Structured Predictions with Deep Learning

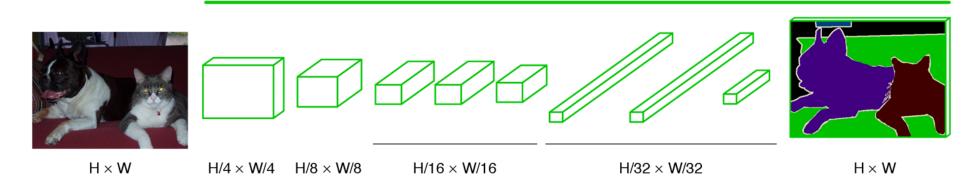
James Hays

Outline – More complex outputs from deep networks

- Image Output (e.g. colorization, semantic segmentation, super-resolution, stylization, depth estimation...)
- Attributes
- Text Captions
- Semantic Keypoints
- Object Detection
 - Bounding boxes
 - Keypoint locations
 - Segmentation masks
 - 3D cuboids
 - 3D object coordinates

end-to-end, pixels-to-pixels network

convolution



What if we want other types of outputs?

• Easy*: Predict any fixed dimensional output

Scribbler: Controlling Deep Image Synthesis with Sketch and Color.
Sangkloy, Lu, Chen Yu, and Hays. CVPR 2017

^{*}easy to design an architecture. Not necessarily easy to get working well.

What if we want other types of outputs?

• Easy: Predict a fixed number of labels. For *classification*, there will be just one best answer, but for other labels like *attributes*, dozens could be appropriate for an image.

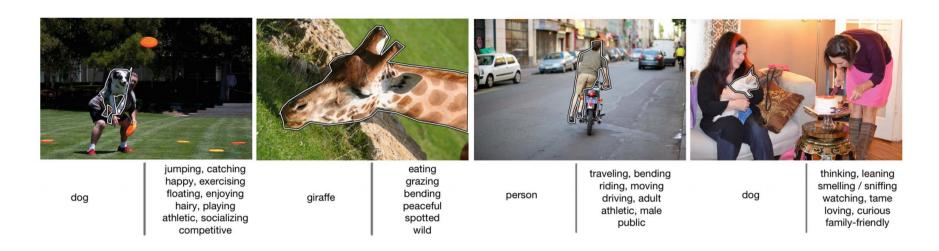


Fig. 1. Examples from COCO Attributes. In the figure above, images from the COCO dataset are shown with one object outlined in white. Under the image, the COCO object label is listed on the left, and the COCO Attribute labels are listed on the right.

What if we want other types of outputs?

- Hard: Outputs with varying dimensionality or cardinality
 - A natural language image caption
 - An arbitrary number of human keypoints (17 points each)
 - An arbitrary number of bounding boxes (4 parameters each) or segmentation masks (hundreds of parameters each)
- Today we will examine influential methods for keypoint prediction and object detection
 - The keypoint detection approach is "bottom up" and the object detection approach is "top down".

Realtime Multi-Person Pose Estimation using Part Affinity Fields

Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh Carnegie Mellon University

CVPR 2017

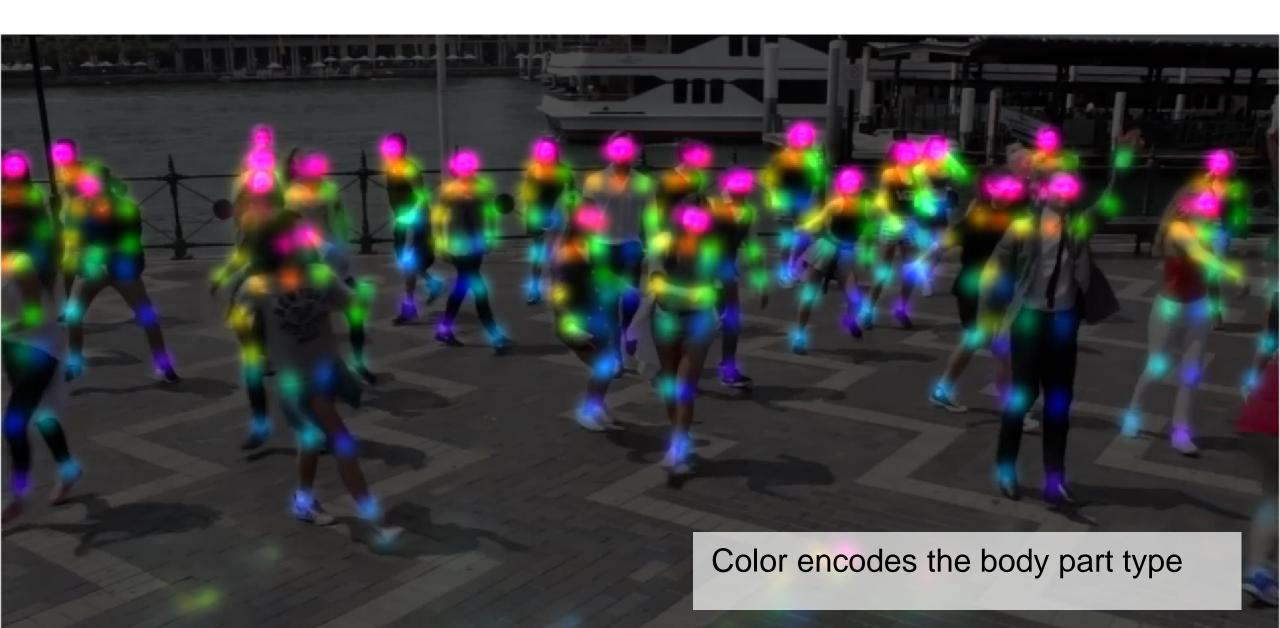
Human Pose Estimation

Human Pose Estimation

Single-Person Pose Estimation

Single-Person Pose Estimation

Multi-Person Pose Estimation



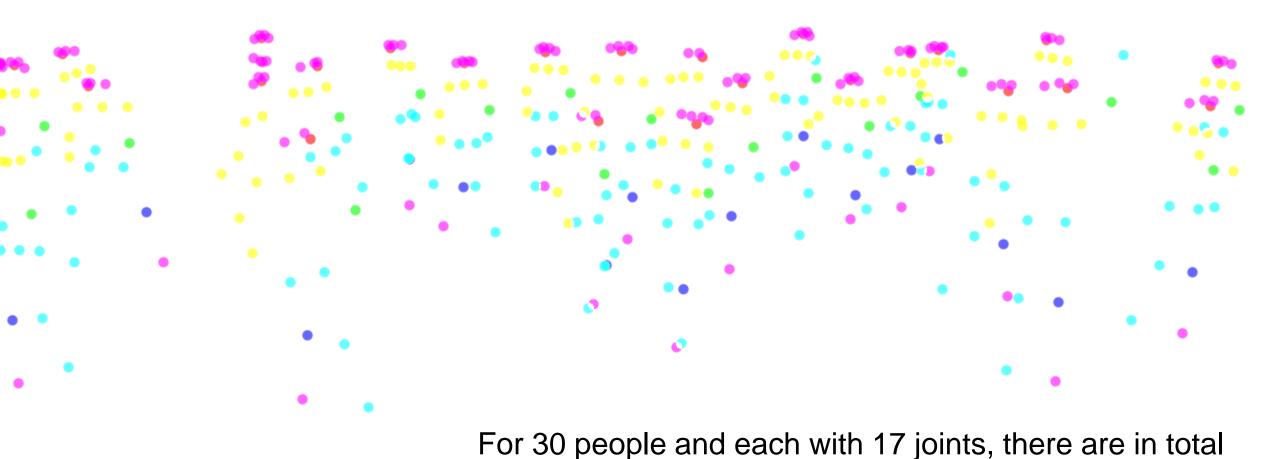
Multi-Person Pose Estimation

Major Challenge: Part-to-Person Association



Major Challenge: Part-to-Person Association

Major Challenge: Part-to-Person Association



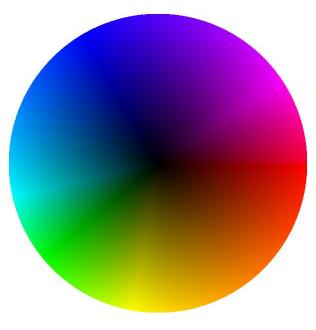
1.3 x 10⁵ pair-wise connection cost, NP-hard optimization

Unexpected Conclusion

Bottom-up

An **efficient** representation is **discriminative** enough that a greedy parse is sufficient to produce high-quality results

Novelty: Part Affinity Fields for Parts Association

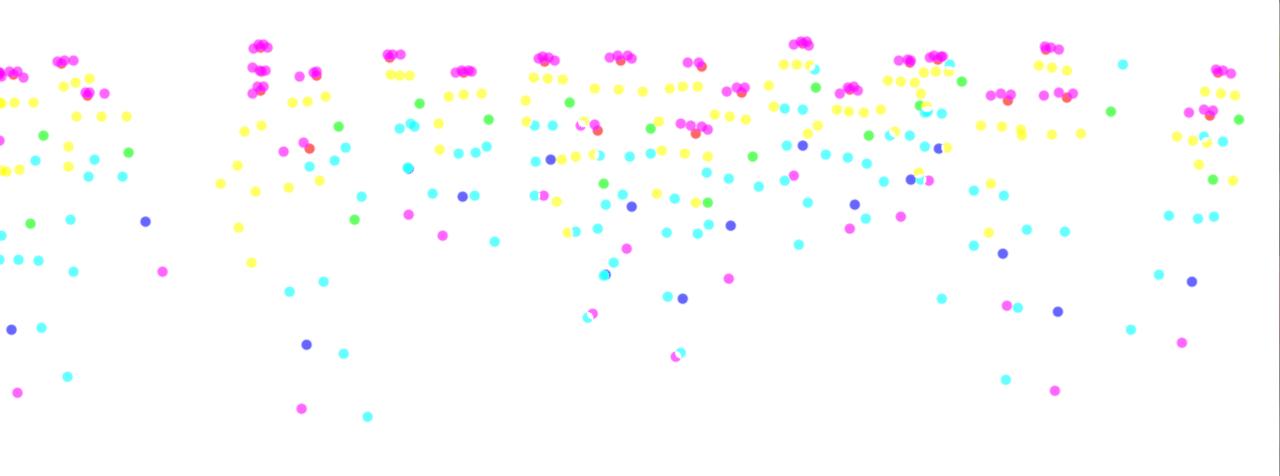


Part Affinity Field between right elbow and wrist

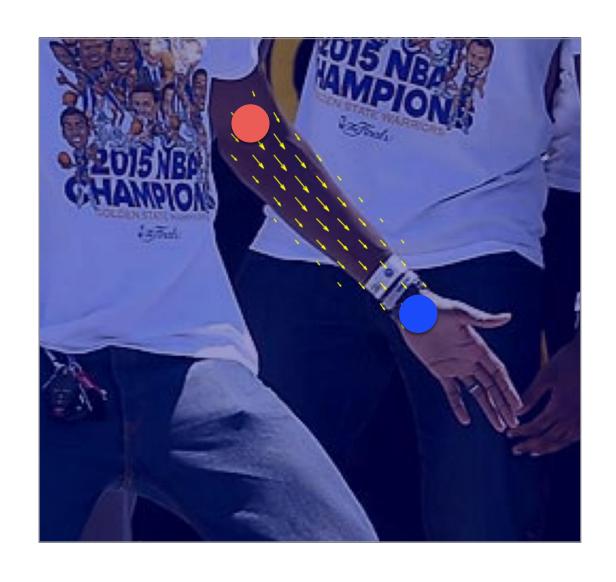
Novelty: Part Affinity Fields for Parts Association

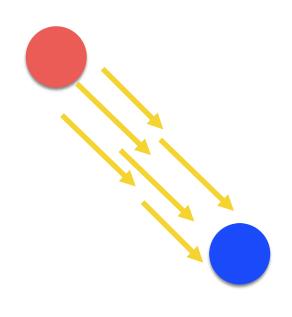
Part Affinity Field between right elbow and wrist

Novelty: Part Affinity Fields for Parts Association



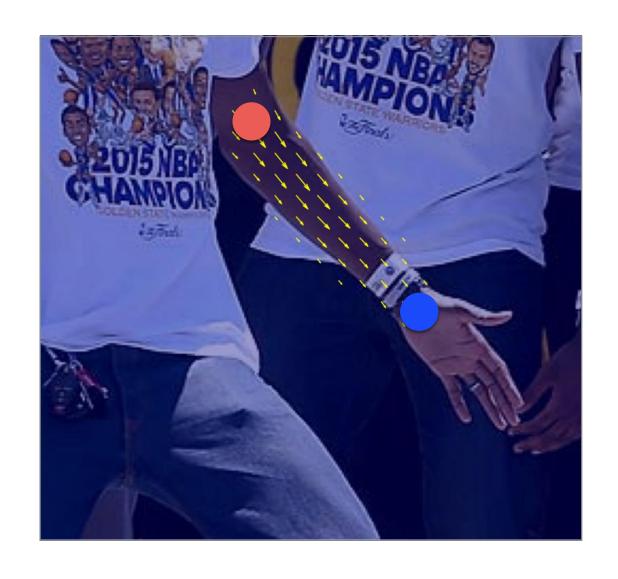
Part Affinity Fields for Part-to-Part Association

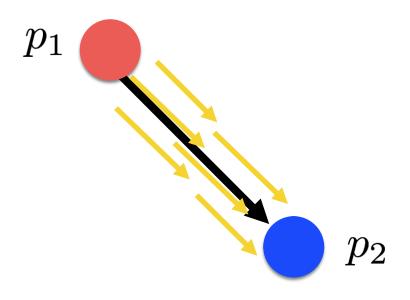




- Direction vector in the PAFs
- Part 1
- Part 2

Part Affinity Fields for Part-to-Part Association



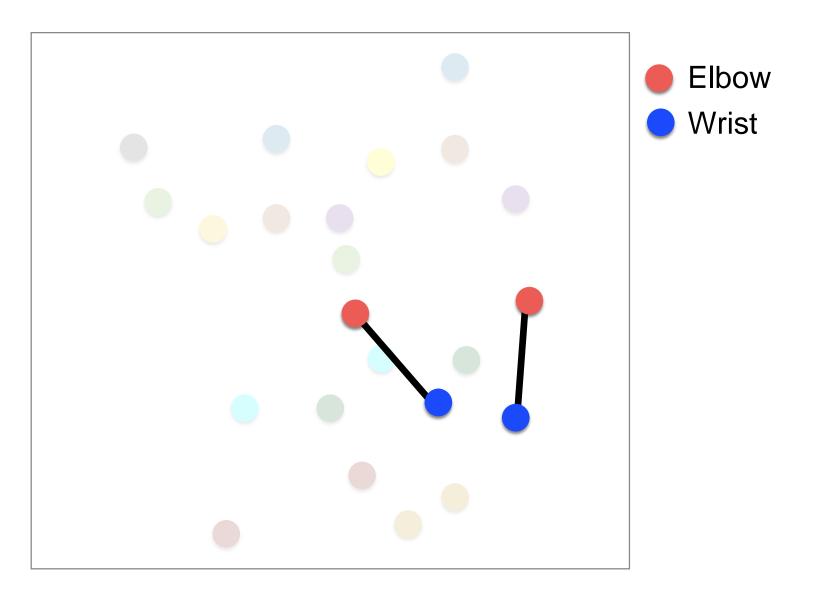


Affinity score between
$$p_1$$
 and p_2 = sum($\vec{\mathbf{v}} \cdot p_1 \vec{p}_2$)

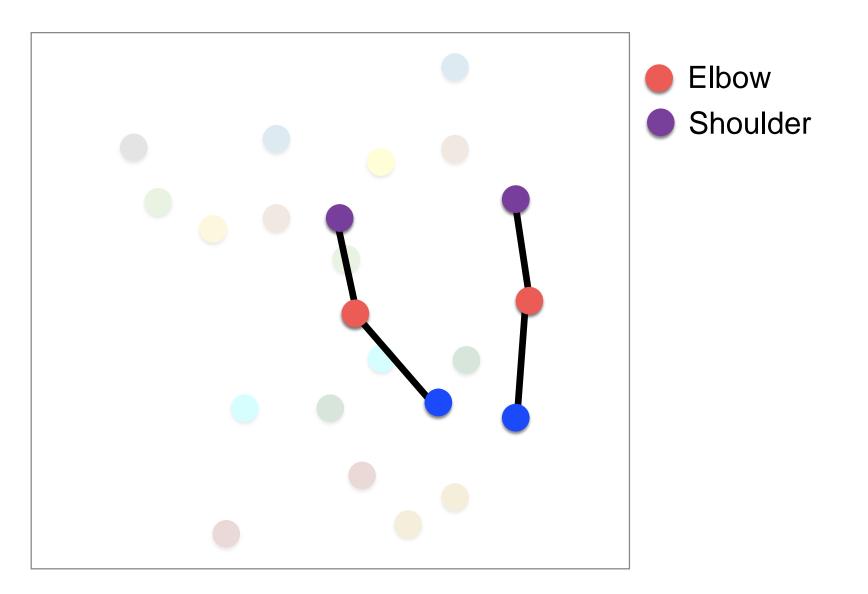
Part Association for Full-body Pose

- Elbow
- Wrist
- Shoulder

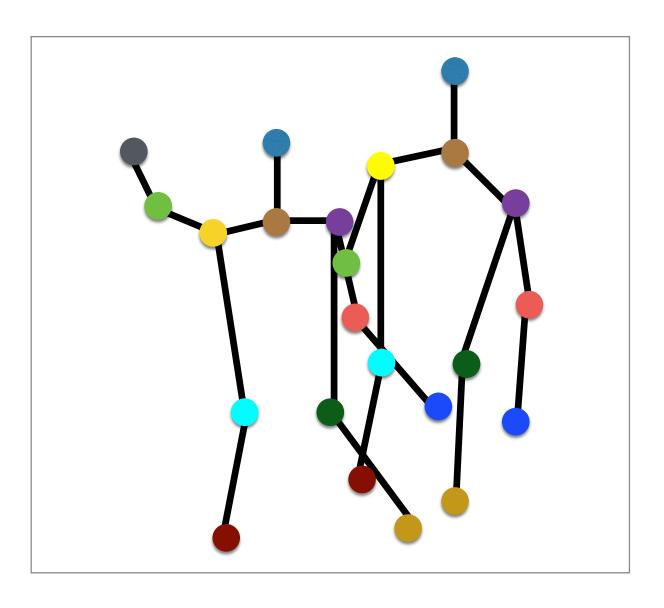
Greedy Algorithm for Body Parts Association



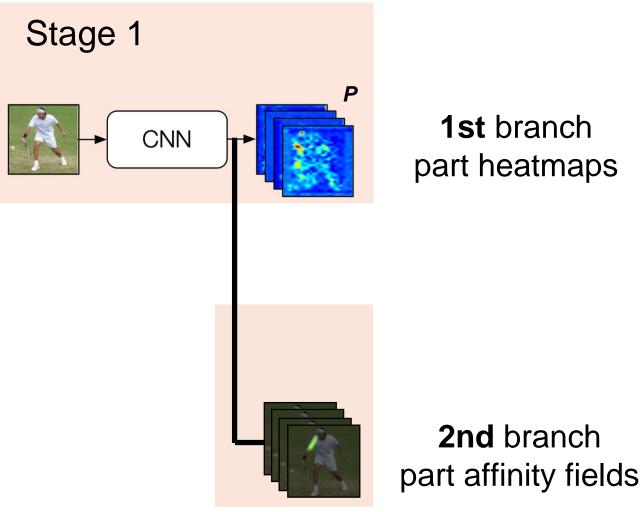
Greedy Algorithm for Body Parts Association



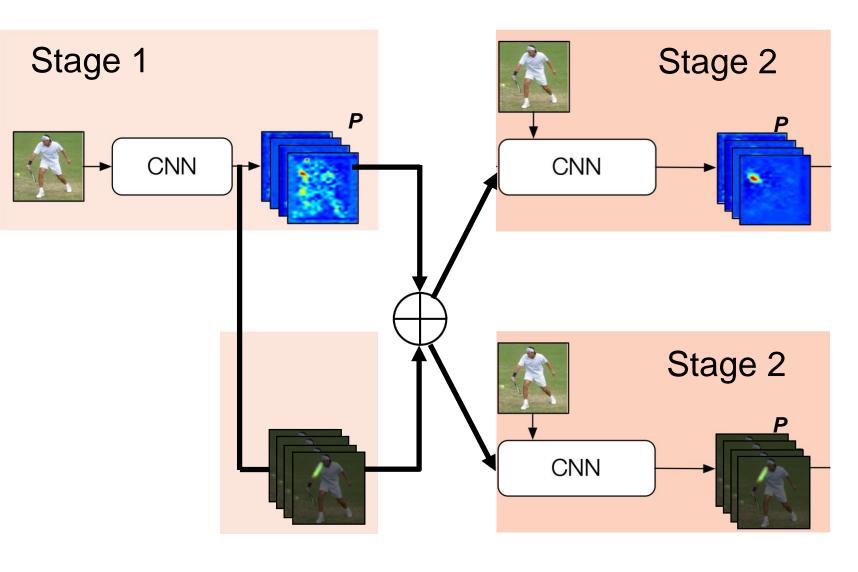
Greedy Algorithm for Body Parts Association



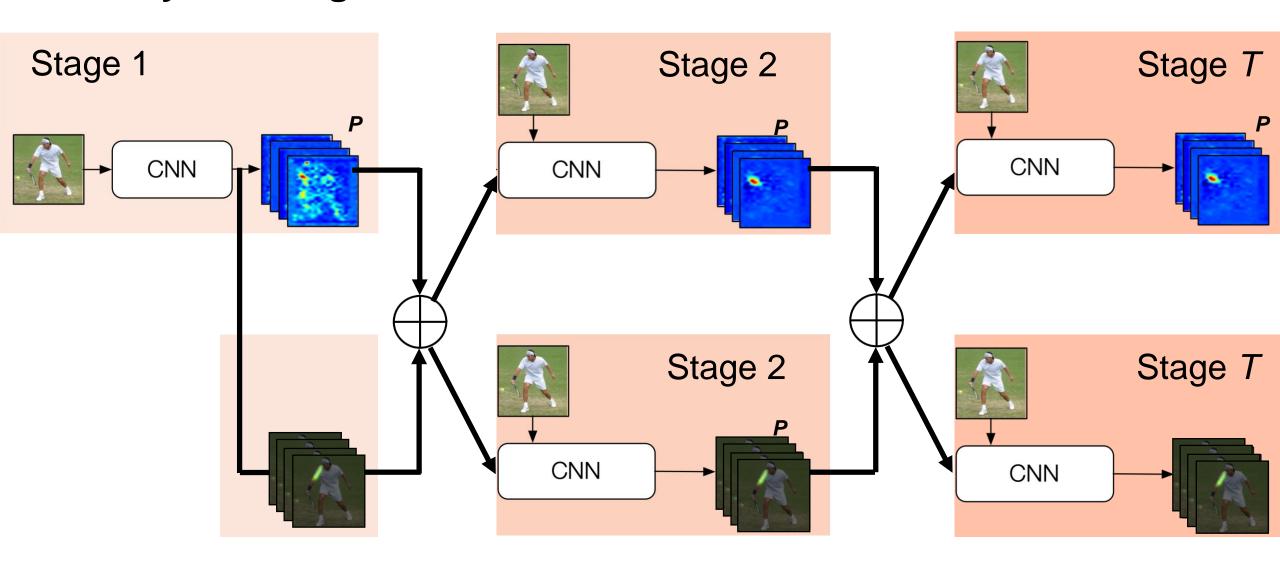
Jointly Learning Parts Detection and Parts Association



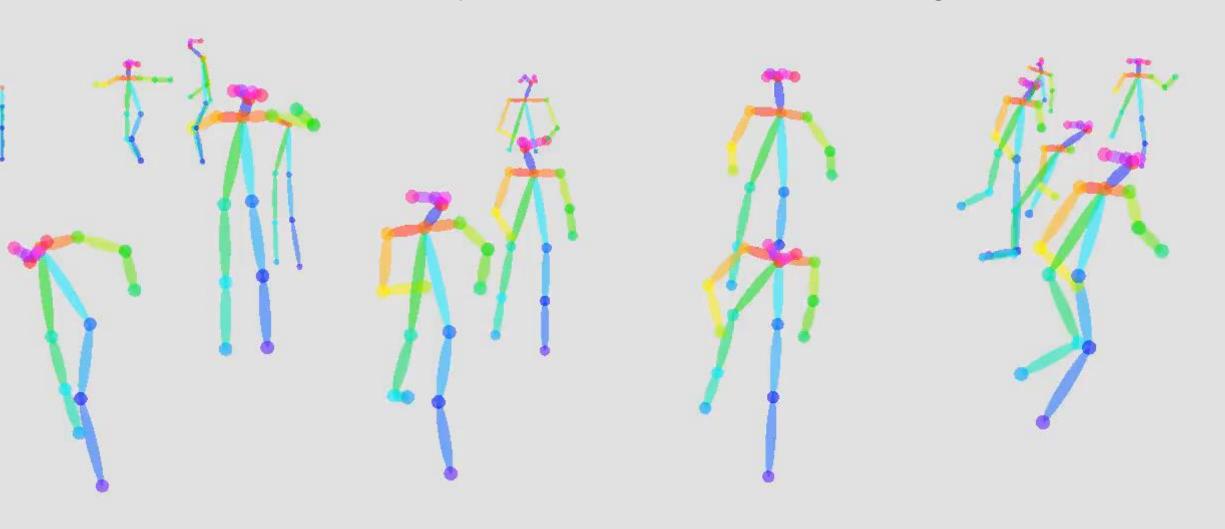
Jointly Learning Parts Detection and Parts Association



Jointly Learning Parts Detection and Parts Association



Frame by frame detection (no tracking)



SSD: Single Shot MultiBox Detector

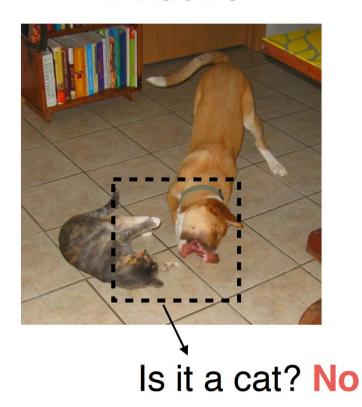
Wei Liu(1), **Dragomir Anguelov(2)**, Dumitru Erhan(3), Christian Szegedy(3), Scott Reed(4), Cheng-Yang Fu(1), Alexander C. Berg(1)

UNC Chapel Hill(1), Zoox Inc.(2), Google Inc.(3), University of Michigan(4)

of NORTH CAROLINA at CHAPEL HILL

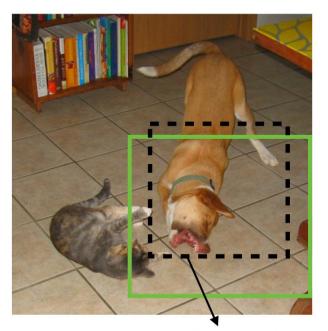
Bounding Box Prediction

Classical sliding windows



Discretize the box space densely

SSD and other deep approaches

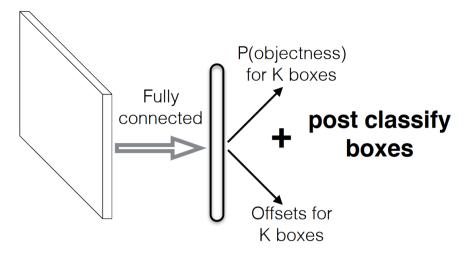


dog: 0.4 cat: 0.2

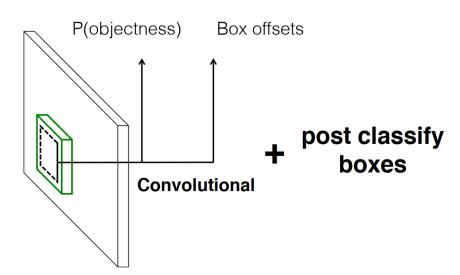
Discretize the box space more **coarsely Refine** the coordinates of each box

Related Work

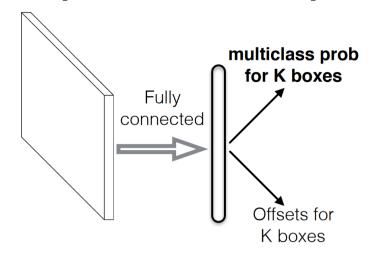
MultiBox [Erhan et al. CVPR14]



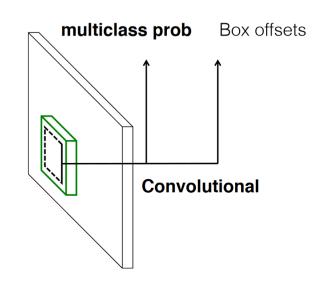
Faster R-CNN [Ren et al. NIPS15]

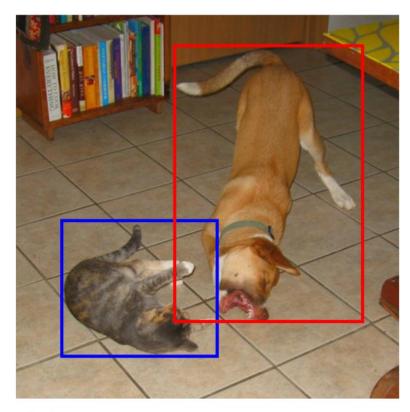


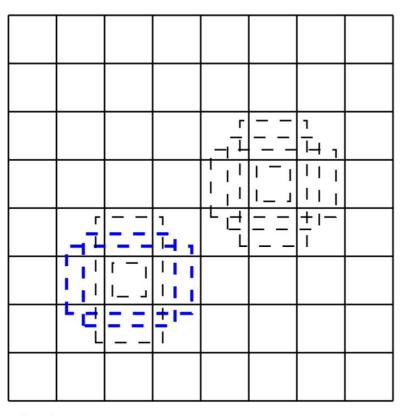
YOLO [Redmon et al. CVPR16]

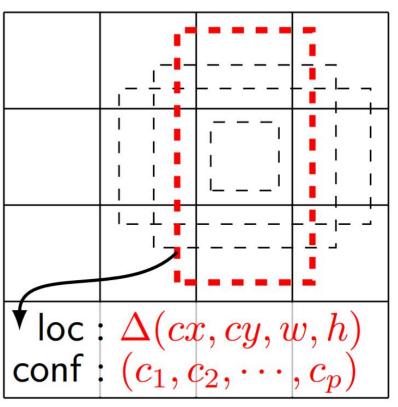


SSD





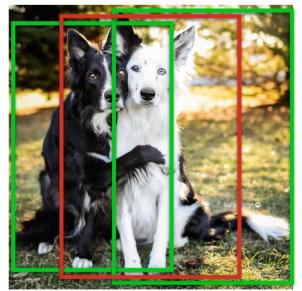




(a) Image with GT boxes (b) 8×8 feature map (c) 4×4 feature map

Why So Many Default Boxes?

	Faster R-CNN	YOLO	SSD300	SSD512	
# Default Boxes	6000	98	8732	24564	
Resolution	1000×600	448x448	300x300	512x512	



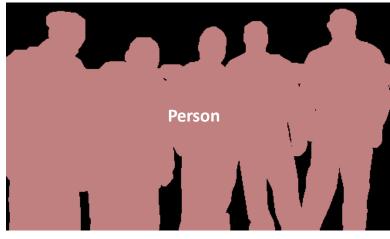
- SmoothL1 or L2 loss for box shape averages among likely hypotheses
- Need to have enough default boxes (discrete bins) to do accurate regression in each
- General principle for regressing complex continuous outputs with deep nets

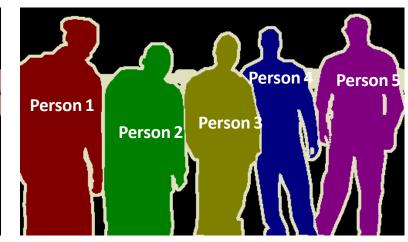
ICCV 2017

Kaiming He,

Georgia Gkioxari, Piotr Dollár, and Ross Girshick Facebook AI Research (FAIR)

Visual Perception Problems

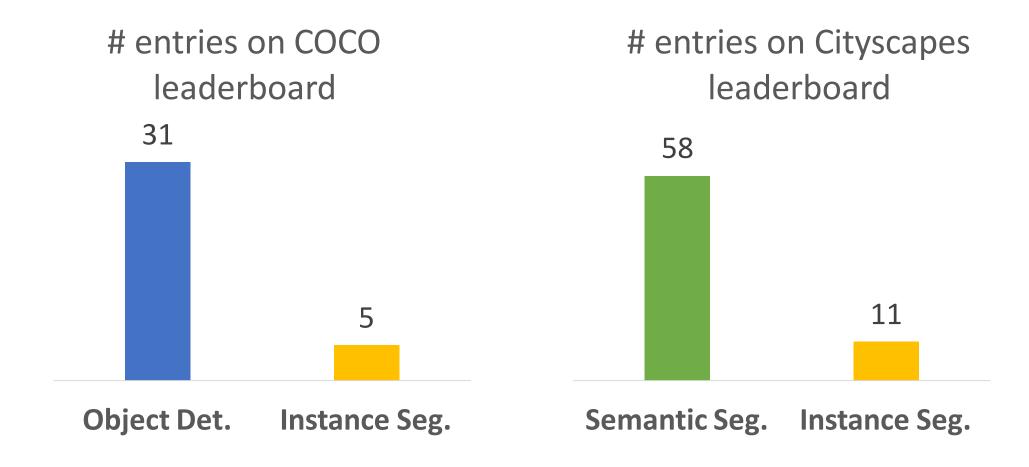




Object Detection

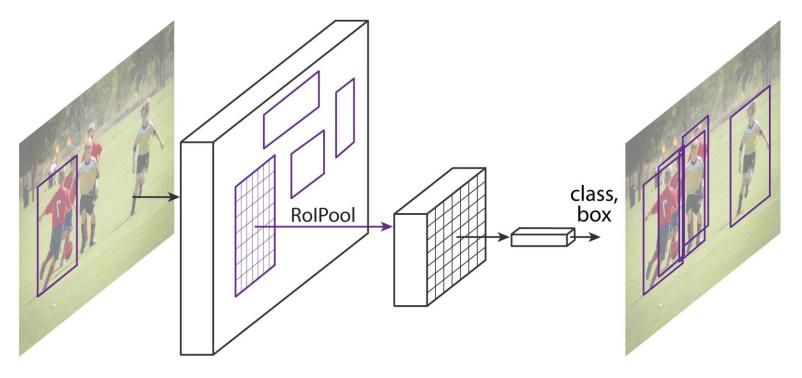
Instance Segmentation

A Challenging Problem...



Object Detection

- Fast/Faster R-CNN
 - √ Good speed
 - √ Good accuracy
 - ✓ Intuitive
 - ✓ Easy to use



Semantic Segmentation

- Fully Convolutional Net (FCN)
 - √ Good speed
 - √ Good accuracy
 - ✓ Intuitive
 - ✓ Easy to use

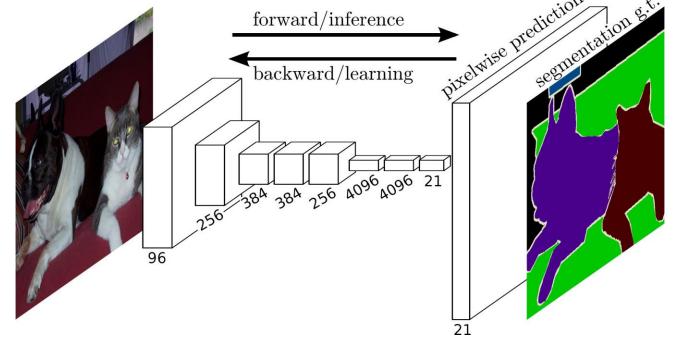
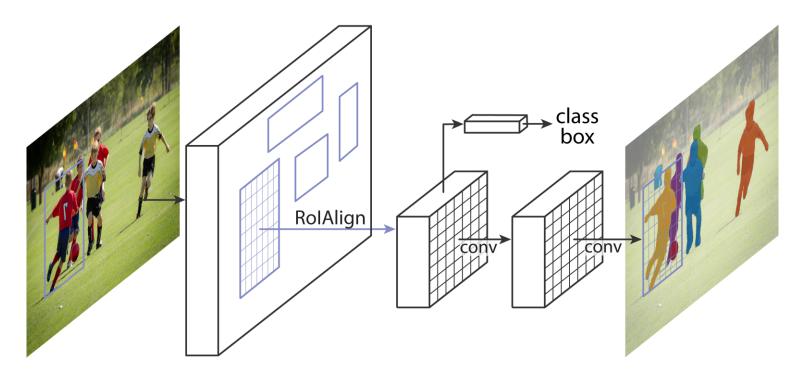


Figure credit: Long et al

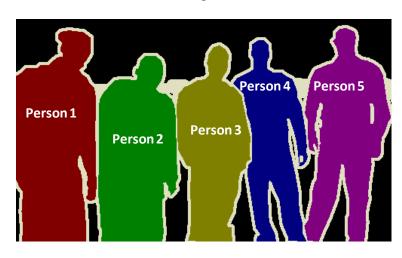
Instance Segmentation

- Goals of Mask R-CNN
 - √ Good speed
 - √ Good accuracy
 - ✓ Intuitive
 - ✓ Easy to use

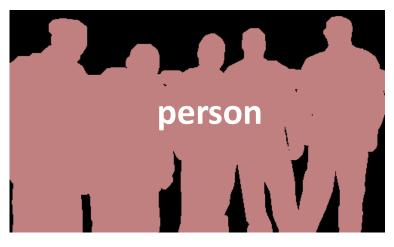


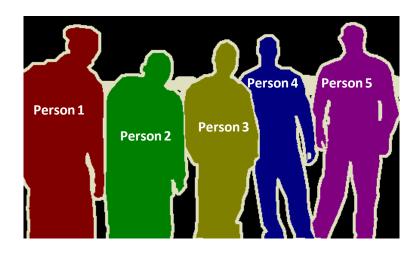
Instance Segmentation Methods

R-CNN driven



FCN driven

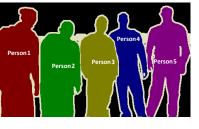




Instance Segmentation Methods



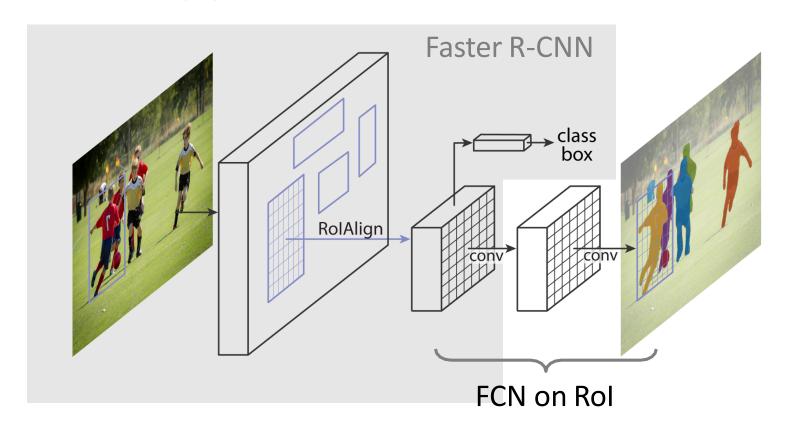
- Watershed [Bai & Urtasun, CVPR'17]
- FCIS [Li et al, CVPR'17]
- DIN [Arnab & Torr, CVPR'17]



- SDS [Hariharan et al, ECCV'14]
- HyperCol [Hariharan et al, CVPR'15]
 - CFM [Dai et al, CVPR'15]
 - MNC [Dai et al, CVPR'16]

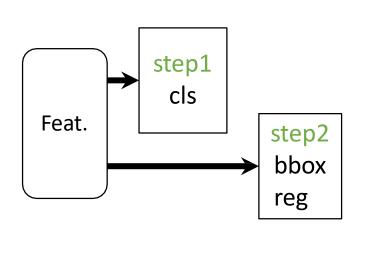
Mask R-CNN

• Mask R-CNN = Faster R-CNN with FCN on Rols

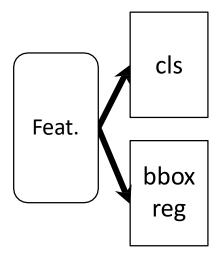


Parallel Heads

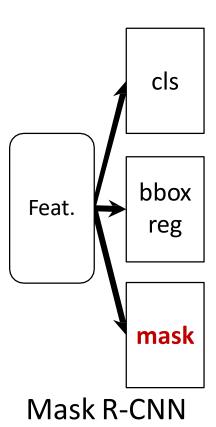
• Easy, fast to implement and train



(slow) R-CNN



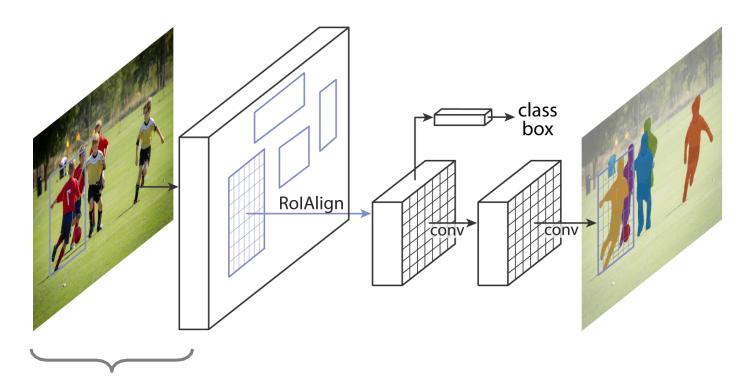
Fast/er R-CNN



Invariance vs. Equivariance

- Equivariance: changes in input lead to corresponding changes in output
- Classification desires invariant representations: output a label
- Instance Seg. desires equivariant representations:
 - Translated object => translated mask
 - Scaled object => scaled mask
 - Big and small objects are equally important (due to AP metric)
 - unlike semantic seg. (counting pixels)

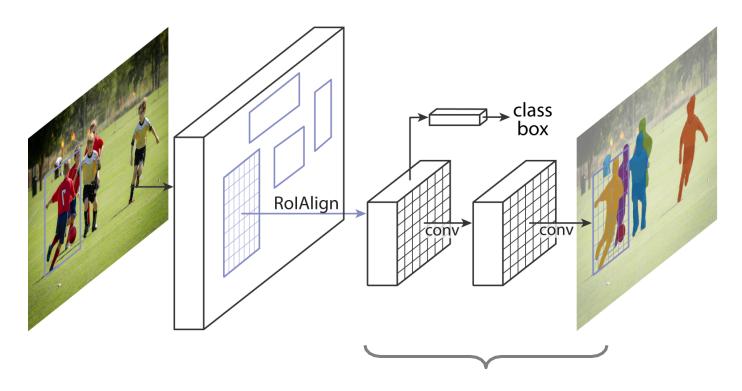
Equivariance in Mask R-CNN



1. Fully-Conv Features:

equivariant to global (image) translation

Equivariance in Mask R-CNN

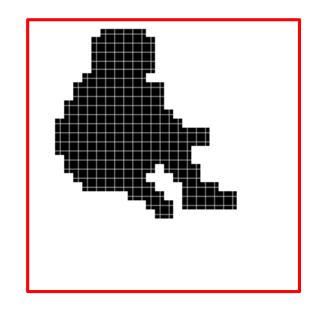


2. Fully-Conv on Rol:

equivariant to translation within Rol

Fully-Conv on Rol

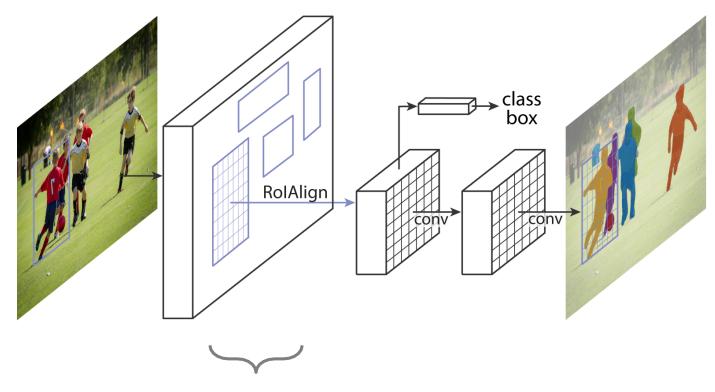
target masks on Rols



Translation of object in Rol => Same translation of mask in Rol

- Equivariant to small translation of Rols
- More robust to Rol's localization imperfection

Equivariance in Mask R-CNN



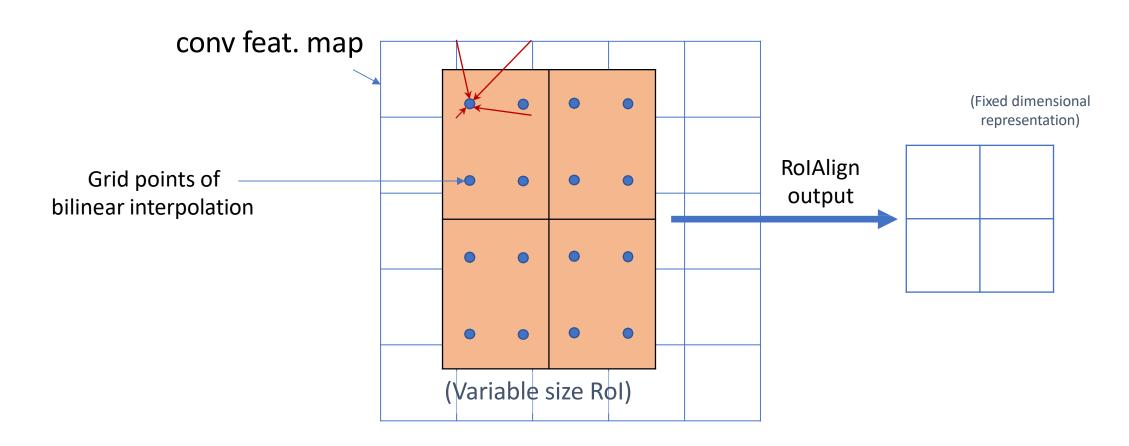
3. RolAlign:

3a. maintain translation-equivariance before/after Rol

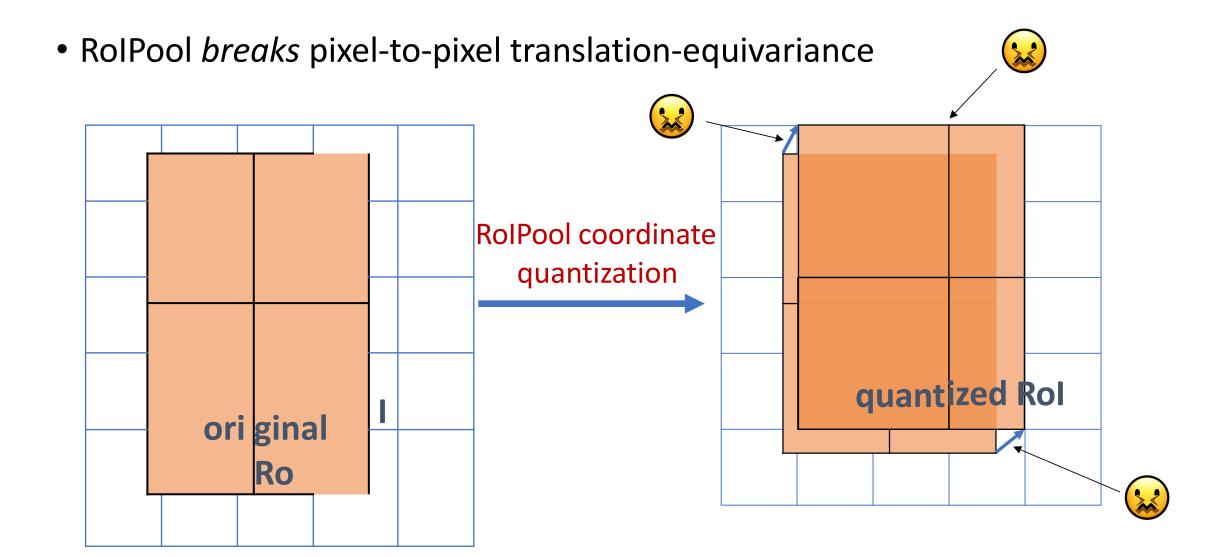
RolAlign

FAQs: how to sample grid points within a cell?

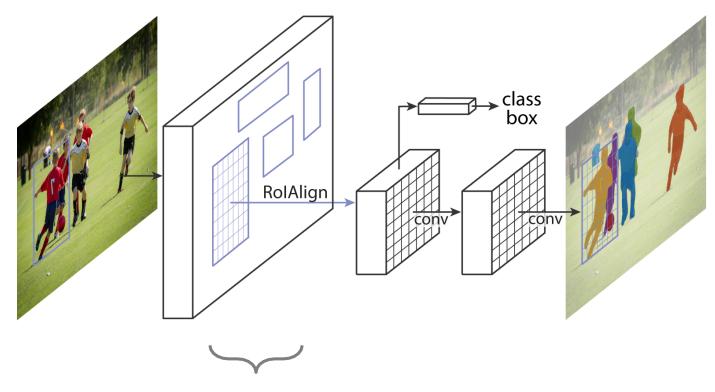
- 4 regular points in 2x2 sub-cells
- other implementation could work



RolAlign vs. RolPool



Equivariance in Mask R-CNN

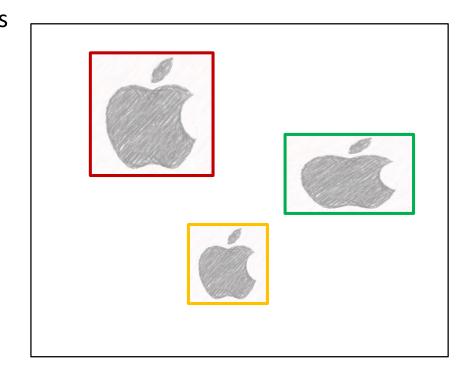


3. RolAlign:

3b. Scale-equivariant (and aspect-ratio-equivariant)

RolAlign: Scale-Equivariance

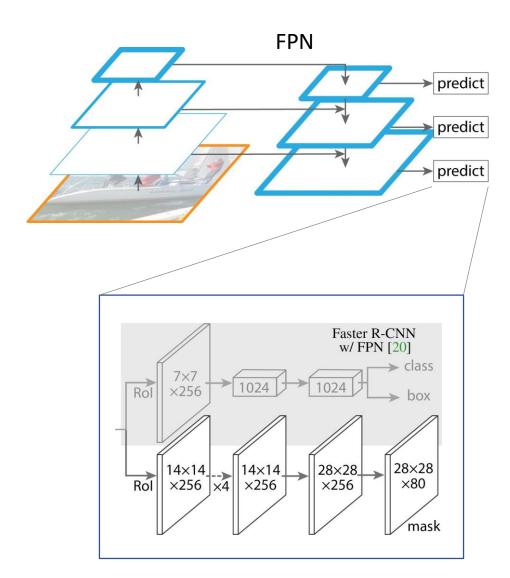
normalized w.r.t Rol, *invariant* representations Rol Rol RolAlign output image



- RolAlign creates *scale-invariant* representations
- RolAlign + "output pasted back" provides scale-equivariance

More about Scale-Equivariance: FPN

- RolAlign is scale-invariant if on raw pixels:
 - = (slow) R-CNN: crops and warps Rols
- RolAlign is scale-invariant if on scale-invariant feature maps
- Feature Pyramid Network (FPN) [Lin et al. CVPR'17] creates approx. scale-invariant features



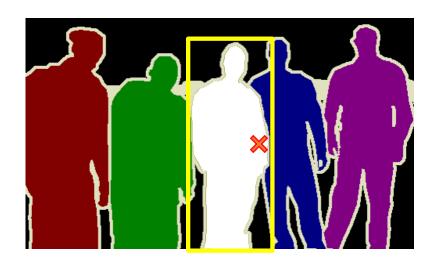
Equivariance in Mask R-CNN: Summary

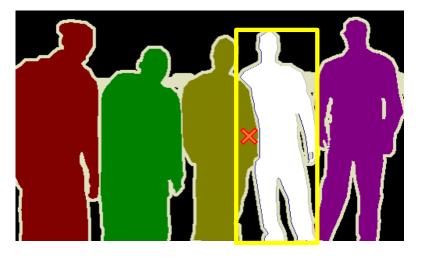
- Translation-equivariant
 - FCN features
 - FCN mask head
 - RolAlign (pixel-to-pixel behavior)

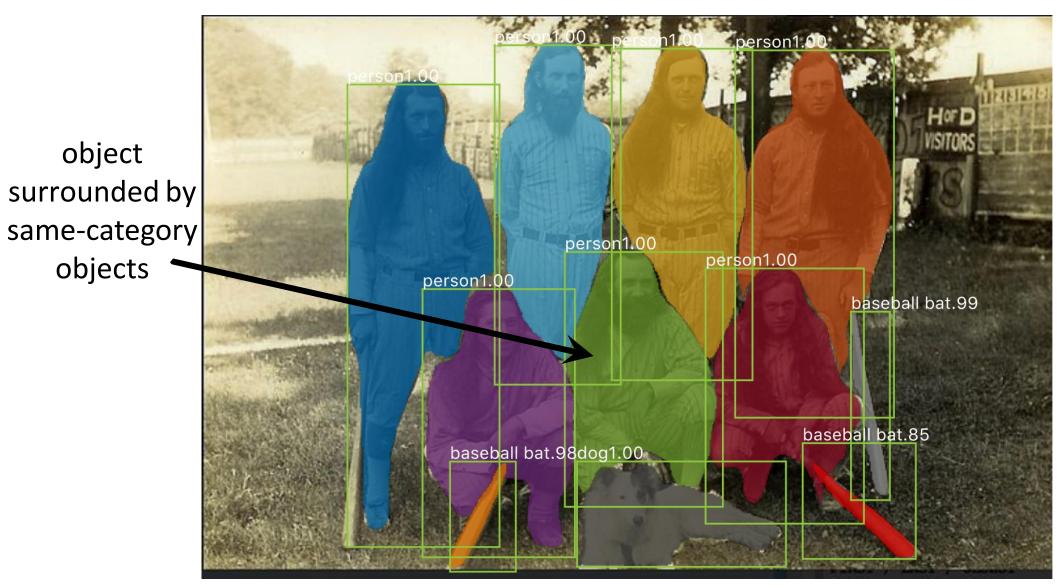
- Scale-equivariant (and aspect-ratio-equivariant)
 - RolAlign (warping and normalization behavior) + paste-back
 - FPN features

Instance Seg: When we don't want equivariance?

- A pixel x could have a different label w.r.t. different Rols
 - zero-padding in Rol boundary breaks equivariance
 - outside objects are suppressed
 - only equivariant to small changes of Rols (which is desired)







Mask R-CNN results on COCO

Result Analysis

Ablation: RolPool vs. RolAlign

baseline: ResNet-50-Conv5 backbone, **stride=32**

		mask AP			box AP	
	AP	AP_{50}	AP ₇₅	AP^{bb}	$\mathrm{AP_{50}^{bb}}$	$\mathrm{AP^{bb}_{75}}$
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

 huge gain at high IoU, in case of big stride (32)

Ablation: RolPool vs. RolAlign

baseline: ResNet-50-Conv5 backbone, **stride=32**

		mask AP			box AP	
	AP	AP_{50}	AP_{75}	AP ^{bb}	$\mathrm{AP}^{\mathrm{bb}}_{50}$	$\mathrm{AP^{bb}_{75}}$
RoIPool	23.6	46.5	21.6	28.2	52.7	26.9
RoIAlign	30.9	51.8	32.1	34.0	55.3	36.4
	+7.3	+ 5.3	+10.5	+5.8	+2.6	+9.5

nice box AP without dilation/upsampling

Instance Segmentation Results on COCO

	backbone	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

- 2 AP better than SOTA w/ R101, without bells and whistles
- 200ms / img

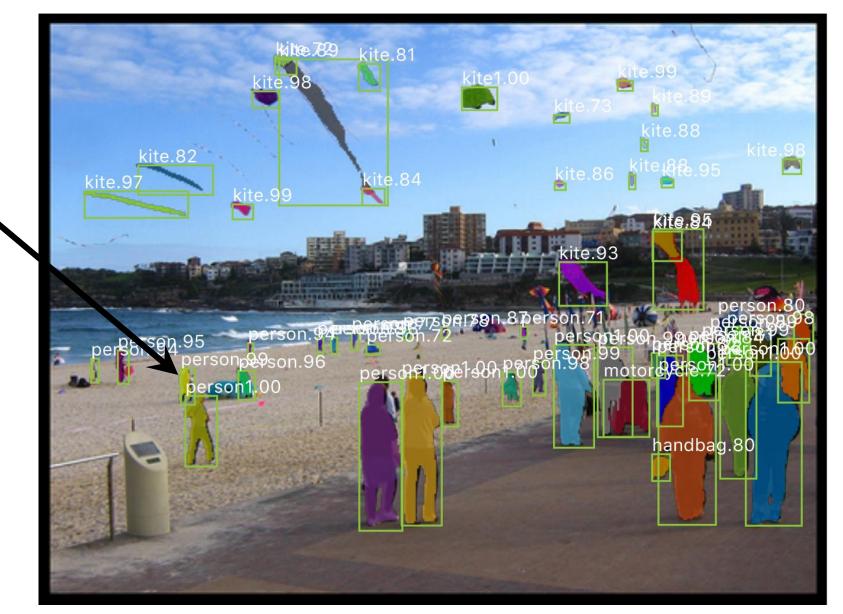
Instance Segmentation Results on COCO

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
MNC [7]	ResNet-101-C4	24.6	44.3	24.8	4.7	25.9	43.6
FCIS [20] +OHEM	ResNet-101-C5-dilated	29.2	49.5	-	7.1	31.3	50.0
FCIS+++ [20] +OHEM	ResNet-101-C5-dilated	33.6	54.5	-	-	-	-
Mask R-CNN	ResNet-101-C4	33.1	54.9	34.8	12.1	35.6	51.1
Mask R-CNN	ResNet-101-FPN	35.7	58.0	37.8	15.5	38.1	52.4
Mask R-CNN	ResNeXt-101-FPN	37.1	60.0	39.4	16.9	39.9	53.5

• benefit from better features (ResNeXt [Xie et al. CVPR'17])

disconnected object o reperson1.00 person.98 surfboard1.00 surfboard1.00 surfboard

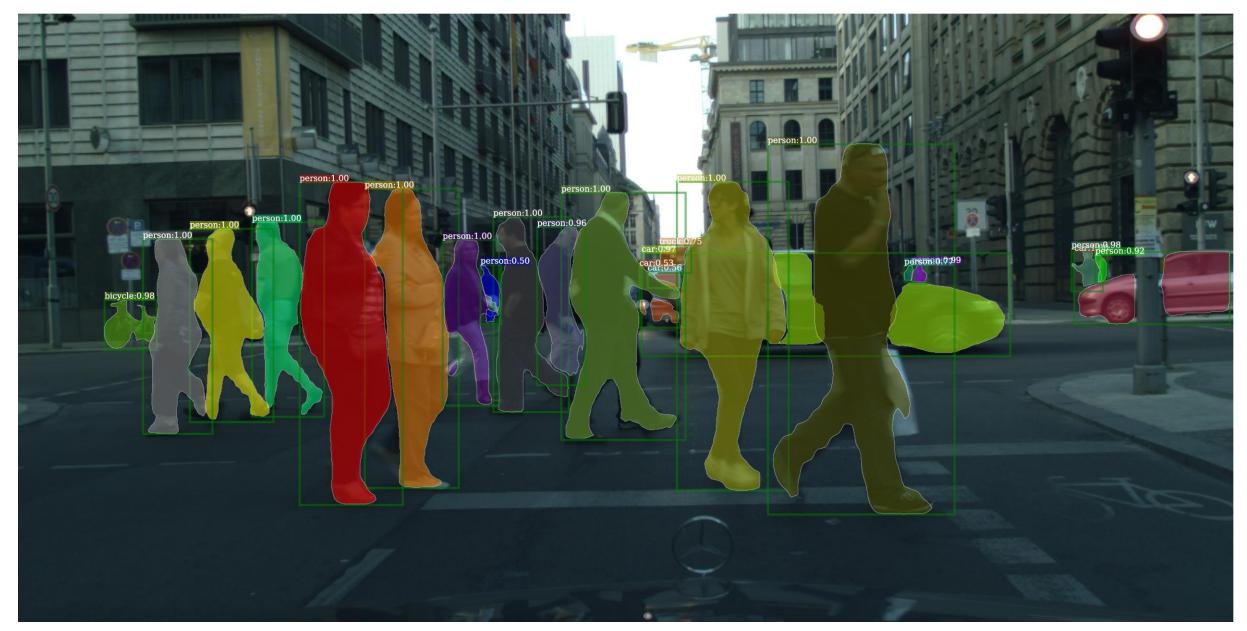
Mask R-CNN results on COCO



small

objects

Mask R-CNN results on COCO



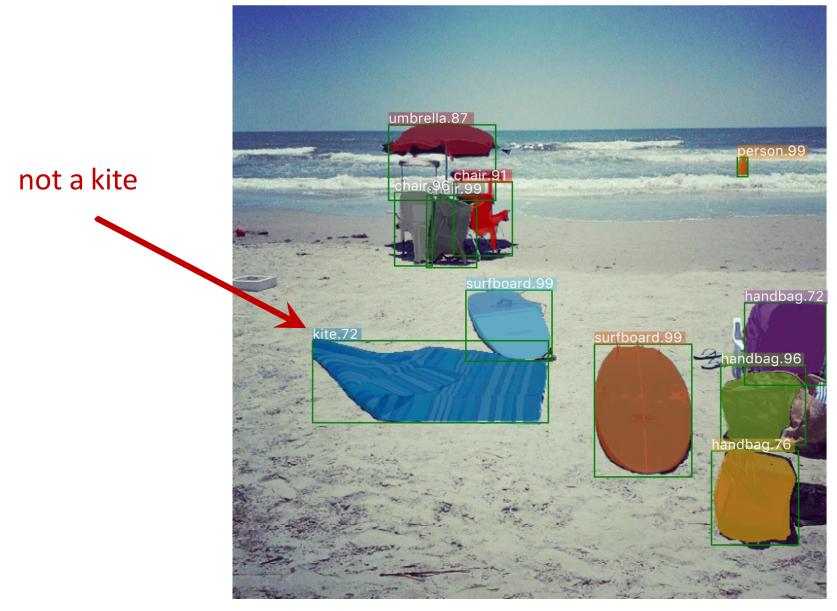
Mask R-CNN results on CityScapes

Failure case: detection/segmentation

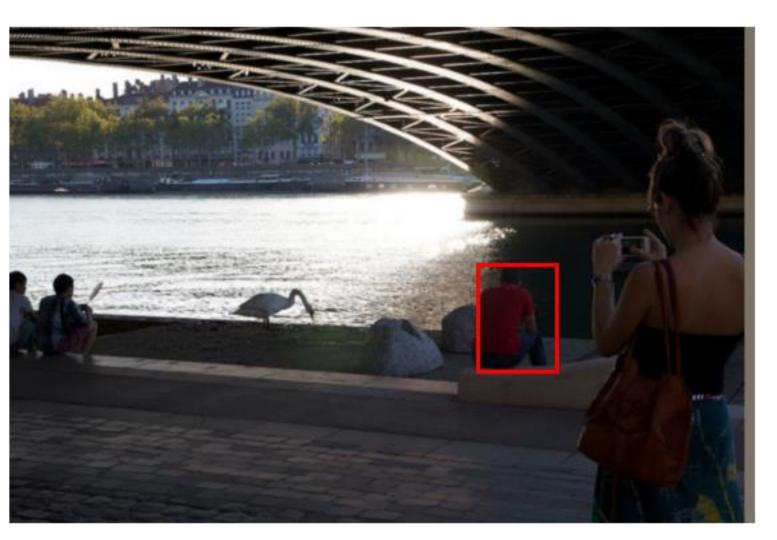
missing

Mask R-CNN results on COCO

Failure case: recognition

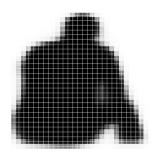


Mask R-CNN results on COCO



Validation image with box detection shown in red

28x28 soft prediction from Mask R-CNN (enlarged)

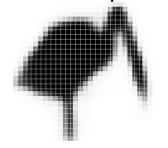


Soft prediction resampled to image coordinates (bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)



28x28 soft prediction



Resized Soft prediction

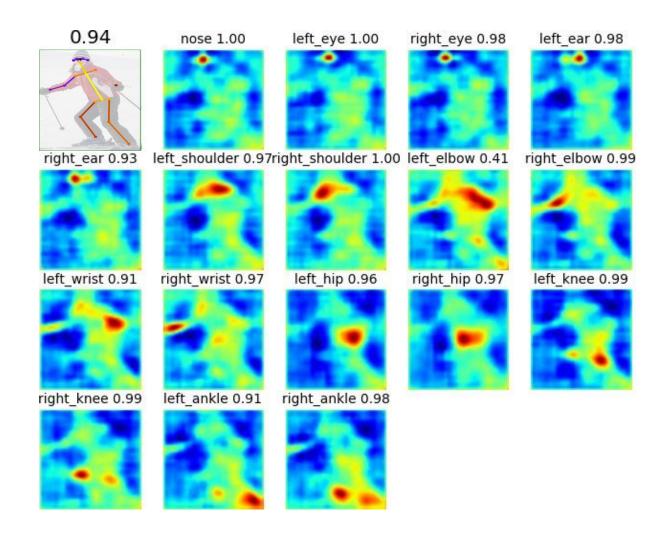
Final mask

Validation image with box detection shown in red

Mask R-CNN: for Human Keypoint Detection

- 1 keypoint = 1-hot "mask"
- Human pose = 17 masks

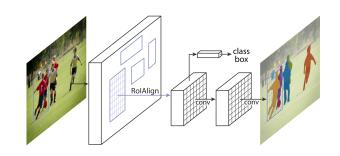
- Softmax over spatial locations
 - e.g. 56²-way softmax on 56x56
- Desire the same equivariances
 - translation, scale, aspect ratio



Conclusion

Mask R-CNN

- ✓ Good speed
- √ Good accuracy
- ✓ Intuitive
- ✓ Easy to use
- ✓ Equivariance matters



Code open-sourced as Facebook Al Research's **Detectron** platform

Summary – More complex outputs from deep networks

- Image Output (e.g. colorization, semantic segmentation, superresolution, stylization, depth estimation...)
- Attributes
- Text Captions
- Bottom up: Semantic Keypoints
- Top down: Object Detection
 - "single shot" vs "two stage"