
Semantic Segmentation, 

PSPNet, and MSeg

Many slides by John Lambert



Recap
Big Data

– The Unreasonable Effectiveness of Data

– Scene Completion

– Im2gps

– Recognition via Tiny Images

Crowdsourcing

– “Wisdom of the Crowds” / consensus

– Find good annotators through grading

– Pricing affects throughput but not quality

– User interface and instructions matter a lot



Recap: ResNet

• 𝐹 𝑥 is a residual mapping w.r.t. identity

• If identity wereoptimal,  
easy to set weights as 0

• If optimal mapping iscloser to identity,  
easier to find small fluctuations

weight layer

weight layer

relu

𝑥

identity

𝑥

𝐻 𝑥 = 𝐹 𝑥 + 𝑥
relu

𝐹(𝑥)



Recap: ResNet
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Measuring Performance: Intersection over Union

Figure source: http://cs230.stanford.edu/section/8/

Applies to segmentations, as well



Figure source: https://www.pinterest.com/pin/457959855830667185/



Figure source: https://www.gettyimages.com/photos/moss-rock?phrase=moss%20rock&sort=mostpopular



Classification 
Semantic

Segmentation
Object 

Detection

Instance 

Segmentation

CAT GRASS, CAT, 

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial 

extent

Multiple 

Objects

No objects, just 

pixels

Tasks: Semantic Segmentation
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Slide Credit: Justin Johnson and David Fouhey



“tabby cat”

a classification network

Fully Convolutional Networks for Semantic Segmentation.

Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015



becoming fully convolutional

Note: “Fully Convolutional” and “Fully Connected” aren’t the same thing. 

They’re almost opposites, in fact.



becoming fully convolutional



upsampling output



end-to-end, pixels-to-pixels 

network



Convolutions

:

D x H x W

Scores:

C x H x W

argmax

Predictions:

H x W

Design a network as a bunch of 

convolutional layers to  make predictions for 

pixels all at once!

Loss function: Per-Pixel cross-entropy

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Fully Convolutional Network

Input:

3 x H x W
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Slide Credit: Justin Johnson and David Fouhey

Conv Conv Conv Conv



Conv Conv Conv Conv argmax

Design a network as a bunch of 

convolutional layers to  make predictions for 

pixels all at once!

Problem #1: Effective 

receptive field size is linear 

in number of conv layers: 

With L 3x3 conv layers, 

receptive field is 1+2L

Fully Convolutional Network

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Input:

3 x H x W
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Slide Credit: Justin Johnson and David Fouhey



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Dilated Convolution

Figure source: https://github.com/vdumoulin/conv_arithmetic



Input:

3 x H x W

Conv Conv Conv Conv argmax

Design a network as a bunch of 

convolutional layers to  make predictions for 

pixels all at once!

Problem #1: Effective 

receptive field size is linear 

in number of conv layers: 

With L 3x3 conv layers, 

receptive field is 1+2L

Problem #2: Convolution 

on high res images is 

expensive!

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Fully Convolutional Network
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Slide Credit: Justin Johnson and David Fouhey



Design network as a bunch of convolutional layers, 

with downsampling and upsampling inside the 

network!

High-res:

D1 x H/2 x W/2
High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, 

CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Prediction

s:

H x W

Input:

3 x H x W

Fully Convolutional Network

Downsampling:

Pooling, strided

convolution

Upsampling:

???
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In-Network Upsampling: “Unpooling”
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Upsampling: Bilinear Interpolation

Input: C x 2 x 2 Output: C x 4 x 4
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Use two closest neighbors in x and y to 

construct linear approximations
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Upsampling: Transpose Convolution

Sometimes called 

“Deconvolution” but that 

is a problematic name

I like the term 

“broadcast” convolution

In this case, the filter is 

4x4 and the outer 

boundary of the output 

is unused

A guide to convolution arithmetic for deep learning

Vincent Dumoulin, Francesco Visin



Upsampling: Transpose Convolution

Sometimes called 

“Deconvolution” but that 

is a problematic name

I like the term 

“broadcast” convolution



Design network as a bunch of convolutional layers, 

with downsampling and upsampling inside the 

network!

High-res:

D1 x H/2 x W/2
High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, 

CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Prediction

s:

H x W

Input:

3 x H x W

Fully Convolutional Network

Downsampling:

Pooling, strided

convolution

Upsampling:

???
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Slide Credit: Justin Johnson and David Fouhey



PSPNet



PSPNet uses a ResNet backbone

● 50, 101, or 152 Layers

● 50 Layers is already quite deep!





Pyramid Scene Parsing Network

37“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Framework overview of PSPNet

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

38“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Regular feature extractor

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

39“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Context modeling: pyramid pooling module

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

40“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Convolutional classifier for pixel-wise prediction

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Pooling Module

41PPM: spatial illustration
Slide Credit: Hengshuang Zhao and Jiaya Jia



ImageNet Scene Parsing Challenge
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detailed performance analysis consistent improvement over network depth

PSPNet: 1st place among totally 75 submissions worldwide.

Slide Credit: Hengshuang Zhao and Jiaya Jia



Result on PASCAL VOC 2012

43

Slide Credit: Hengshuang Zhao and Jiaya Jia



Result on Cityscapes
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Slide Credit: Hengshuang Zhao and Jiaya Jia



46



PSPNet paper



MSeg: A Composite Dataset for 
Multi-Domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener, 

James Hays, Vladlen Koltun



https://www.youtube.com/watch?v=8wqNX7_4vAE



Which dataset to train on?

Driving: Cityscapes, Mapillary Vistas, CamVid, KITTI, VIPER, Indian Driving Dataset, 

Berkeley Driving Dataset, WildDash, …

Indoors: NYU, SUN RGBD, ScanNet, InteriorNet, ...

Multi-domain: COCO, ADE20K, PASCAL VOC, ...

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 
2020



Methodology:
Dataset mixing and zero-shot transfer

● Perform a training/test split at the level of datasets

● Train on many diverse datasets

● Test on datasets that were never seen during training

● Zero-shot cross-dataset transfer is a proxy for generality and robustness in 

the real world





Class Frequency MSeg proportion per dataset

…







Generality and Robustness



Accuracy on MSeg training datasets



Accuracy on MSeg test datasets







“Bird’s eye” Semantic Segmentation for Robots

TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation

Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqi Li, Nolan Wagener, Matthew Schmittle, JoonHo Lee, 

Wentao Yuan, Zoey Chen, Samuel Deng, Greg Okopal, Dieter Fox, Byron Boots, Amirreza Shaban
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