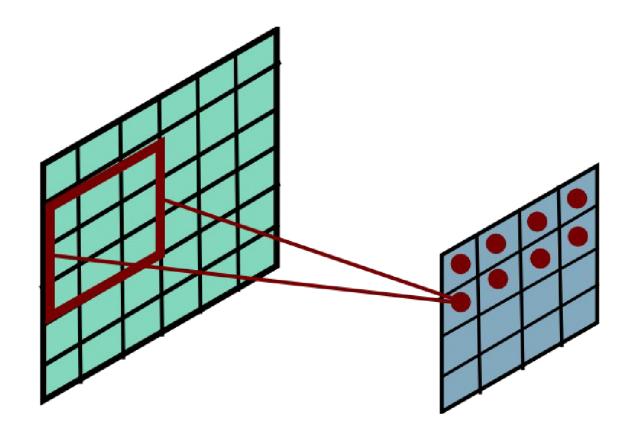


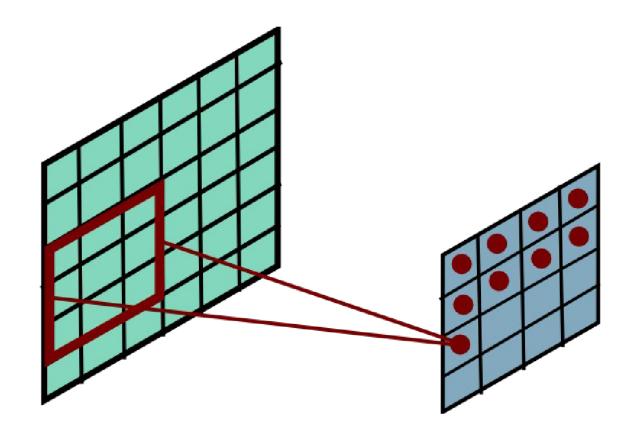


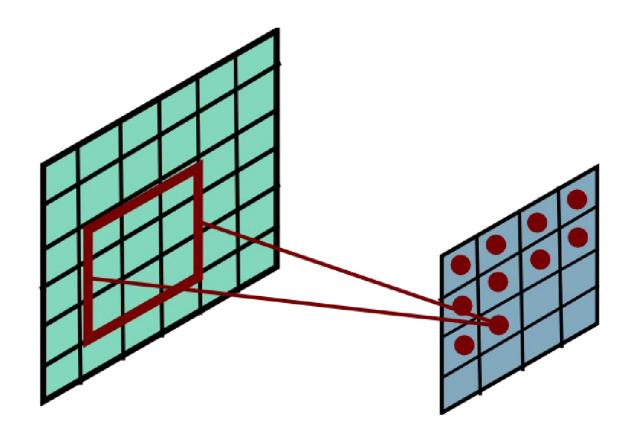


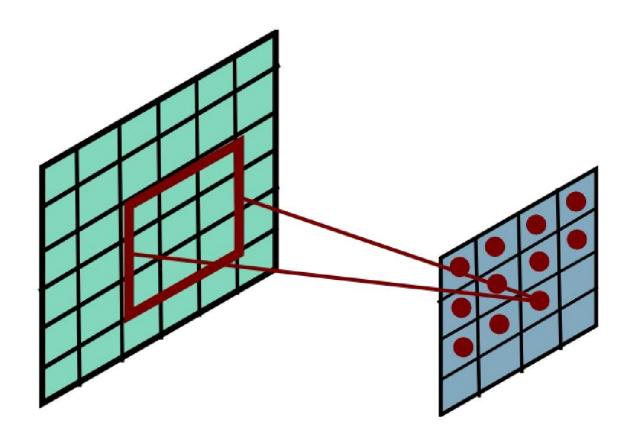


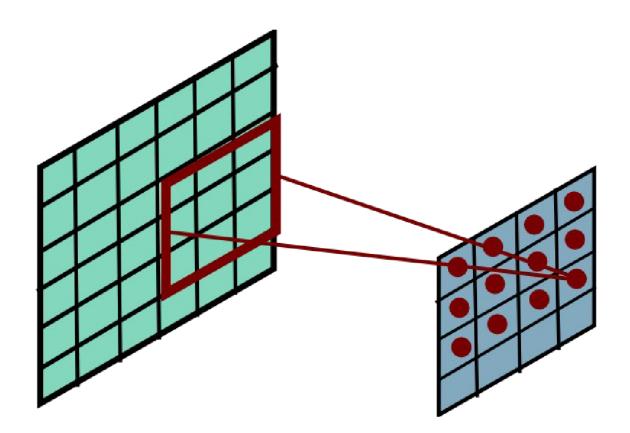


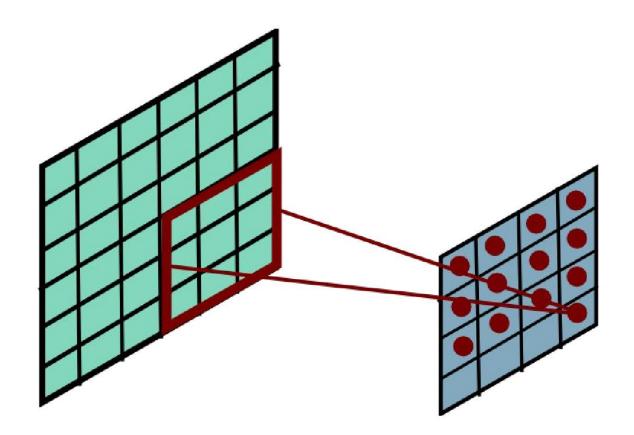


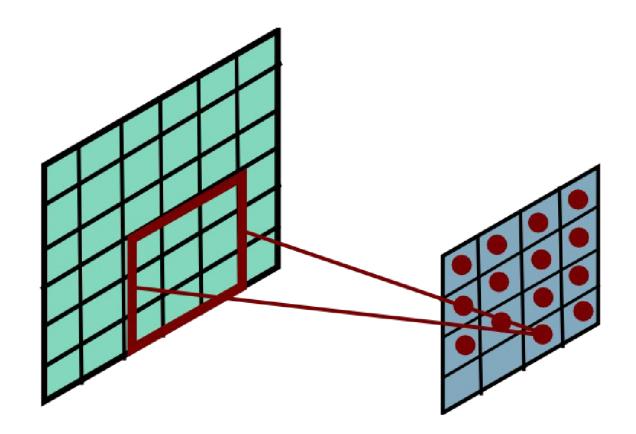


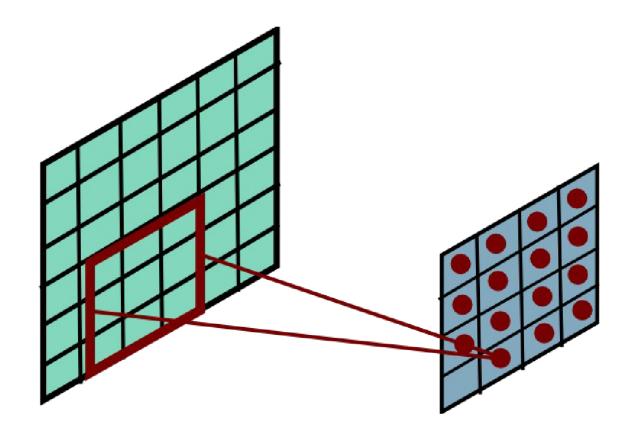


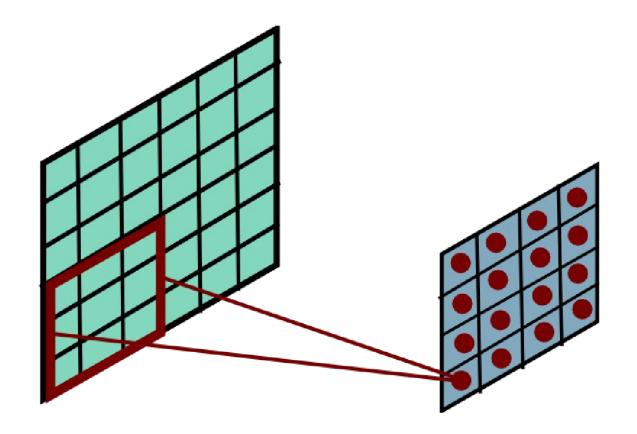


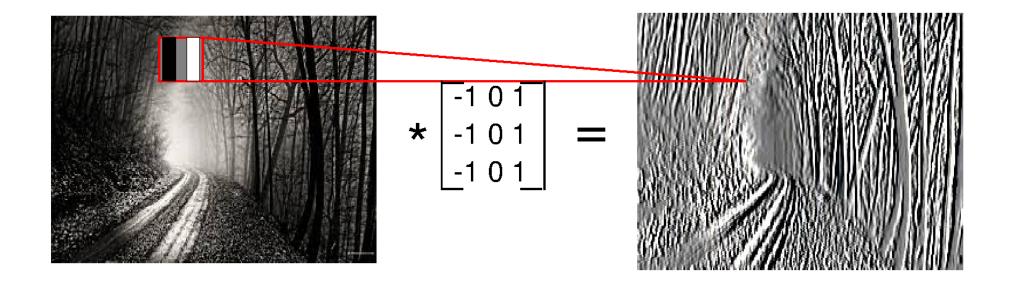


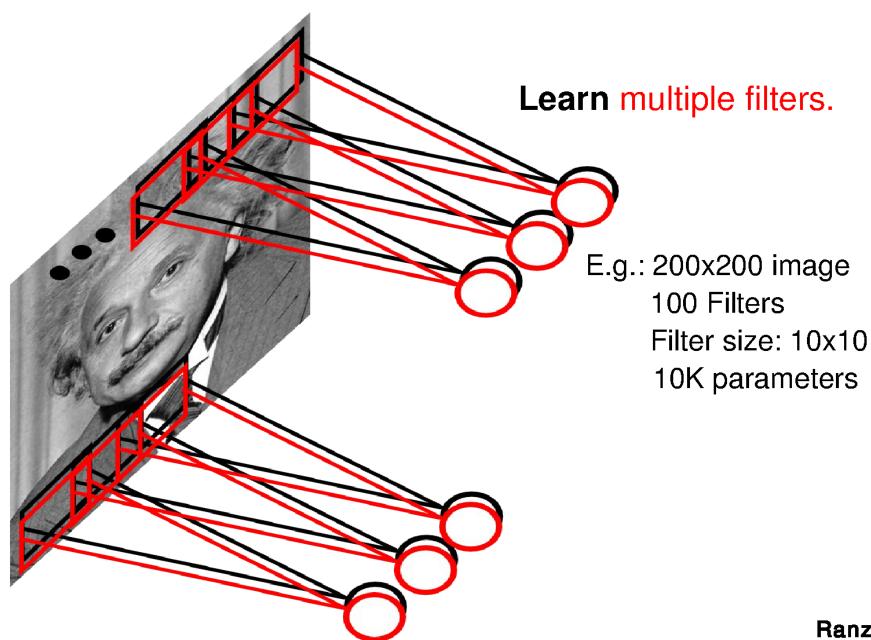


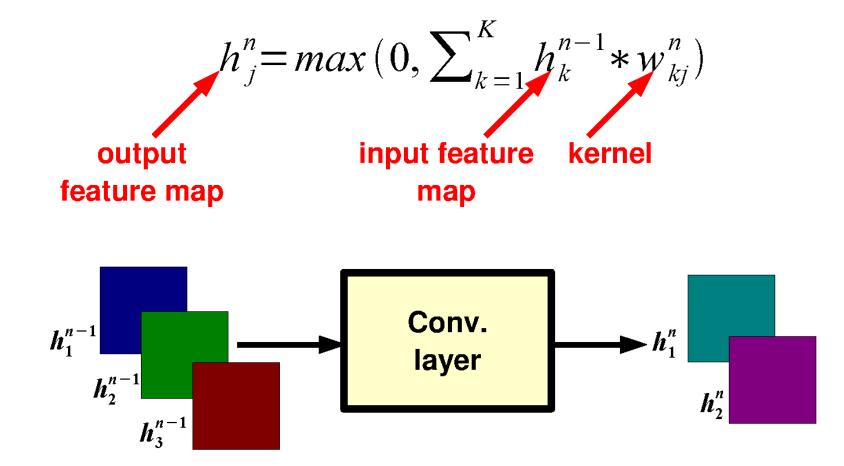


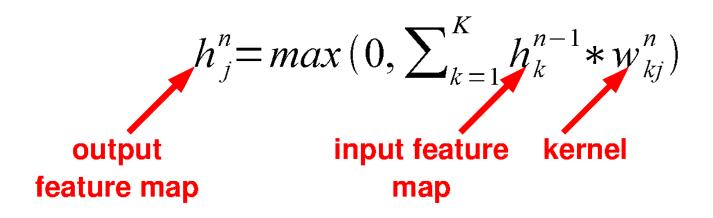


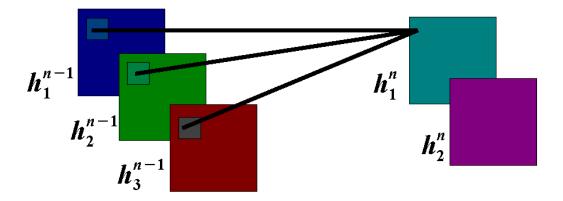


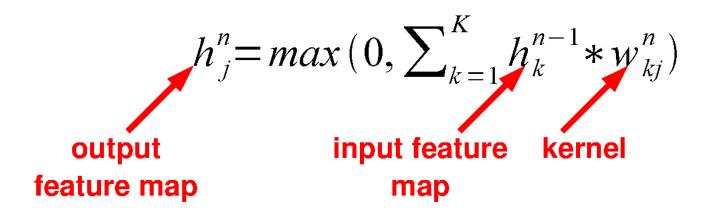


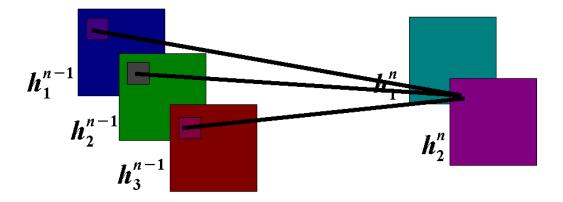












Key Ideas

A standard neural net applied to images:

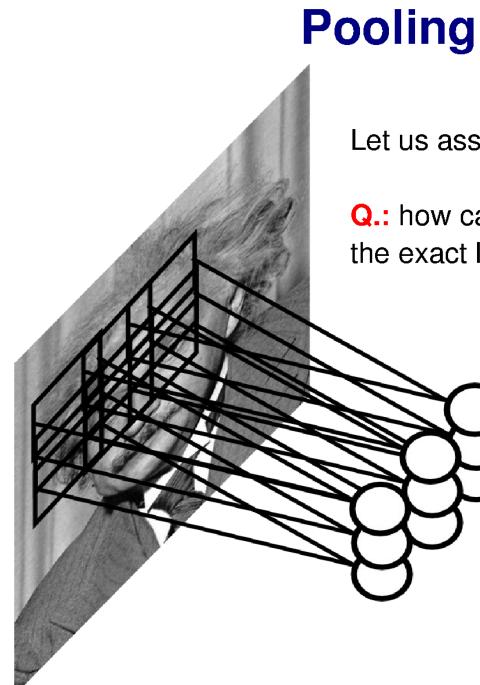
- scales quadratically with the size of the input
- does not leverage stationarity

Solution:

- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: convolutional layer.

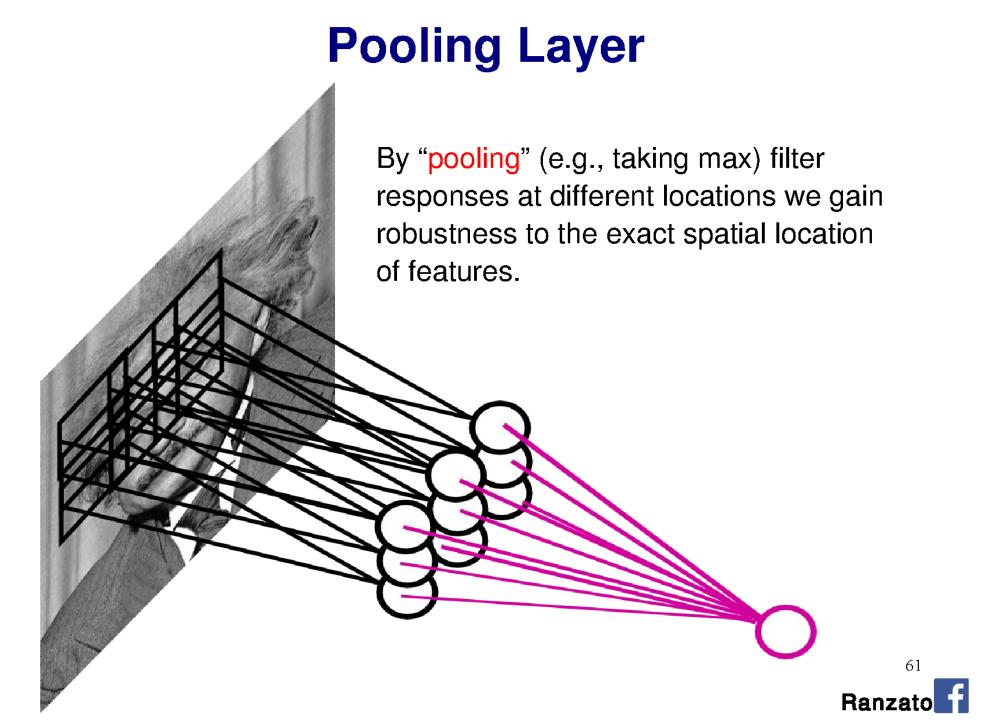
A network with convolutional layers is called **convolutional network**.



Pooling Layer

Let us assume filter is an "eye" detector.

Q.: how can we make the detection robust to the exact location of the eye?



Pooling Layer: Examples

Max-pooling:

$$h_j^n(x, y) = \max_{\overline{x} \in N(x), \overline{y} \in N(y)} h_j^{n-1}(\overline{x}, \overline{y})$$

Average-pooling:

$$h_{j}^{n}(x, y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})$$

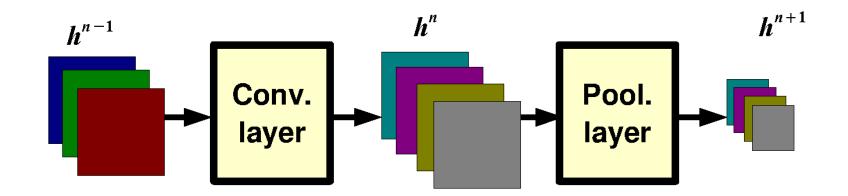
L2-pooling:

$$h_{j}^{n}(x, y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_{j}^{n-1}(\bar{x}, \bar{y})^{2}}$$

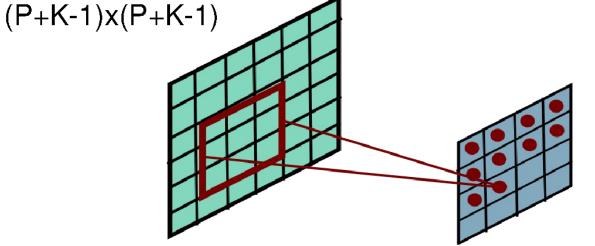
L2-pooling over features:

$$h_{j}^{n}(x, y) = \sqrt{\sum_{k \in N(j)} h_{k}^{n-1}(x, y)^{2}}$$

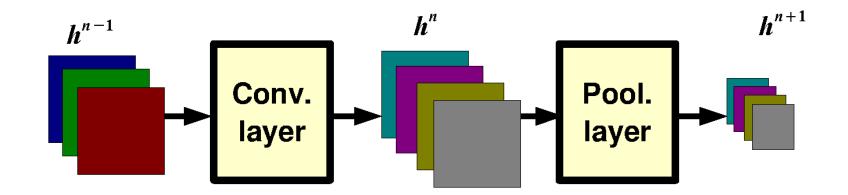
Pooling Layer: Receptive Field Size



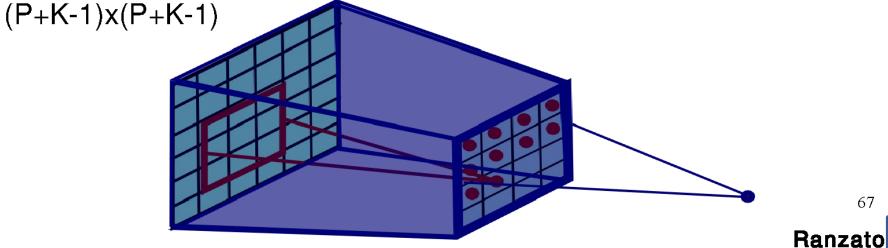
If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:

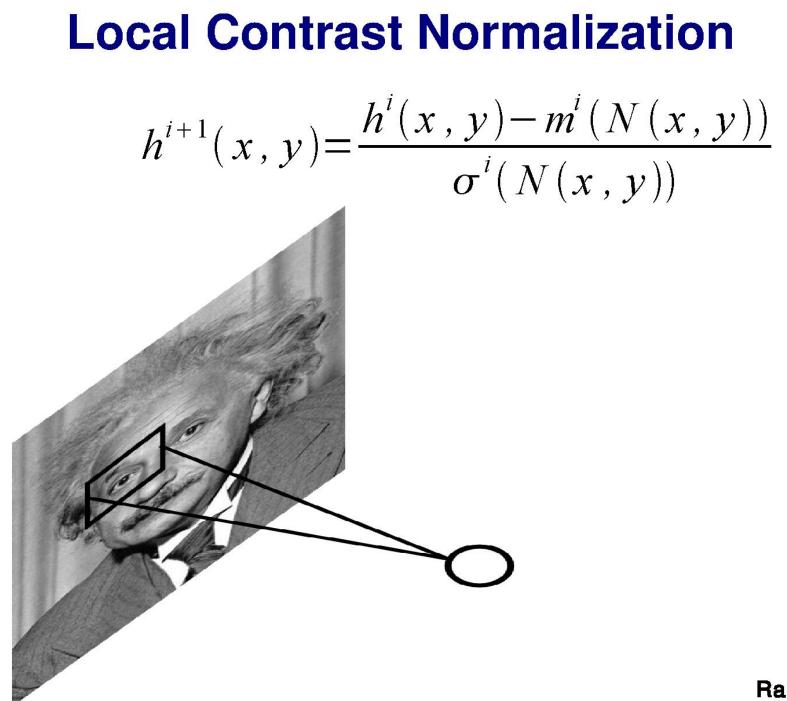


Pooling Layer: Receptive Field Size

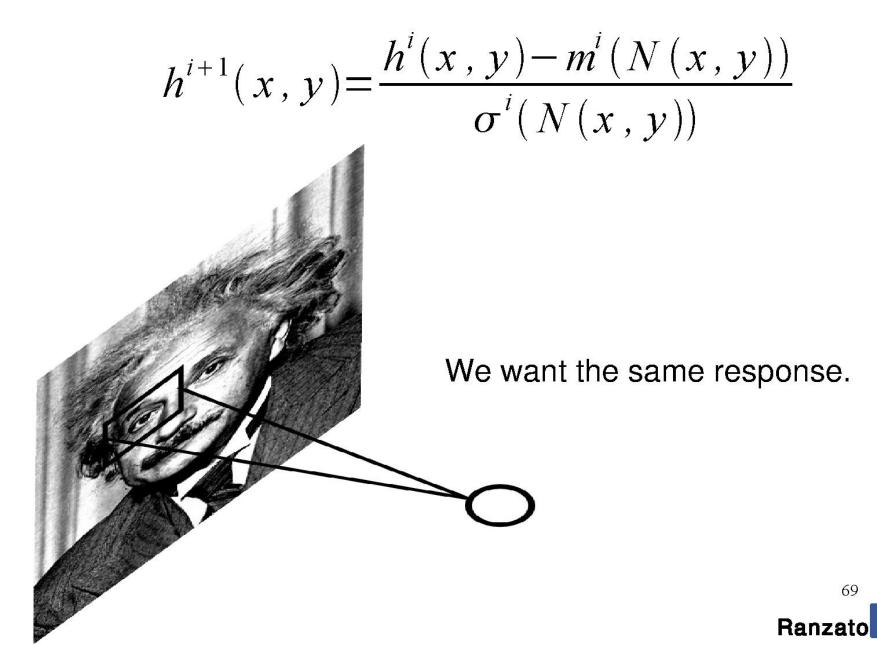


If convolutional filters have size KxK and stride 1, and pooling layer has pools of size PxP, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:





Local Contrast Normalization



Local Contrast Normalization

$$h^{i+1}(x, y) = \frac{h^{i}(x, y) - m^{i}(N(x, y))}{\sigma^{i}(N(x, y))}$$

Performed also across features and in the higher layers..

Effects:

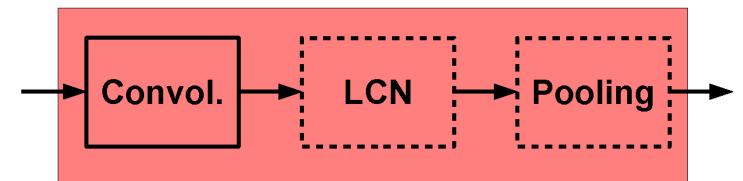
- improves invariance
- improves optimization
- increases sparsity

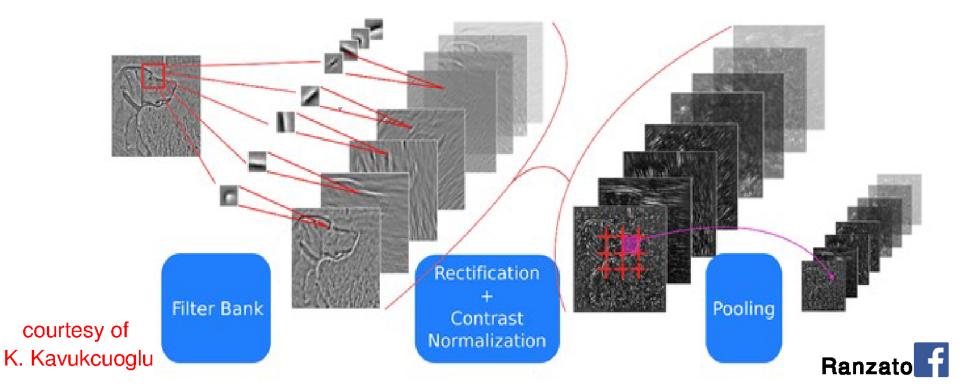
Note: computational cost is negligible w.r.t. conv. layer.

70

ConvNets: Typical Stage

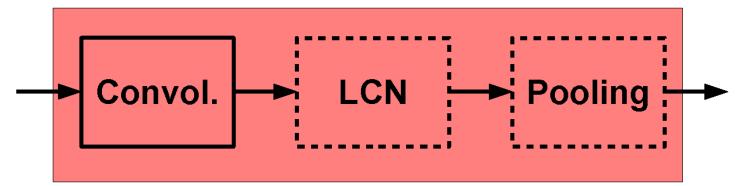
One stage (zoom)





ConvNets: Typical Stage

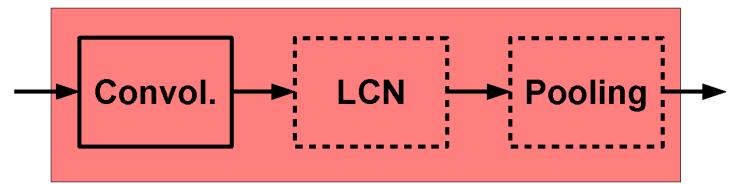
One stage (zoom)

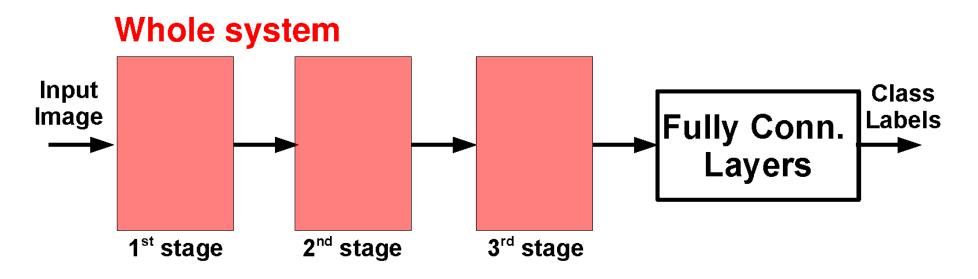


Conceptually similar to: SIFT, HoG, etc.

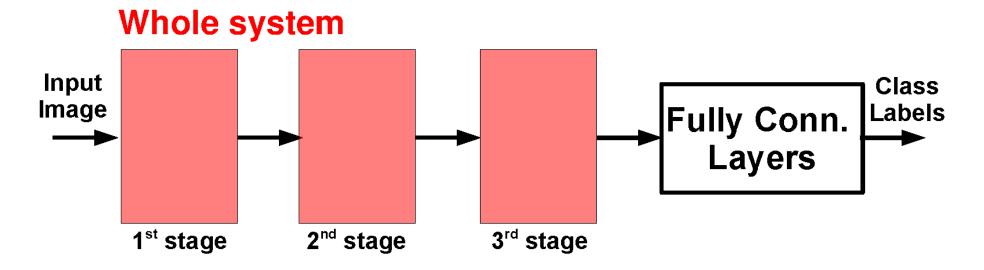
ConvNets: Typical Architecture

One stage (zoom)





ConvNets: Typical Architecture



Conceptually similar to:

SIFT \rightarrow K-Means \rightarrow Pyramid Pooling \rightarrow SVM Lazebnik et al. "...Spatial Pyramid Matching..." CVPR 2006

SIFT \rightarrow Fisher Vect. \rightarrow Pooling \rightarrow SVM Sanchez et al. "Image classification with F.V.: Theory and practice" IJCV 2012

Learning method	Ease of configuration
Neural Network	1
Nearest Neighbor	10
Linear SVM	10
Non-linear SVM	5
Decision Tree or Random Forest	4

Learning method	Ease of configuration	Ease of interpretation
Neural Network	1	1
Nearest Neighbor	10	10
Linear SVM	10	9
Non-linear SVM	5	4
Decision Tree or Random Forest	4	4

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training
Neural Network	1	1	1
Nearest Neighbor	10	10	8
Linear SVM	10	9	10
Non-linear SVM	5	4	2
Decision Tree or Random Forest	4	4	4

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time
Neural Network	1	1	1	6
Nearest Neighbor	10	10	8	4
Linear SVM	10	9	10	10
Non-linear SVM	5	4	2	2
Decision Tree or Random Forest	4	4	4	8

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time	Accuracy w/ lots of data
Neural Network	1	1	1	6	10
Nearest Neighbor	10	10	8	4	7
Linear SVM	10	9	10	10	5
Non-linear SVM	5	4	2	2	8
Decision Tree or Random Forest	4	4	4	8	7

Learning method	Ease of configu		Ease of interpretation	Speed / memory when training	Speed / memory at test time	Accuracy w/ lots of data	
Neural Network	1		1	1	6	10	
Nearest Neighbor	10		10	8	4	7	
Linear SVM	10	Representation design matters					
Non-linear SVM	5	more for all of these					
Decision Tree or Random Forest	4						