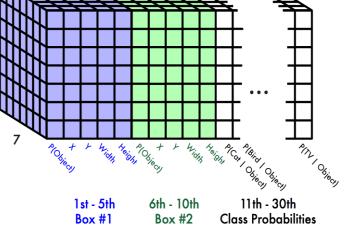
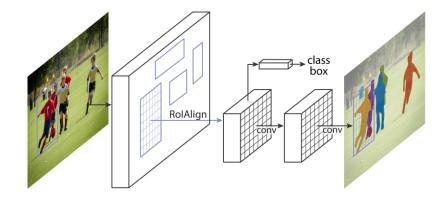
3D Point Processing

James Hays

Recap – Structured Output from Deep Networks

Convolutional Pose Machines and follow up works





Mask R-CNN and "two stage" object detectors

A lot of machine learning tools, such as convolutional networks, don't naturally handle tasks with arbitrary numbers of outputs. These are a few clever methods, typical of the literature as a whole, to work around this.

YOLO, SSD, and "one stage" object detectors

Outline

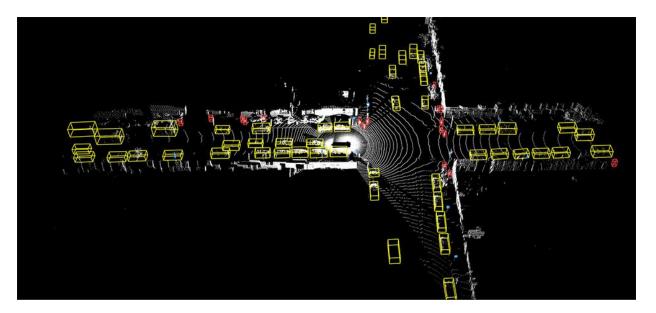
- How do we measure 3D points?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

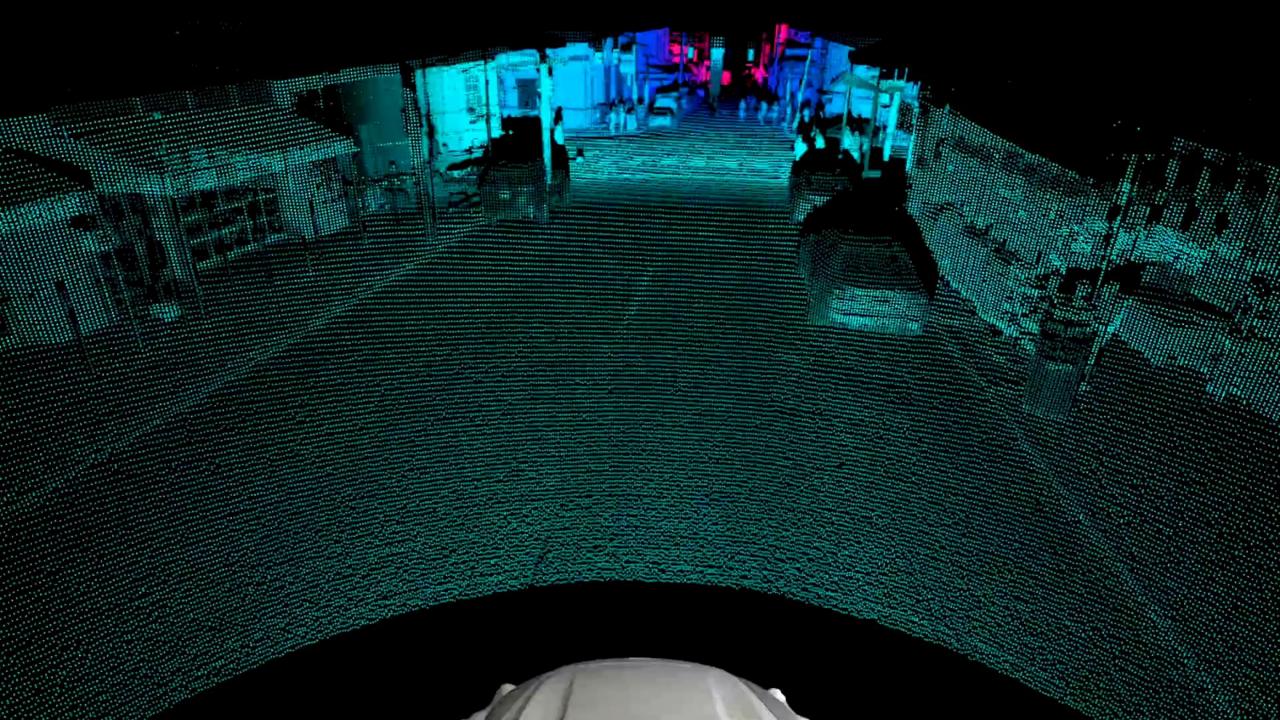
Kinect V1 and V2

Infrared images of Kinect V1 structured light pattern and Kinect V2 time of flight pattern. Credit "Lightweight Algorithms for Depth Sensor Equipped Embedded Devices" by Henry Zhong

Lidar overview

Lidar overview





Outline

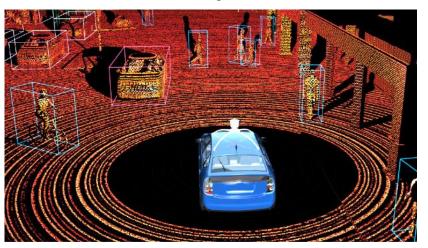
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

Charles R. Qi^{*} Hao Su^{*} Kaichun Mo Leonidas J. Guibas

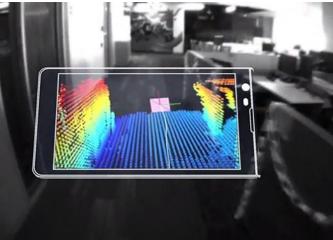
Big Data + Deep Representation Learning

Robot Perception



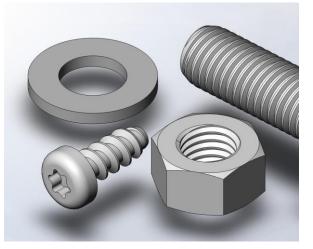
source: Scott J Grunewald

Augmented Reality



source: Google Tango

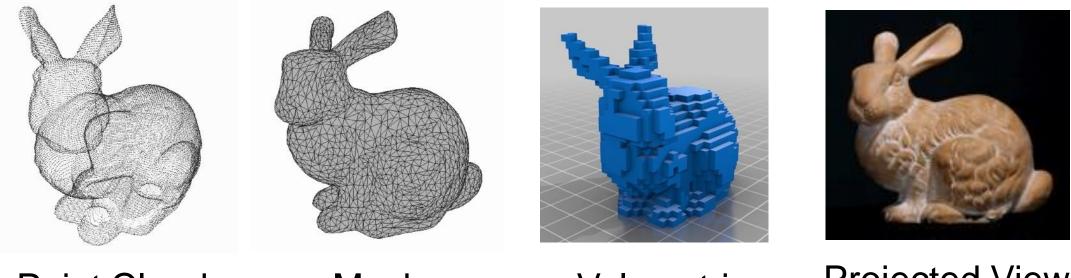
Shape Design



source: solidsolutions

Need for 3D Deep Learning!

3D Representations



Point Cloud

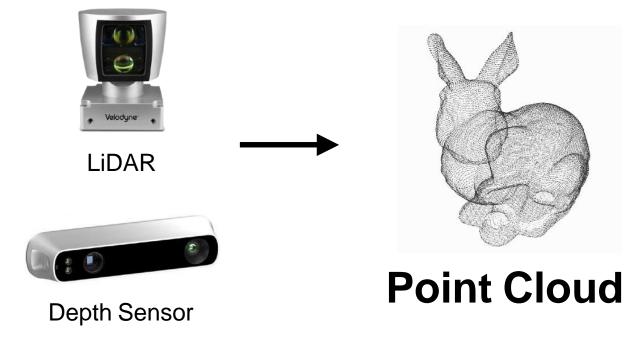
Mesh

Volumetric

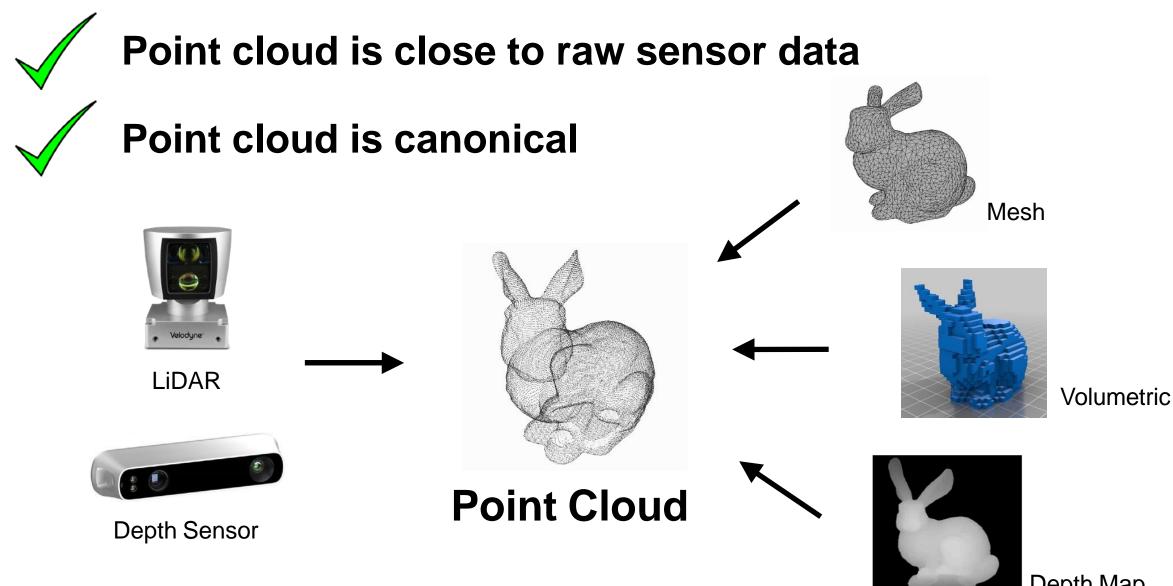
Projected View RGB(D)

3D Representation: Point Cloud

Point cloud is close to raw sensor data



3D Representation: Point Cloud



Depth Map

Most existing point cloud features are handcrafted towards specific tasks

Feature Name	Supports Texture / Color	Local / Global / Regional	Best Use Case
PFH	No	L	
FPFH	No	L	2.5D Scans (Pseudo single position range images)
VFH	No	G	Object detection with basic pose estimation
CVFH	No	R	Object detection with basic pose estimation, detection of partial objects
RIFT	Yes	L	Real world 3D-Scans with no mirror effects. RIFT is vulnerable against flipping.

Source: https://github.com/PointCloudLibrary/pcl/wiki/Overview-and-Comparison-of-Features

Point cloud is **converted to other representations** before it's fed to a deep neural network

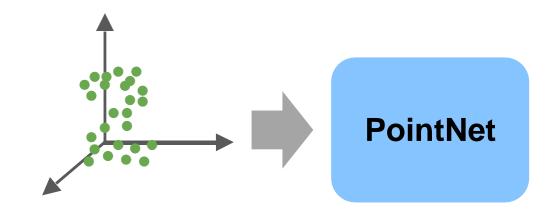
Conversion	Deep Net
Voxelization	3D CNN
Projection/Rendering	2D CNN
Feature extraction	Fully Connected

Research Question:

Can we achieve effective feature learning directly on point clouds?

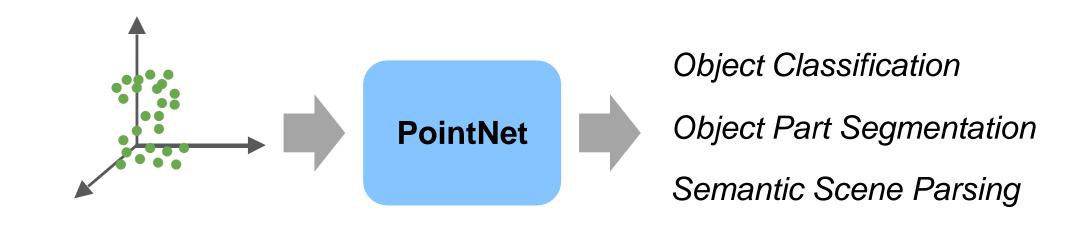
Our Work: PointNet

End-to-end learning for scattered, unordered point data



End-to-end learning for scattered, unordered point data

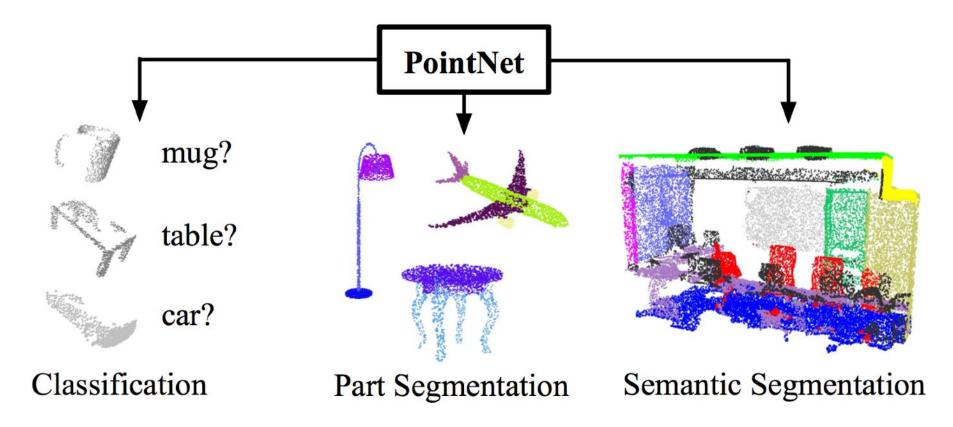
Unified framework for various tasks



. . .

End-to-end learning for scattered, unordered point data

Unified framework for various tasks



Unordered point set as input

Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

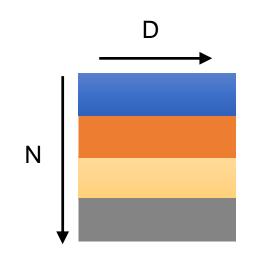
Unordered point set as input

Model needs to be invariant to N! permutations.

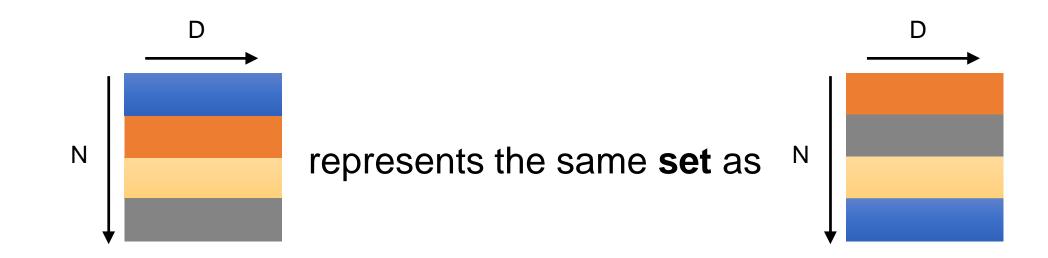
Invariance under <u>geometric transformations</u>

Point cloud rotations should not alter classification results.

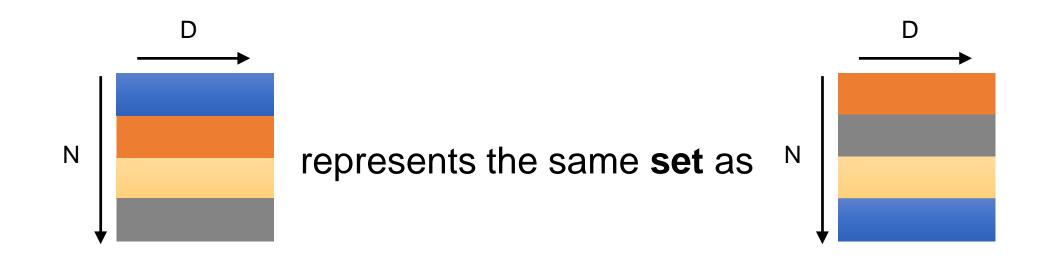
Point cloud: N <u>orderless</u> points, each represented by a D dim vector



Point cloud: N <u>orderless</u> points, each represented by a D dim vector



Point cloud: N orderless points, each represented by a D dim vector



Model needs to be invariant to N! permutations

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

$$f(x_1, x_2, ..., x_n) \equiv f(x_{\pi_1}, x_{\pi_2}, ..., x_{\pi_n}), x_i \in \mathbb{R}^D$$

Examples:

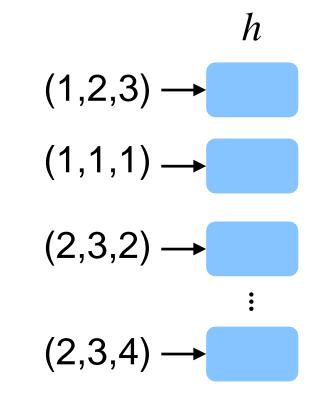
. . .

$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n$$

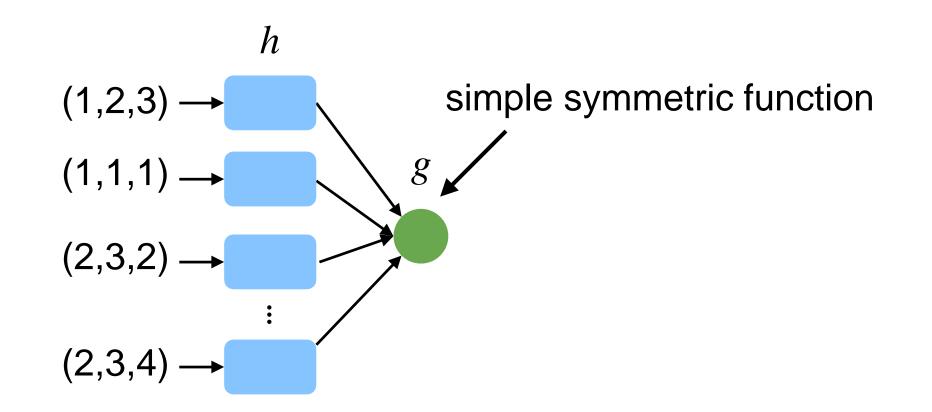
How can we construct a family of symmetric functions by neural networks?

Observe:

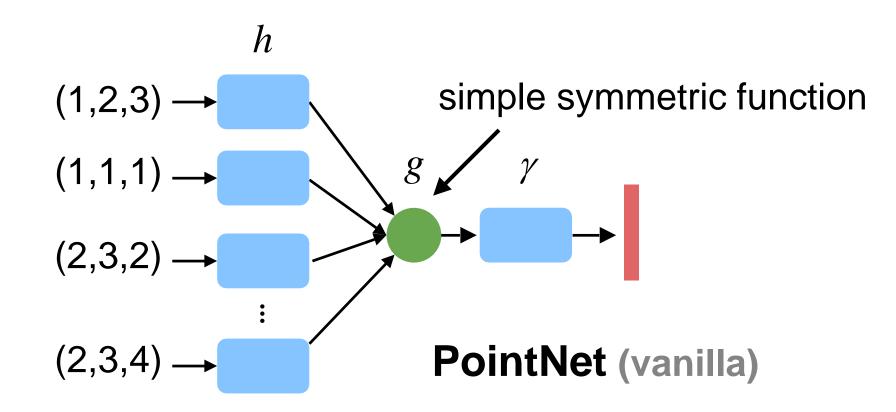
Observe:



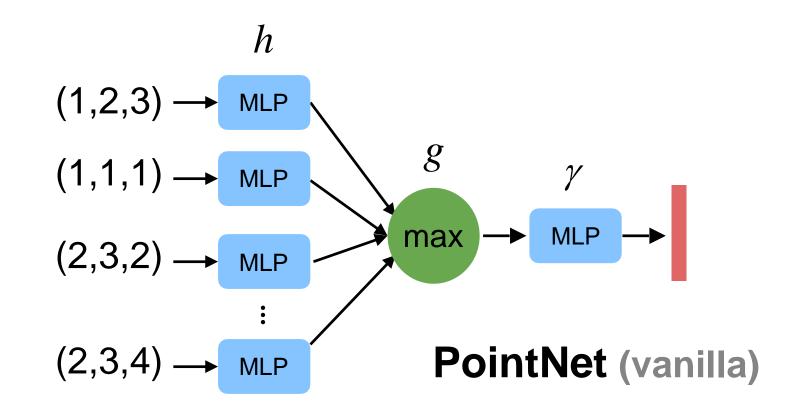
Observe:



Observe:



Empirically, we use multi-layer perceptron (MLP) and max pooling:



Unordered point set as input

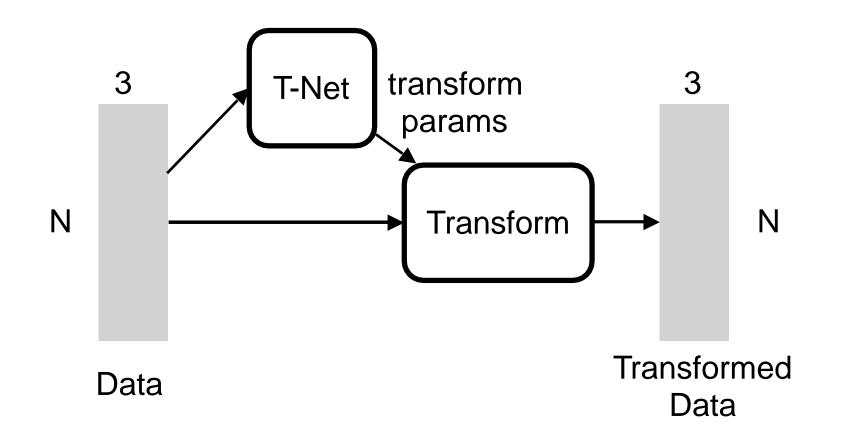
Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.

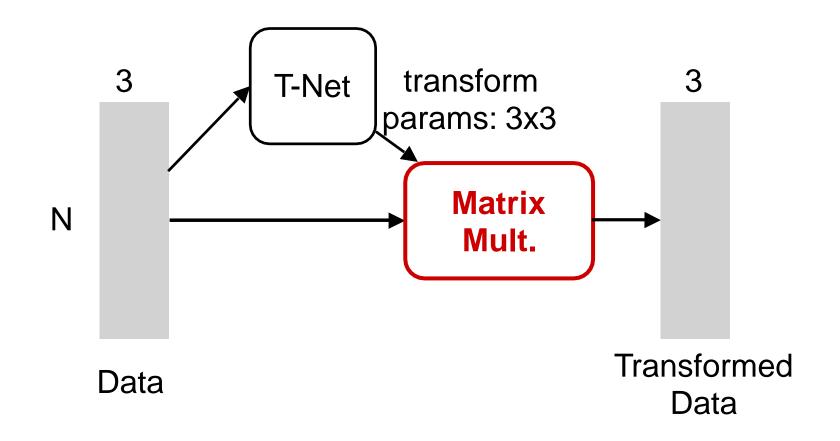
Input Alignment by Transformer Network

Idea: Data dependent transformation for automatic alignment

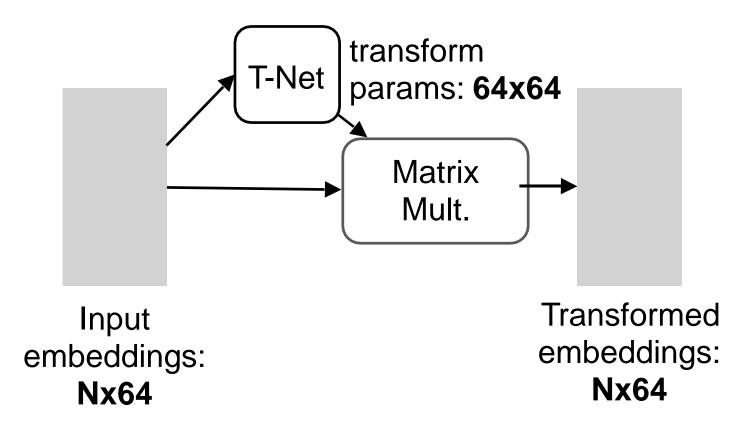


Input Alignment by Transformer Network

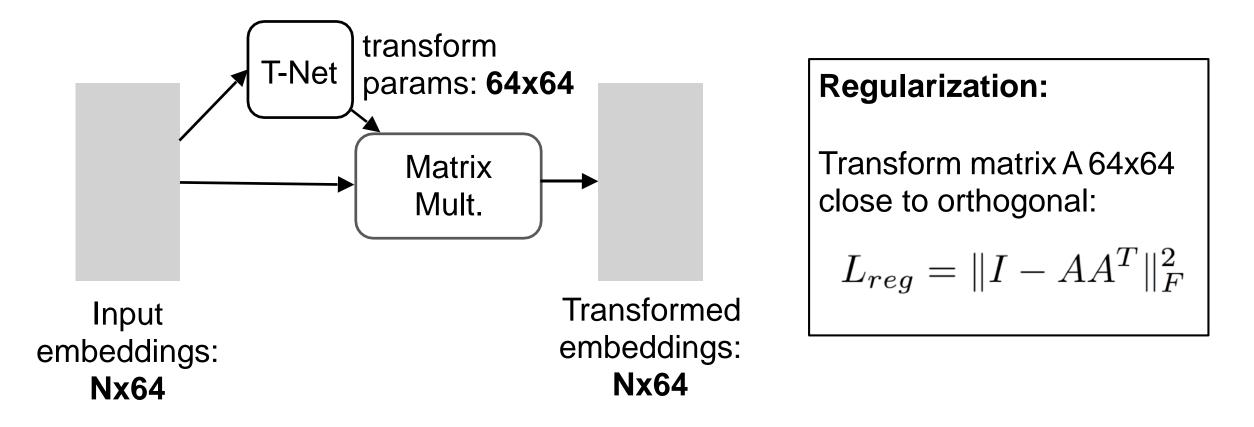
The transformation is just matrix multiplication!



Embedding Space Alignment

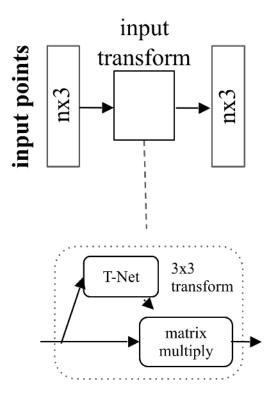


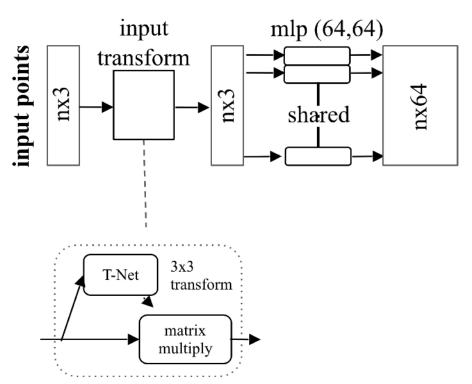
Embedding Space Alignment

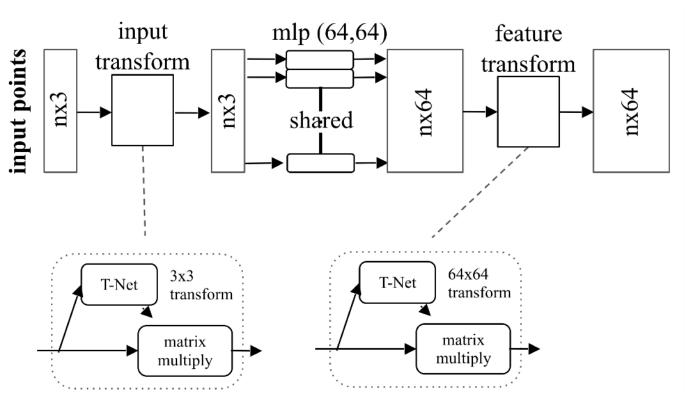


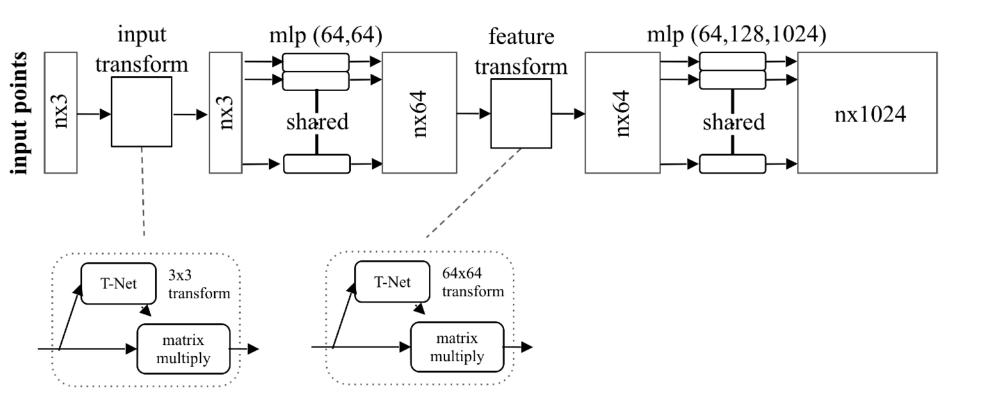
ts	
in.	
bo	
[t]	
nd	
lu	

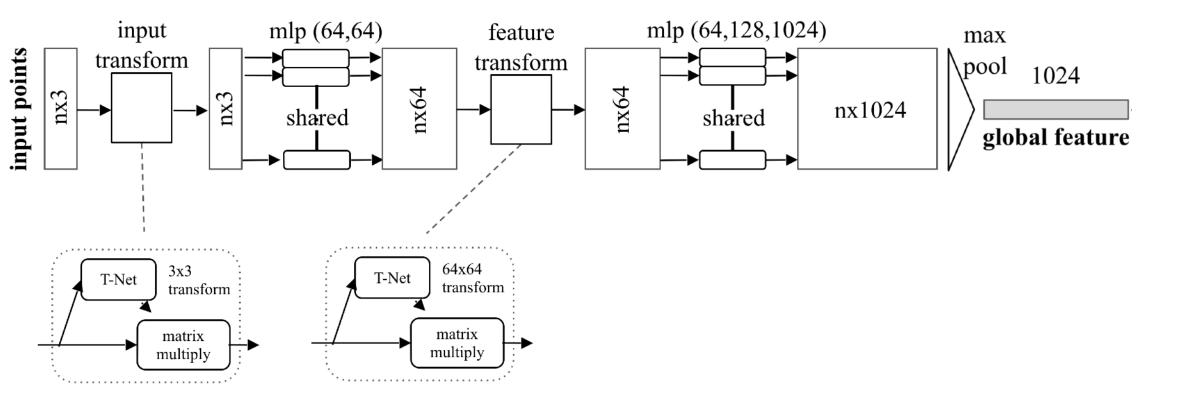
nx3

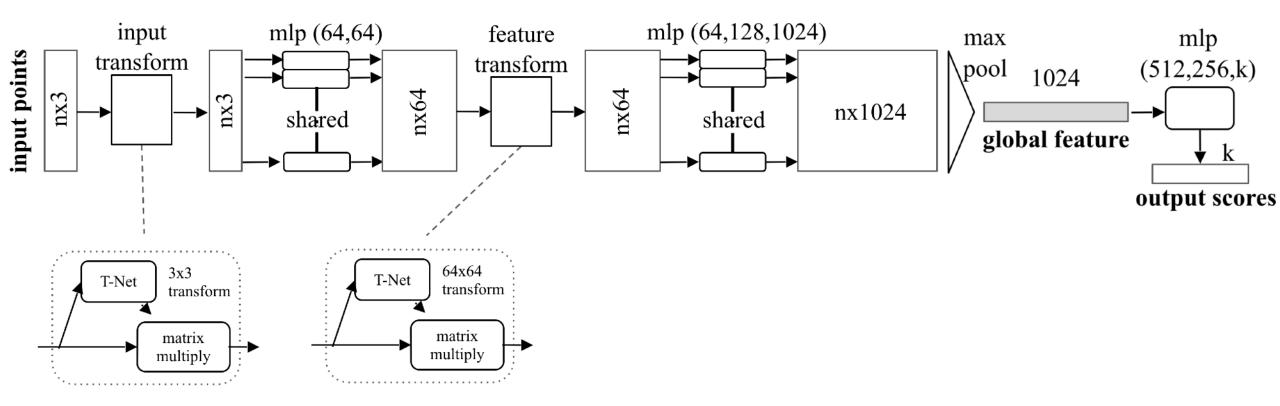




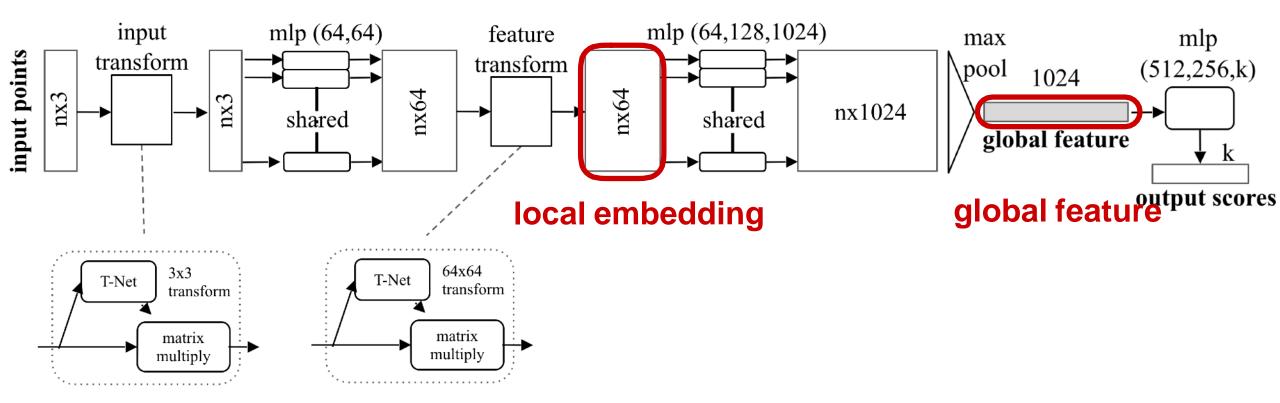




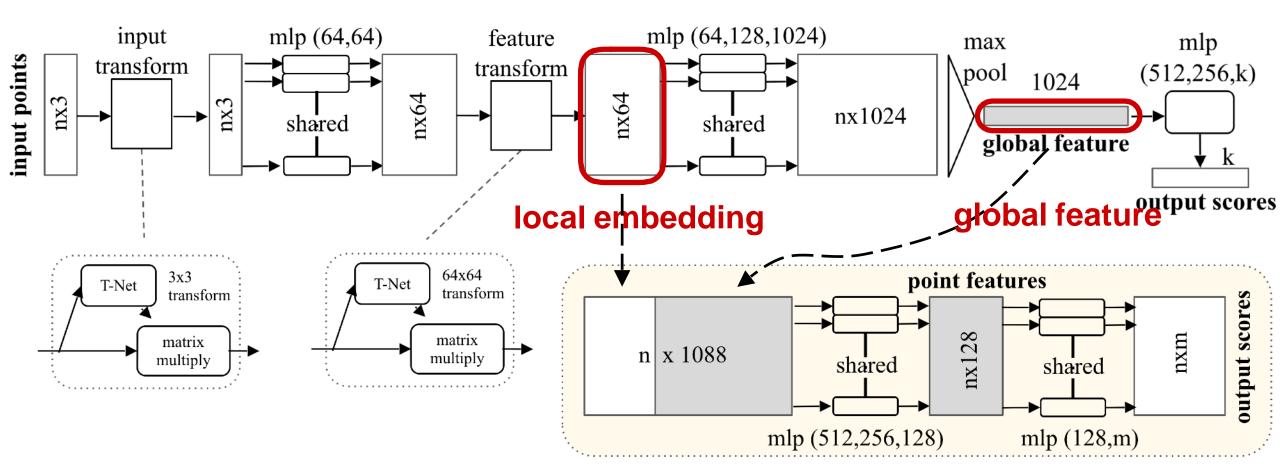




Extension to PointNet Segmentation Network



Extension to PointNet Segmentation Network

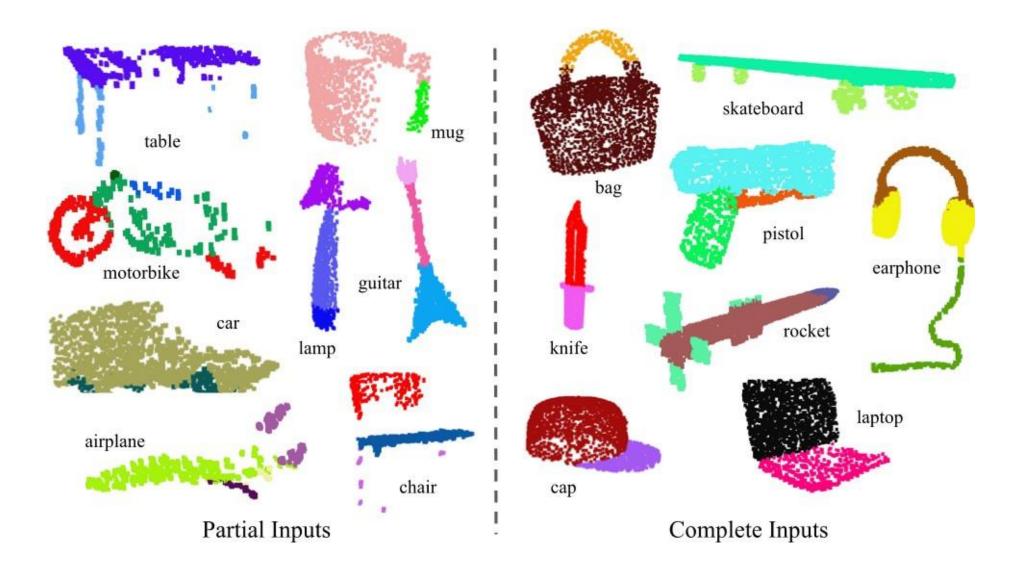


Results

Results on Object Classification

-		input	#views	accuracy	accuracy
				avg. class	overall
-	SPH [12]	mesh	-	68.2	
-	3DShapeNets [29]	volume	1	77.3	84.7
3D CNNs	VoxNet [18]	volume	12	83.0	85.9
	Subvolume [19]	volume	20	86.0	89.2
-	LFD [29]	image	10	75.5	-
	MVCNN [24]	image	80	90.1	-
-	Ours baseline	point	-	72.6	77.4
	Ours PointNet	point	1	86.2	89.2
-					

Results on Object Part Segmentation



Results on Object Part Segmentation

	mean	aero	bag	cap	car	chair	ear	guitar	knife	lamp	laptop	motor	mug	pistol	rocket	skate	table
							phone									board	
# shapes		2690	76	55	898	3758	69	787	392	1547	451	202	184	283	66	152	5271
Wu [28]	-	63.2	-	-	-	73.5	-	-	-	74.4	-	-	-	-	-	-	74.8
Yi [30]	81.4	81.0	78.4	77.7	75.7	87.6	61.9	92.0	85.4	82.5	95.7	70.6	91.9	85.9	53.1	69.8	75.3
3DCNN	79.4	75.1	72.8	73.3	70.0	87.2	63.5	88.4	79.6	74.4	93.9	58.7	91.8	76.4	51.2	65.3	77.1
Ours	83.7	83.4	78. 7	82.5	74.9	89.6	73.0	91.5	85.9	80.8	95.3	65.2	93.0	81.2	57.9	72.8	80.6

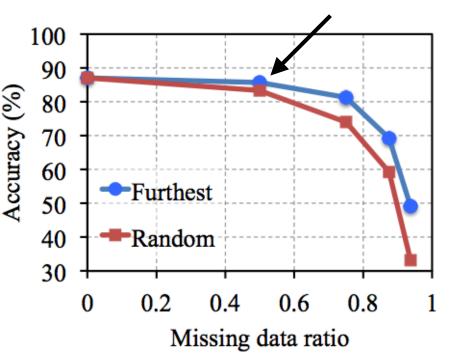
dataset: ShapeNetPart; metric: mean IoU (%)

Results on Semantic Scene Parsing

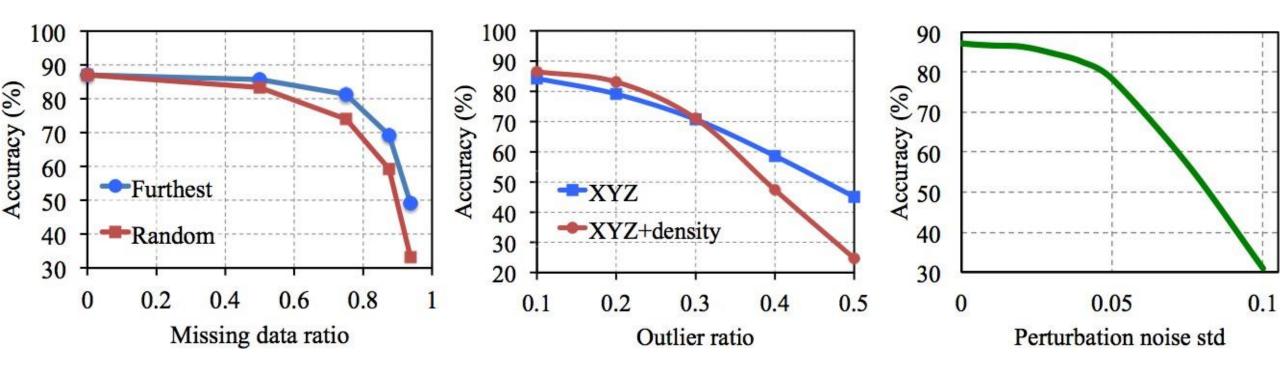
dataset: Stanford 2D-3D-S (Matterport scans)

Robustness to Data Corruption

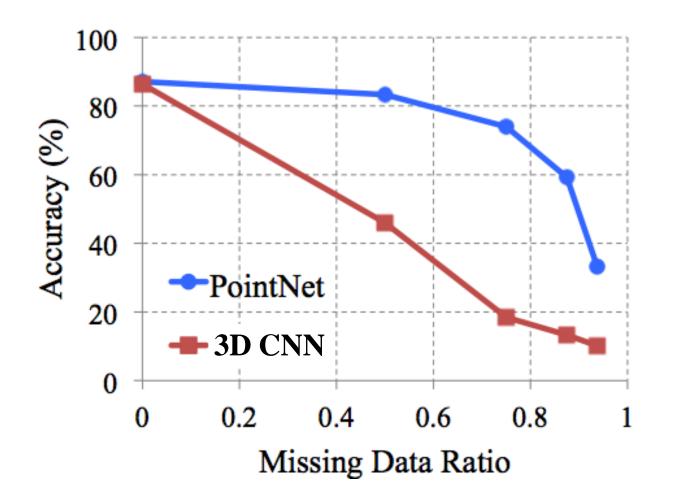
Less than 2% accuracy drop with 50% missing data



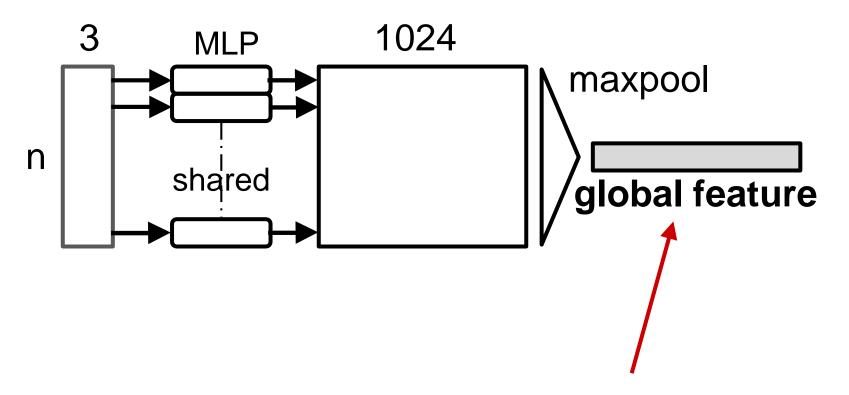
Robustness to Data Corruption



Robustness to Data Corruption



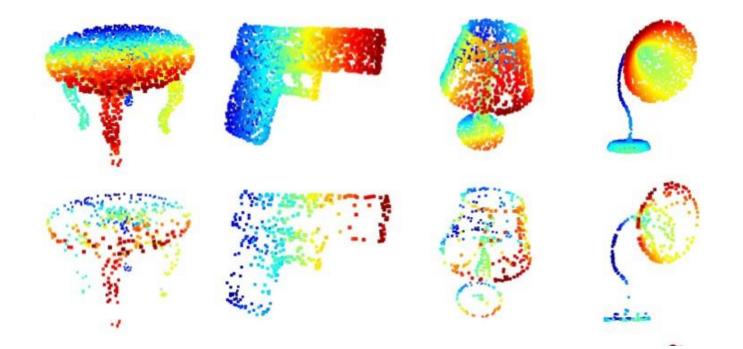
Why is PointNet so robust to missing data?

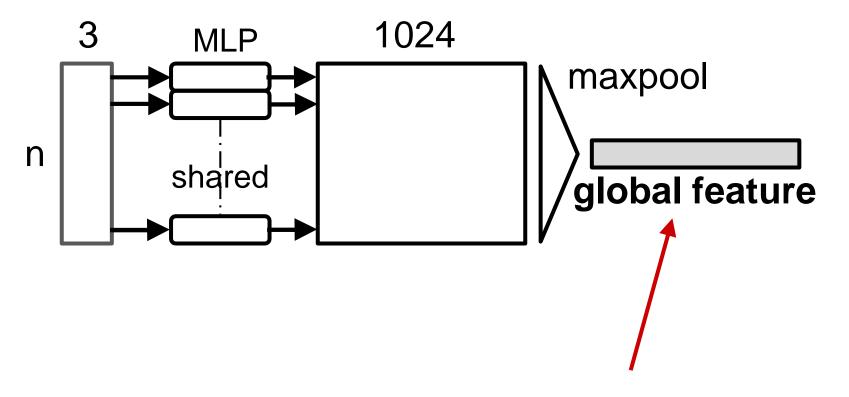


<u>Which input points</u> are contributing to the global feature? (critical points)

Original Shape:

Critical Point Sets:



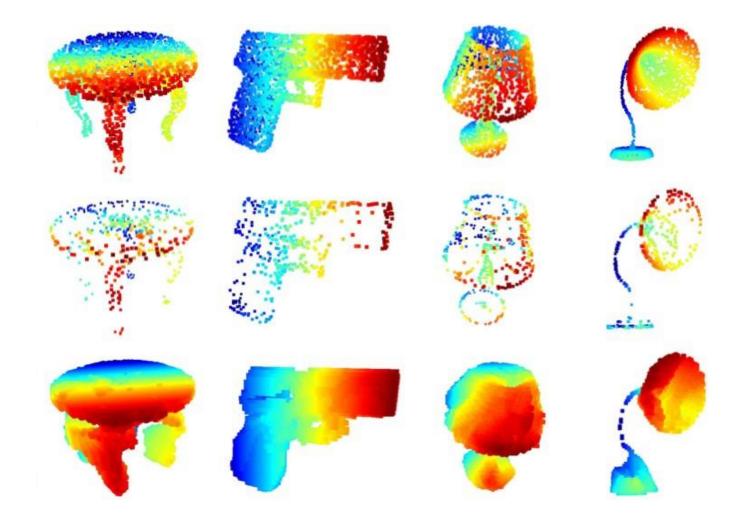


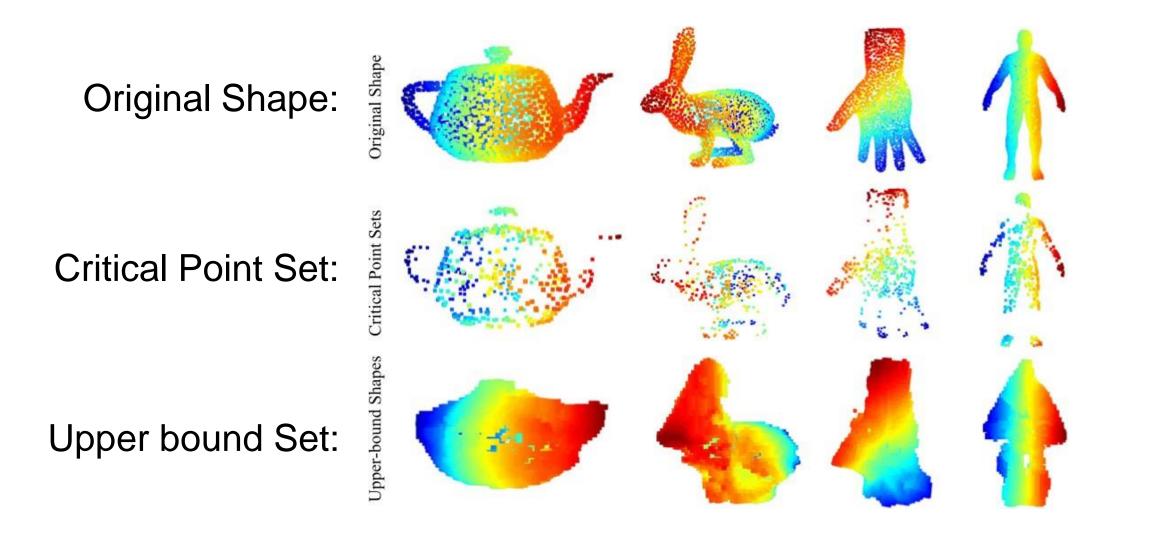
Which points won't affect the global feature?

Original Shape:

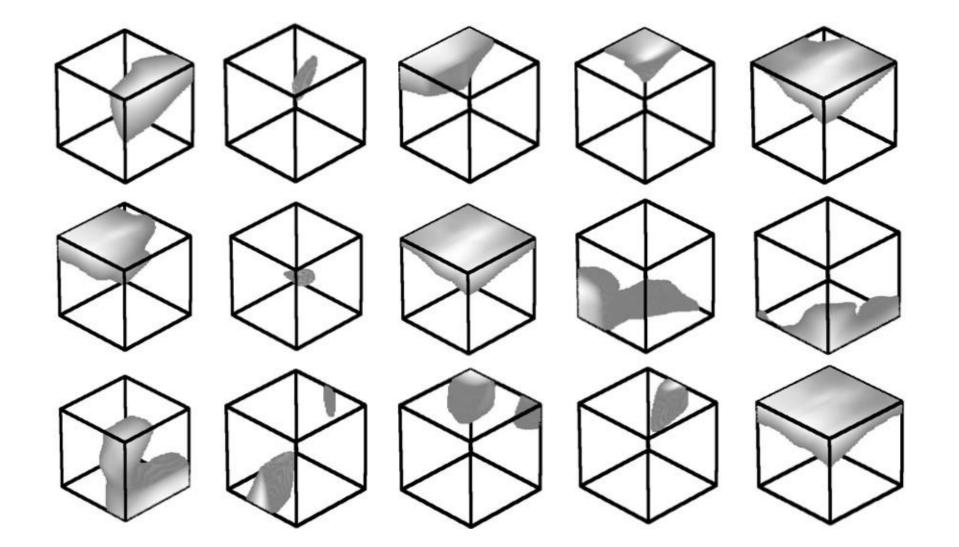
Critical Point Set:

Upper bound set:



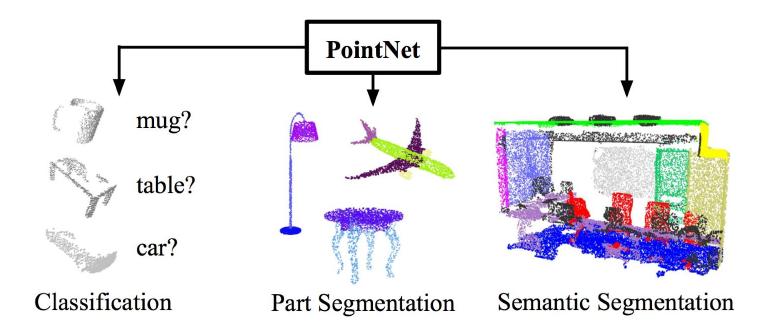


Visualizing Point Functions



Conclusion

- PointNet is a novel deep neural network that directly consumes point cloud.
- A unified approach to various 3D recognition tasks.
- Rich theoretical analysis and experimental results.



Code & Data Available! http://stanford.edu/~rqi/pointnet

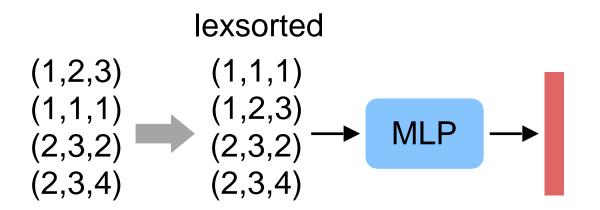
	#params	FLOPs/sample
PointNet (vanilla)	0.8M	148M
PointNet	3.5M	440M
Subvolume [16]	16.6M	3633M
MVCNN [20]	60.0M	62057M

Inference time 11.6ms, 25.3ms GTX1080, batch size 8

Permutation Invariance: How about Sorting?

"Sort" the points before feeding them into a network.

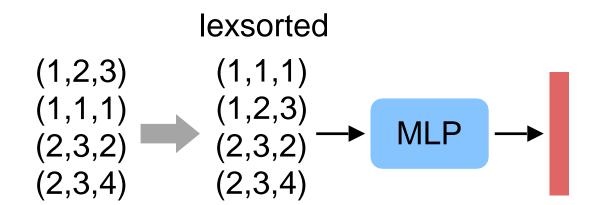
Unfortunately, there is no canonical order in high dim space.



Permutation Invariance: How about Sorting?

"Sort" the points before feeding them into a network.

Unfortunately, there is no canonical order in high dim space.



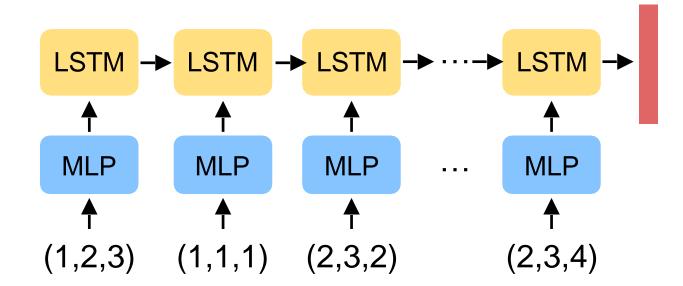
Multi-Layer Perceptron (ModelNet shape classification)

	Accuracy
Unordered Input	12%
Lexsorted Input	40%
PointNet (vanilla)	87%

Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

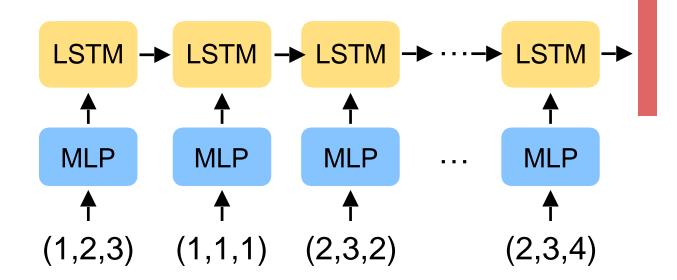
However, RNN forgets and order matters.



Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

However, RNN forgets and order matters.



LSTM Network (ModelNet shape classification)

	Accuracy
LSTM	75%
PointNet (vanilla)	87%

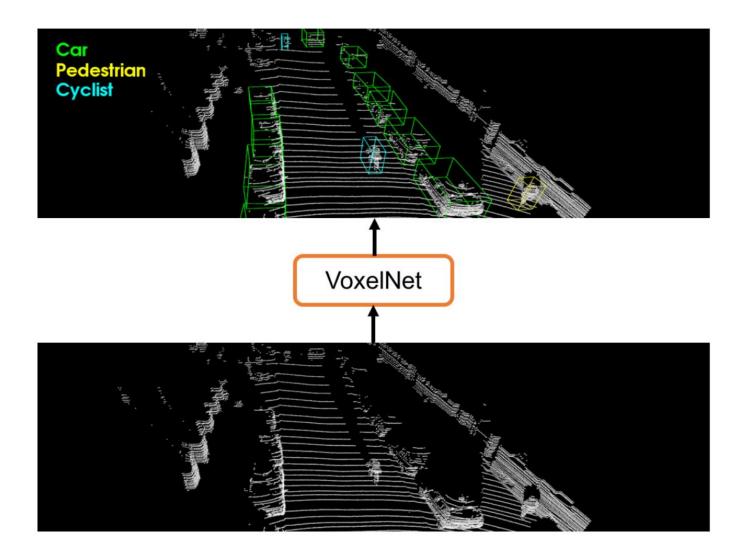
Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

Convolutions are powerful

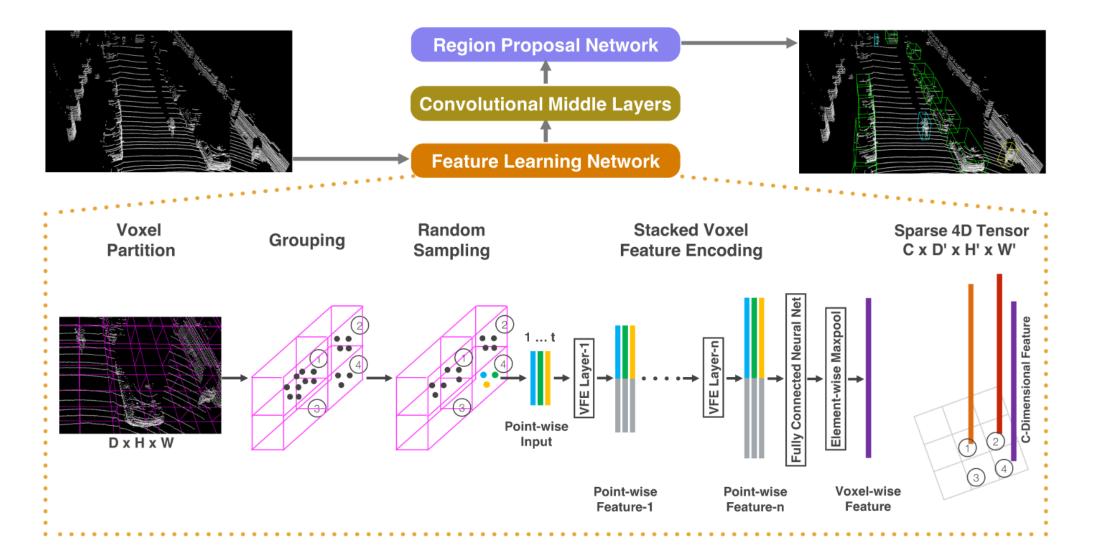
- Convolutions are how networks reason about neighborhoods and spatial relationships.
- PointNet has limited ability to identify things like corners, junctions, straight lines, etc.

VoxelNet

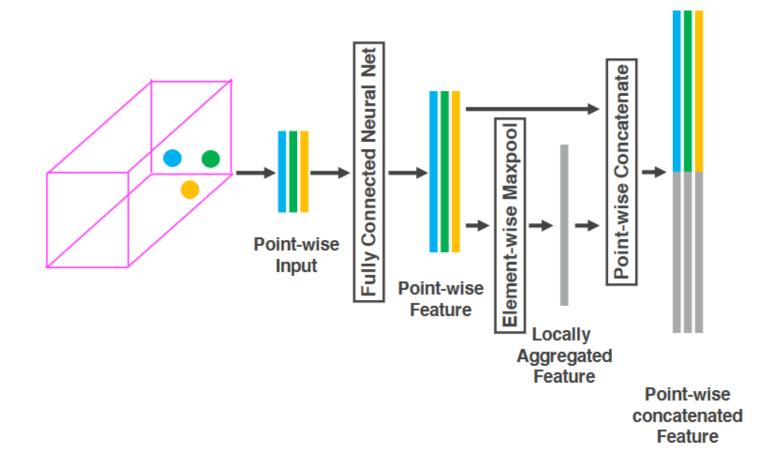


VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection Yin Zhou and Oncel Tuzel. CVPR 2018

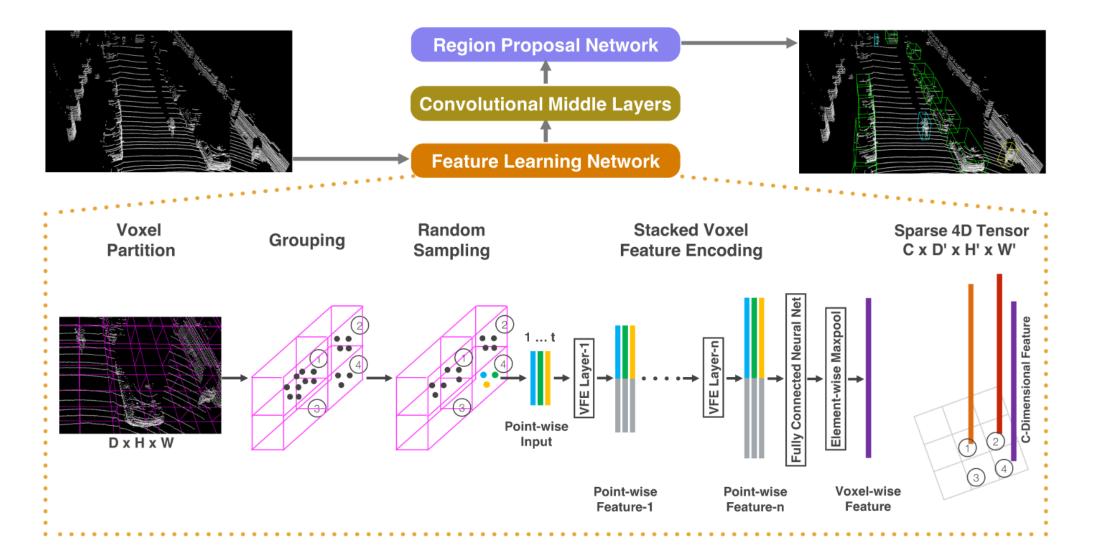
VoxelNet Overview



VoxelNet Voxel encoding looks a lot like PointNet



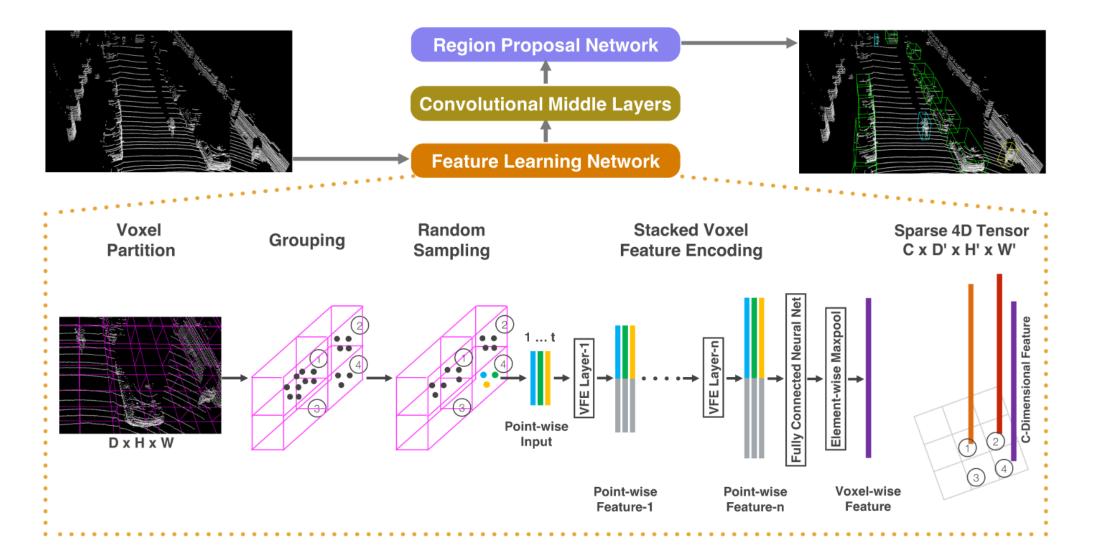
VoxelNet Overview



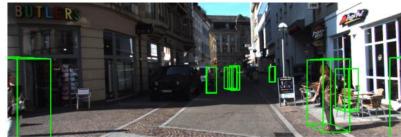
VoxelNet "Convolutional Middle Layers"

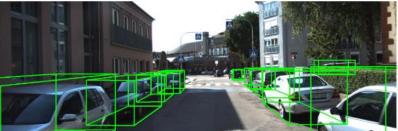
- For car detection, divide the world into 10 x 400 x 352 voxels, corresponding to voxels that are 40 cm tall and 20 cm in width/length.
- Uses **3D** convolutions instead of 2D as we've seen before.
- The Z / height dimension gets downsampled away after many layers

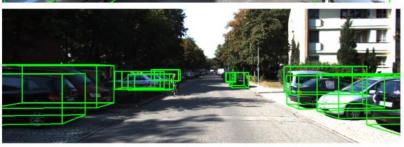
VoxelNet Overview

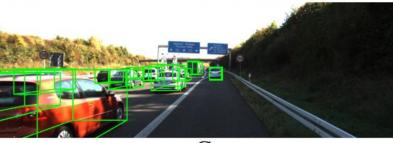


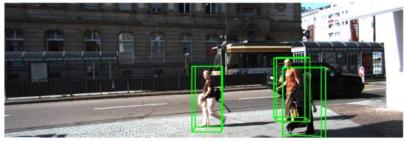
VoxelNet qualitative results

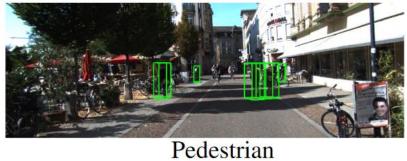












Car

VoxelNet quantitative results

Method	Modality	Car			Pedestrian			Cyclist		
		Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
Mono3D [3]	Mono	2.53	2.31	2.31	N/A	N/A	N/A	N/A	N/A	N/A
3DOP [4]	Stereo	6.55	5.07	4.10	N/A	N/A	N/A	N/A	N/A	N/A
VeloFCN [22]	LiDAR	15.20	13.66	15.98	N/A	N/A	N/A	N/A	N/A	N/A
MV (BV+FV) [5]	LiDAR	71.19	56.60	55.30	N/A	N/A	N/A	N/A	N/A	N/A
MV (BV+FV+RGB) [5]	LiDAR+Mono	71.29	62.68	56.56	N/A	N/A	N/A	N/A	N/A	N/A
HC-baseline	LiDAR	71.73	59.75	55.69	43.95	40.18	37.48	55.35	36.07	34.15
VoxelNet	LiDAR	81.97	65.46	62.85	57.86	53.42	48.87	67.17	47.65	45.11

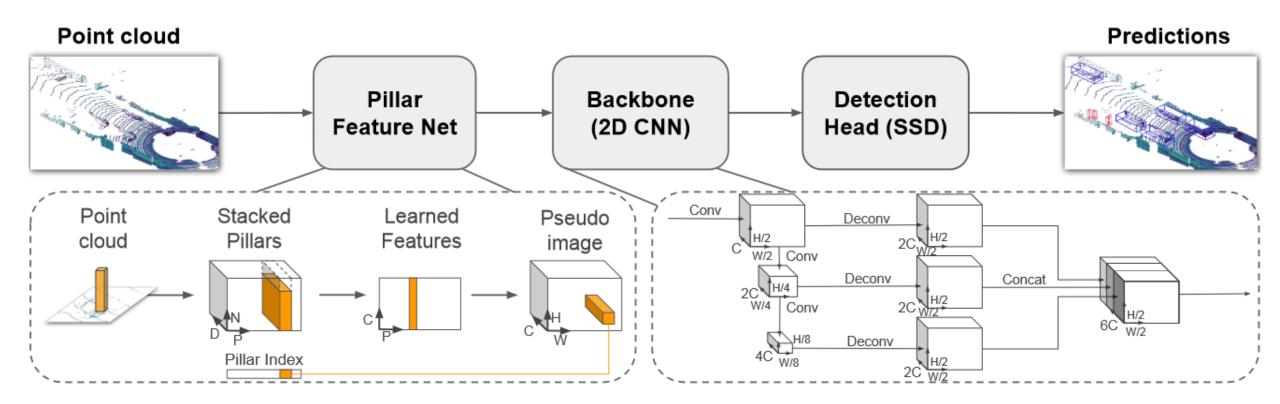
Evaluation on KITTI according to 3D IoU

Outline

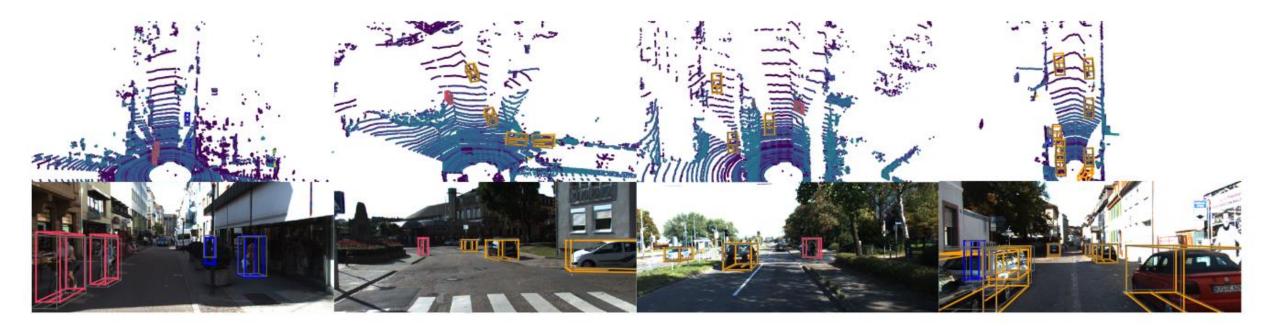
- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

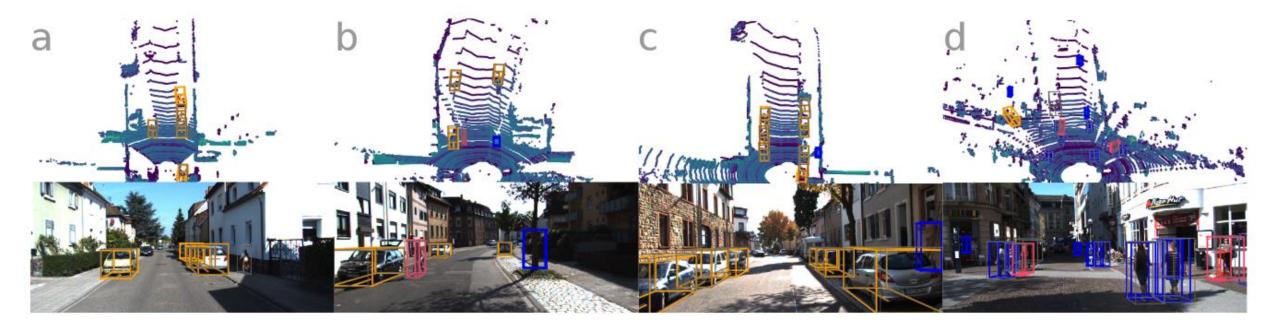
The X, Y, and Z directions aren't the same

PointPillars



PointPillars: Fast Encoders for Object Detection from Point Clouds Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, Oscar Beijbom. CVPR 2019





Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

What You See Is What You Get Exploiting Visibility for 3D Object Detection

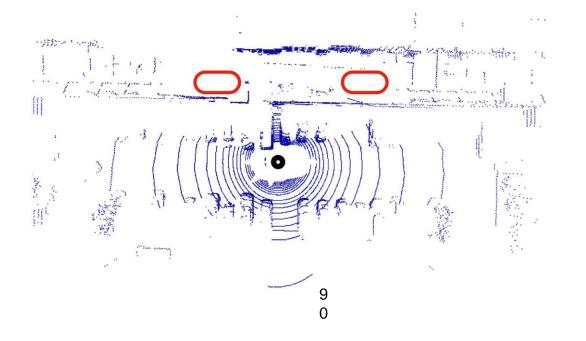
Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan

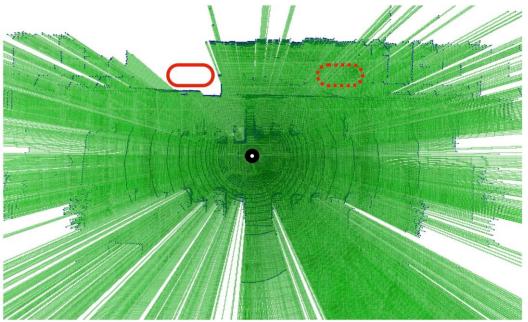
Carnegie Mellon University

Argo Al

CVPR 2020

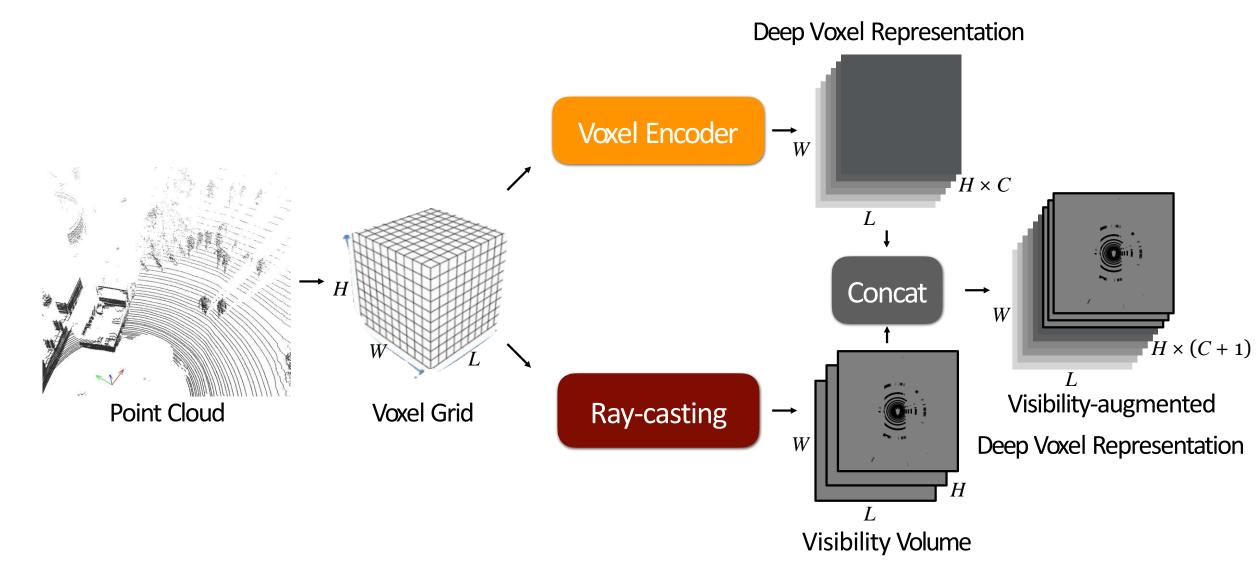
What is a good representation for LiDAR data?



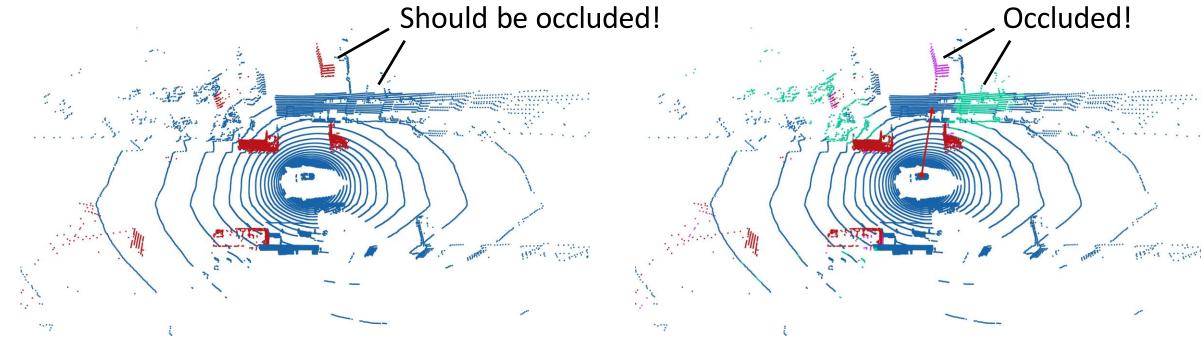


- LiDAR data provides more than just point measurements
- Rays emanating from the sensor to each 3D point must pass through free space
- Representing LiDAR data as (x, y, z)s fundamentally destroys such freespace information

A Simple Approach to Augment Visibility



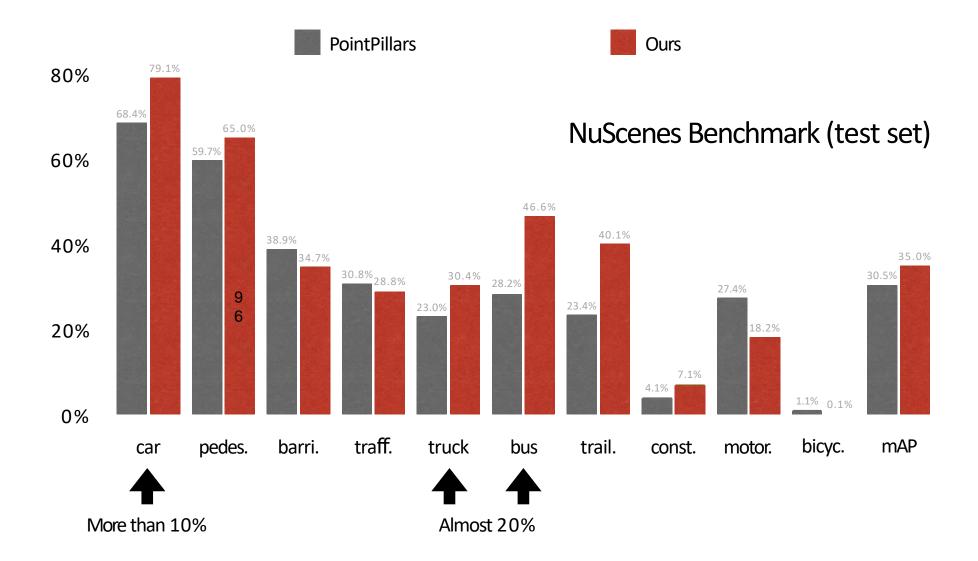
Visibility-aware LiDAR Synthesis



Naive Object Augmentation

PointPillars, Lang et al., CVPR'19 SECOND, Yan et al., Sensors'18 Visibility-aware Object Augmentation

Improve PointPillars by 4.5% in overall mAP



Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

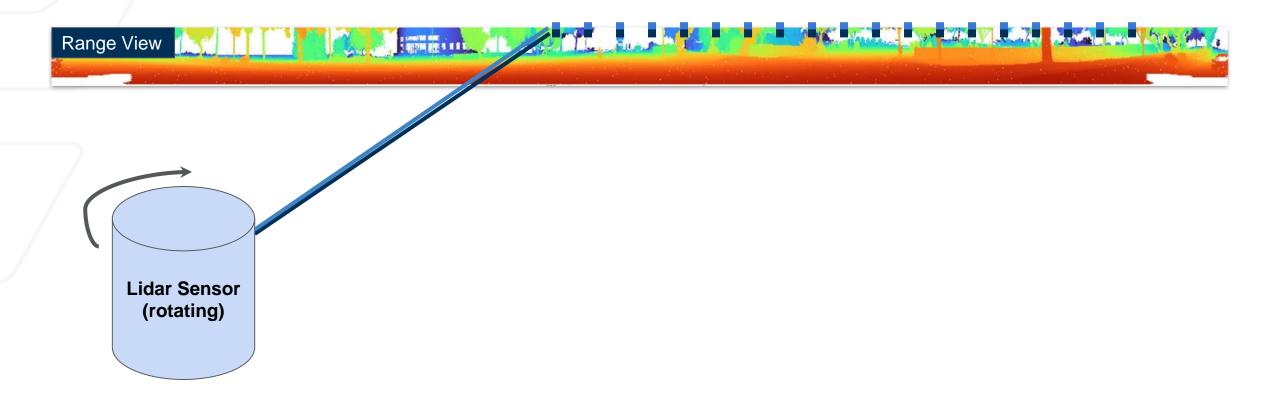
What Matters in Range View 3D Object Detection

https://github.com/benjaminrwilson/range-view-3d-detection

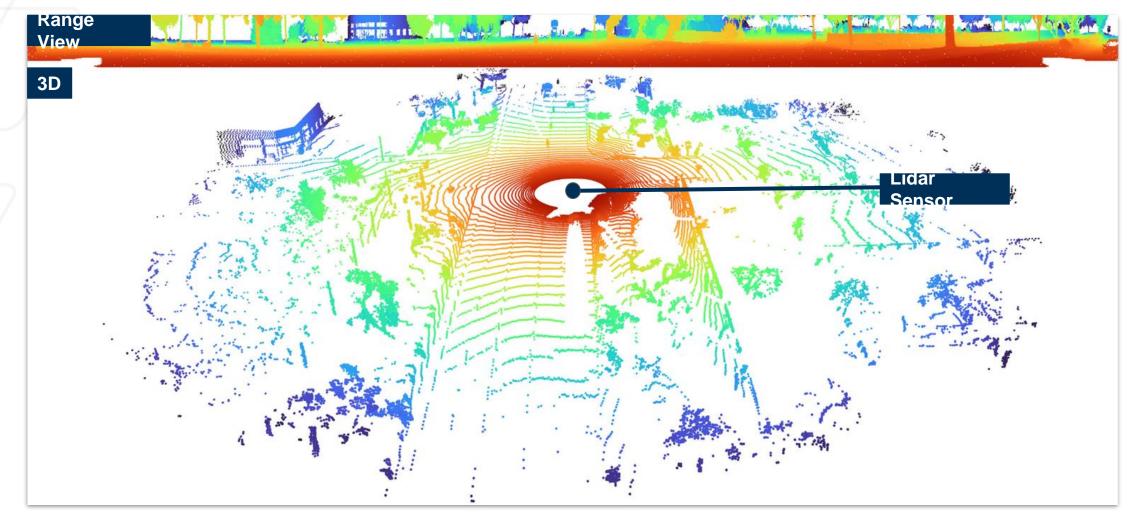
Benjamin Wilson, Nicholas Autio Mitchell, Jhony Kaesemodel Pontes, James Hays. "What Matters in Range View 3D Object Detection." 8th Annual Conference on Robot Learning. 2024.

99

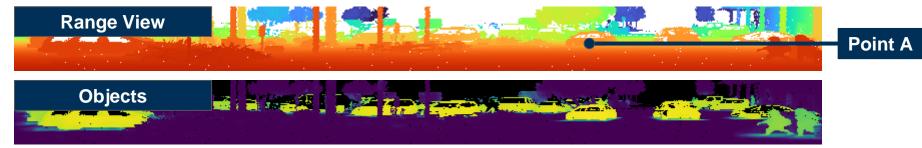
What is the Range View?

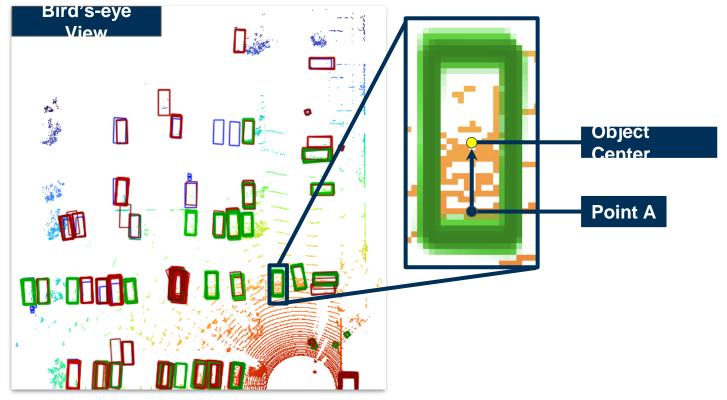


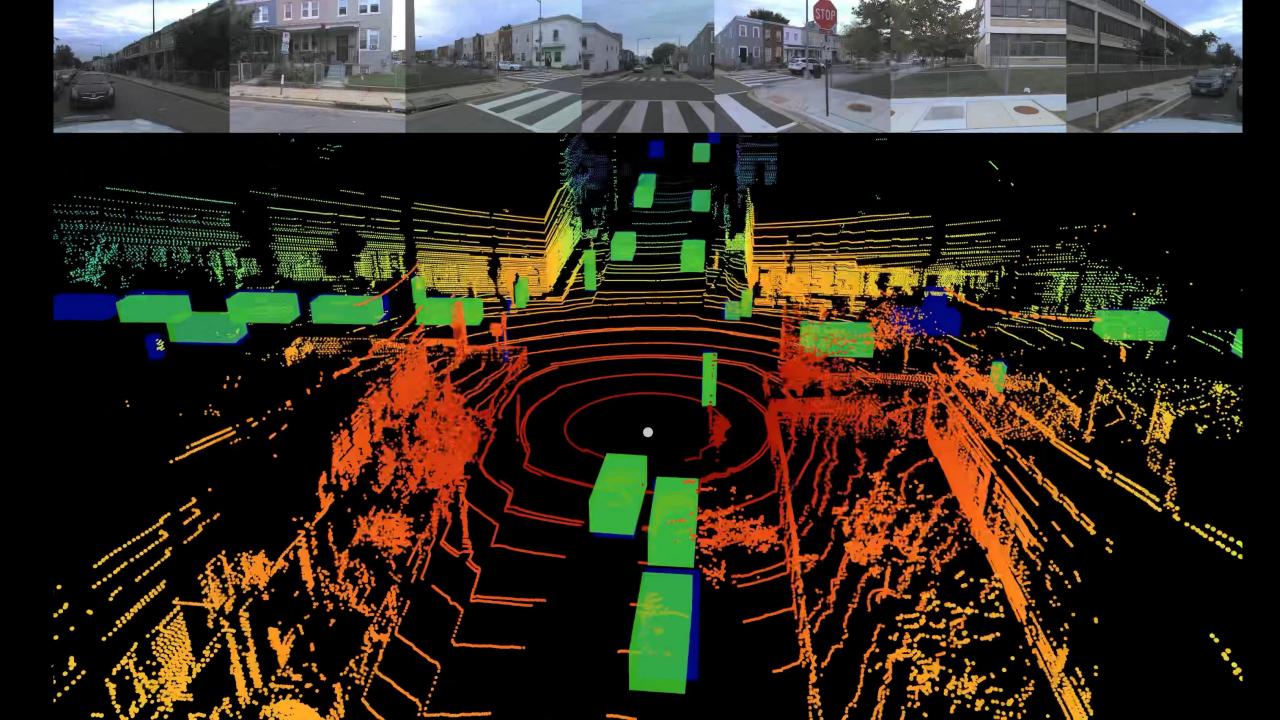
What is the Range View?

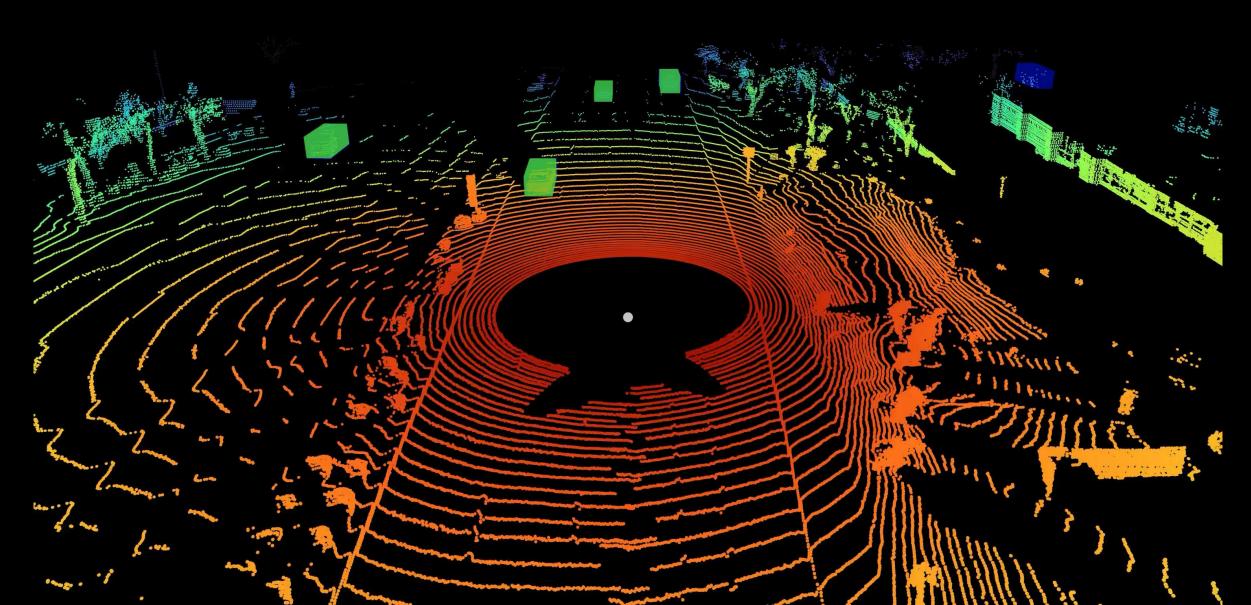


3D Object Detection in the Range View









Outline

- What is lidar?
- How do we make decisions about point clouds?
 - PointNet orderless point processing
 - VoxelNet voxel-based point processing
 - PointPillars bird's eye view point processing
 - Exploiting Visibility for 3D Object Detection
 - Range view object detection

Summary

- Popular CNN backbones aren't a direct fit for 3D point processing tasks.
- It's not clear how to best use deep learning on 3D data
 - Use a truly permutation invariant representation (PointNet)
 - Render multiple 2D views of the 3D data
 - Use a voxel representation (VoxelNet)
 - Use a bird's a view representation (PointPillars)
 - Use a range image