

- Optional project 0 is out.
- Project 1 will be out soon.
- Today
 - Survey results from Tuesday
 - Image projection - Szeliski 2.1 (2.1.4 in particular)
 - Filtering – Szeliski 3.2

Image formation

2.1	Geometric primitives and transformations	36
2.1.1	2D transformations	39
2.1.2	3D transformations	43
2.1.3	3D rotations	45
2.1.4	3D to 2D projections	50
2.1.5	Lens distortions	62
2.2	Photometric image formation	64
2.2.1	Lighting	65
2.2.2	Reflectance and shading	66
2.2.3	Optics	73
2.3	The digital camera	78
2.3.1	Sampling and aliasing	82
2.3.2	Color	85
2.3.3	Compression	97
2.4	Additional reading	98
2.5	Exercises	99

Introduction to Perception and Robotics

Georgia Tech CS 3630 Fall 2025
edition

Home	Book	Resources
------	------	-----------

Syllabus	Schedule	Projects
----------	----------	----------

Use of GenAI

I ask you to be present for the assignments, thoroughly understand them, and take full ownership of the artifacts you produce. Coding with AI is now a fact of life, and it's great, thrilling even! I encourage the use of tools like co-pilot and cursor to help you code.

However, the use of generative AI to code up an entire assignment with minimal involvement from your part (e.g., pasting the entire assignment in to an AI, or using "Agentic" AI to take care of the whole project) defeats the point of the class. Hence, this **falls under the academic dishonesty policy**. The purpose of the assignment is to build intuition and skill in robotics, which cannot be outsourced. Hence, I expect you to *personally* embark on each TODO in the coding assignments, being fully engaged. This includes using AI tools as you go along, but *not* to substitute your own understanding.

The assignments will frequently be accompanied with reflection questions designed to help assess whether you have fully grokked the methods/algorithms/techniques the assignments are designed to help you learn. I expect that you to be the author of the answers, not the prompter.

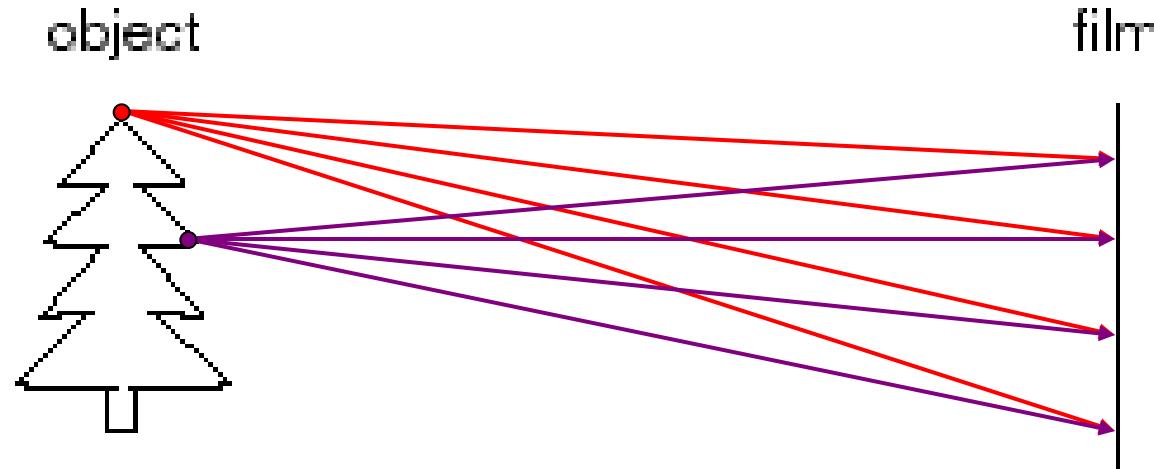
The Geometry of Image Formation

Mapping between image and world coordinates

- Pinhole camera model
- Projective geometry
 - Vanishing points and lines
- Projection matrix

What do you need to make a camera from scratch?

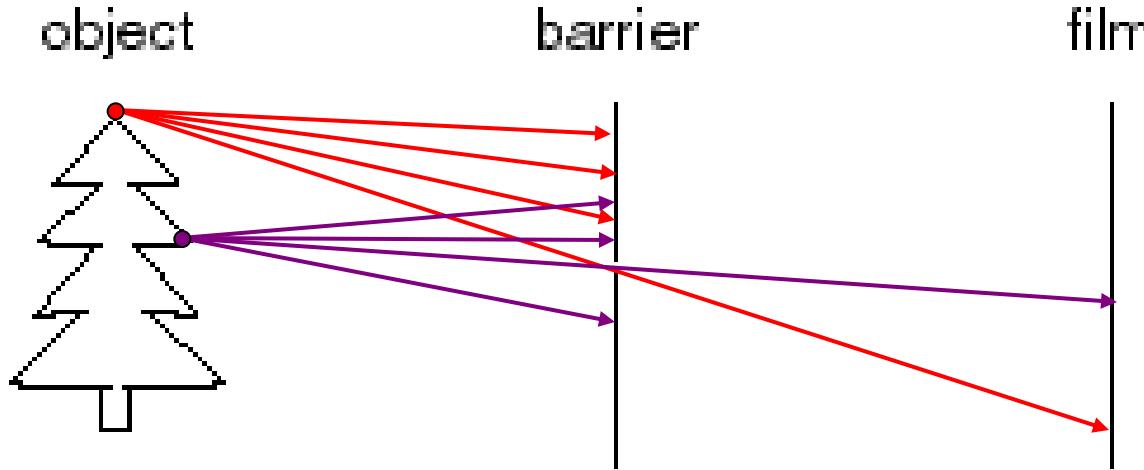
Image formation



Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

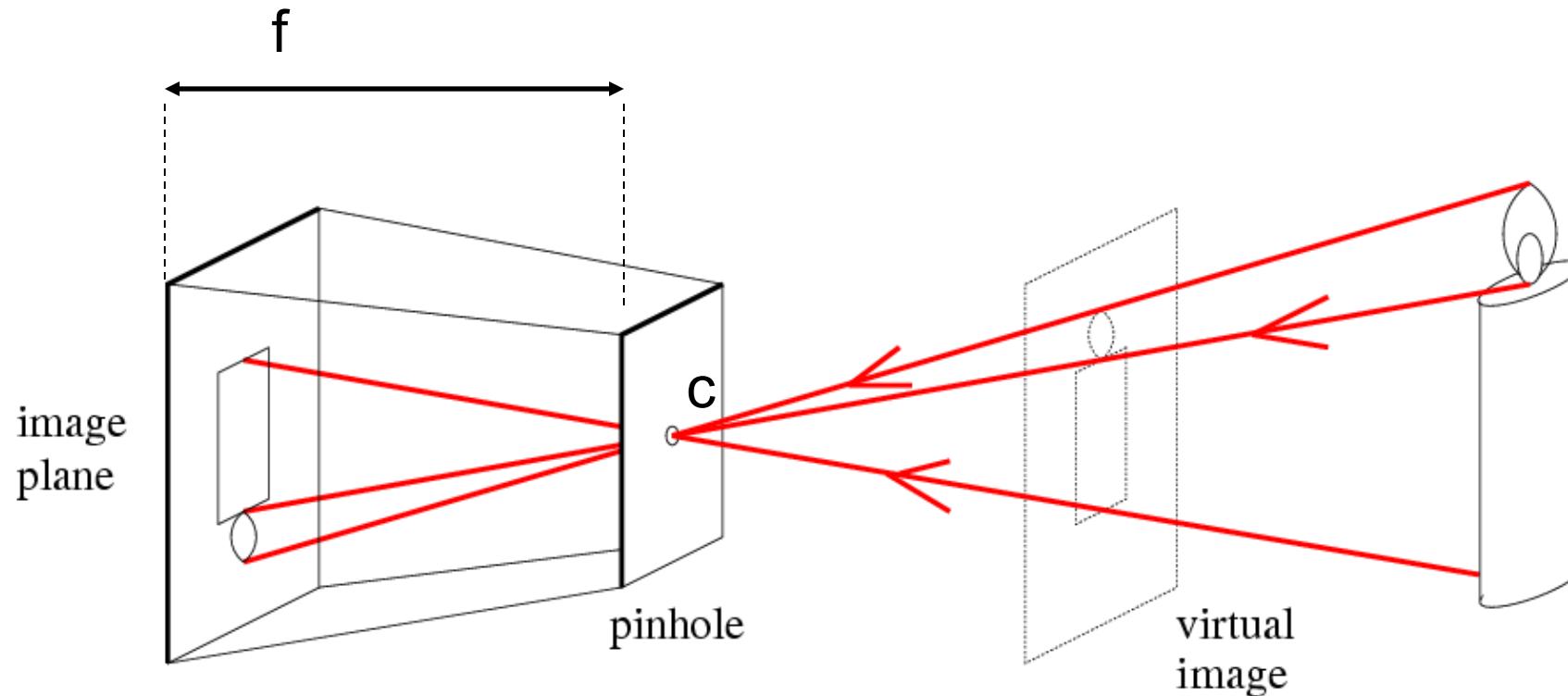
Pinhole camera



Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the **aperture**

Pinhole camera



f = focal length

c = center of the camera

Camera obscura: the pre-camera

- Known during classical period in China and Greece (e.g. Mo-Ti, China, 470BC to 390BC)

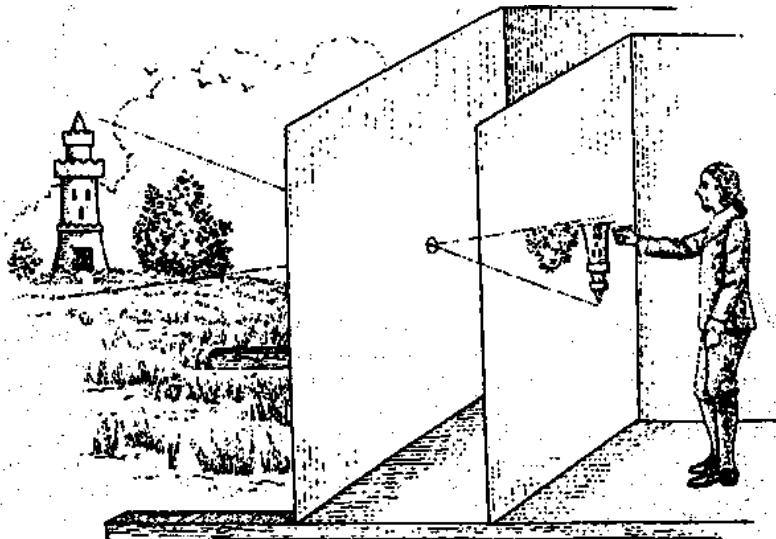


Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Photo by Seth Ilys

Camera Obscura used for Tracing

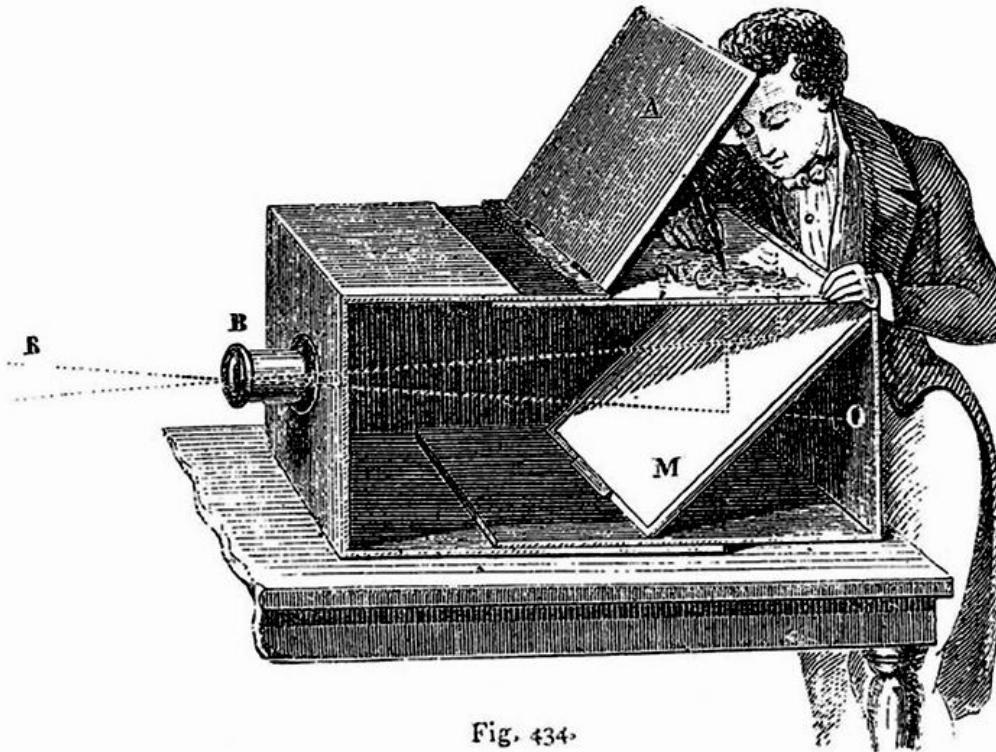


Fig. 434.

Lens Based Camera Obscura, 1568

Accidental Cameras

Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture.
Antonio Torralba, William T. Freeman

Accidental Cameras

a) Input (occluder present)

b) Reference (occluder absent)

c) Difference image (b-a)

d) Crop upside down

e) True view

https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_though_my_trees_st/

First Photograph

Oldest surviving photograph
– Took 8 hours on pewter plate

Joseph Niepce, 1826

Photograph of the first photograph

Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes

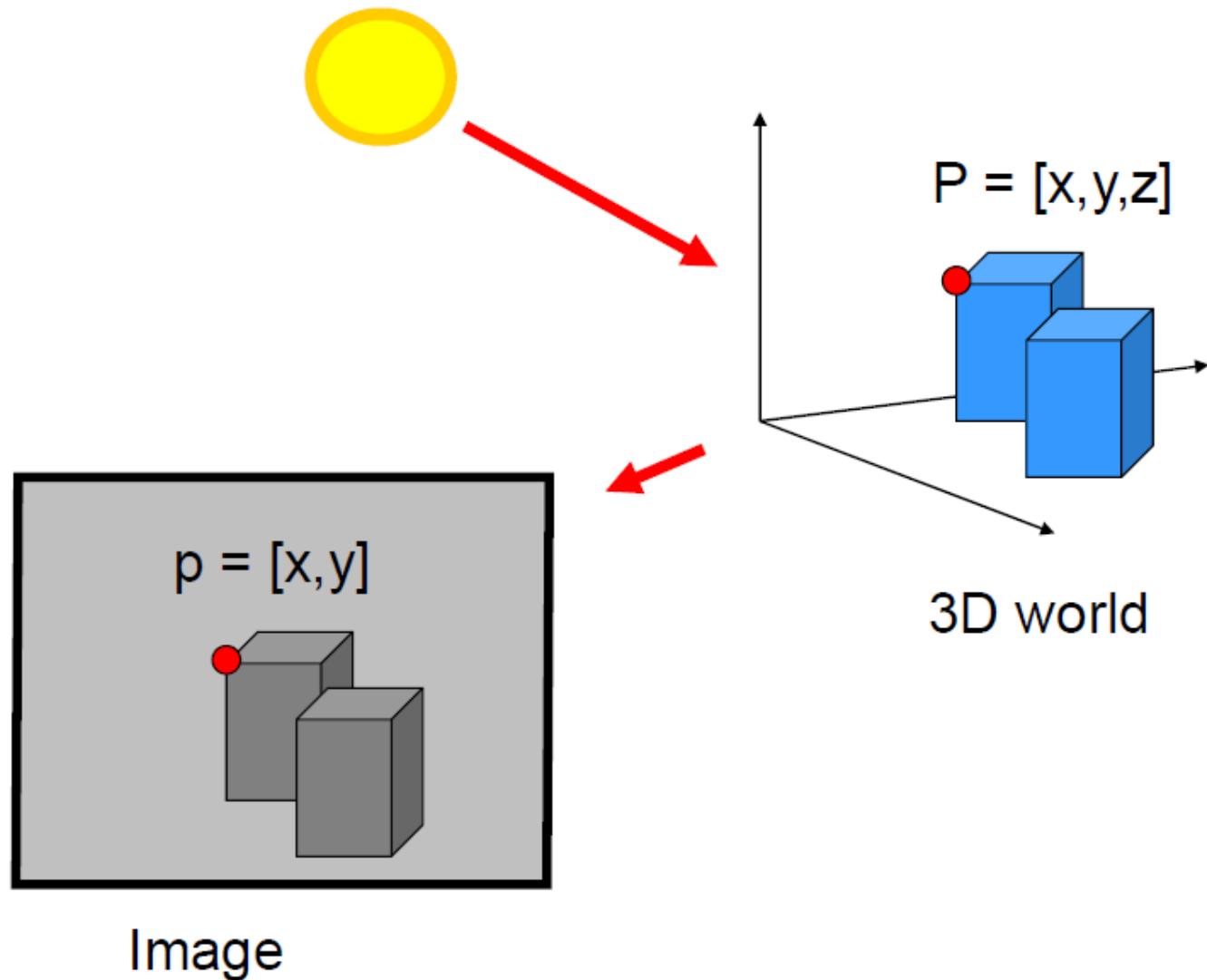
“Louis Daguerre—the inventor of daguerreotype—shot what is not only the world's oldest photograph of Paris, but also the first photo with humans. The 10-minute long exposure was taken in 1839 in Place de la République and it's just possible to make out two blurry figures in the left-hand corner.”

[Source](#)

Great history lesson on the chemistry and engineering challenges of early photography from the “Technology Connections” YouTube channel.

https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV

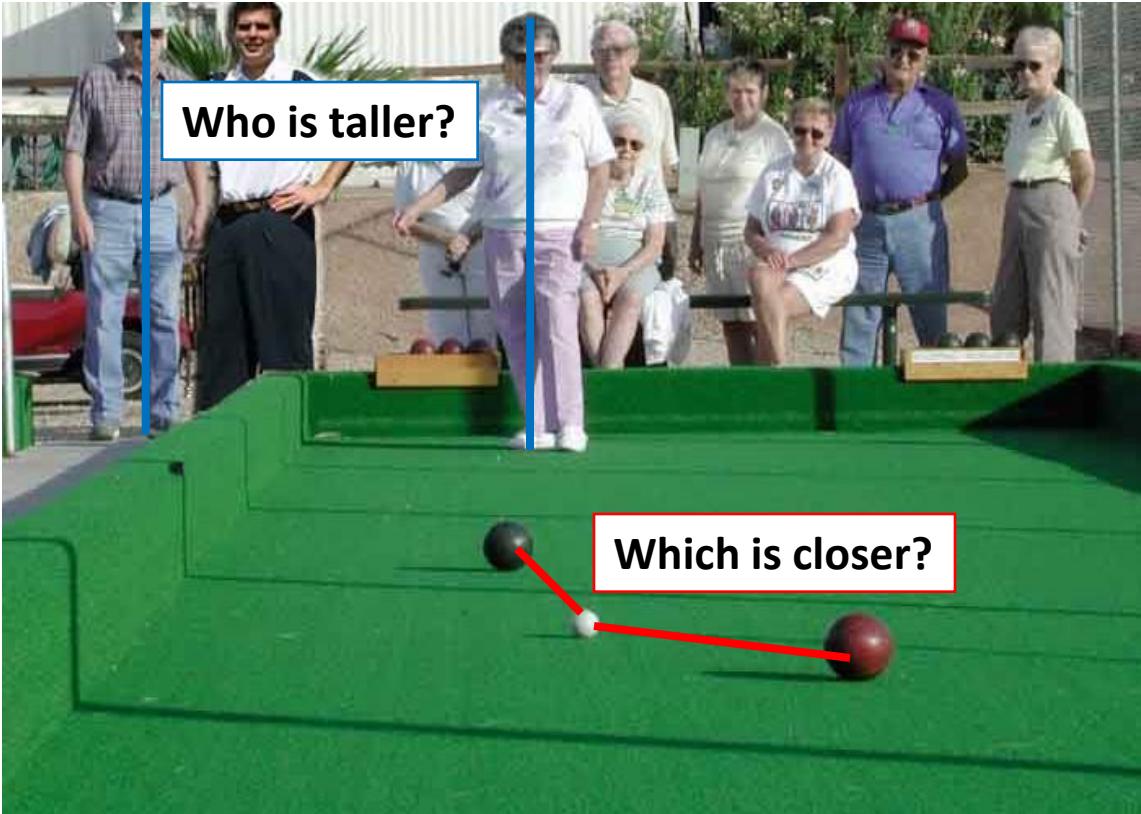
From the 3D to 2D



Projective Geometry

What is lost?

- Length



Length and area are not preserved

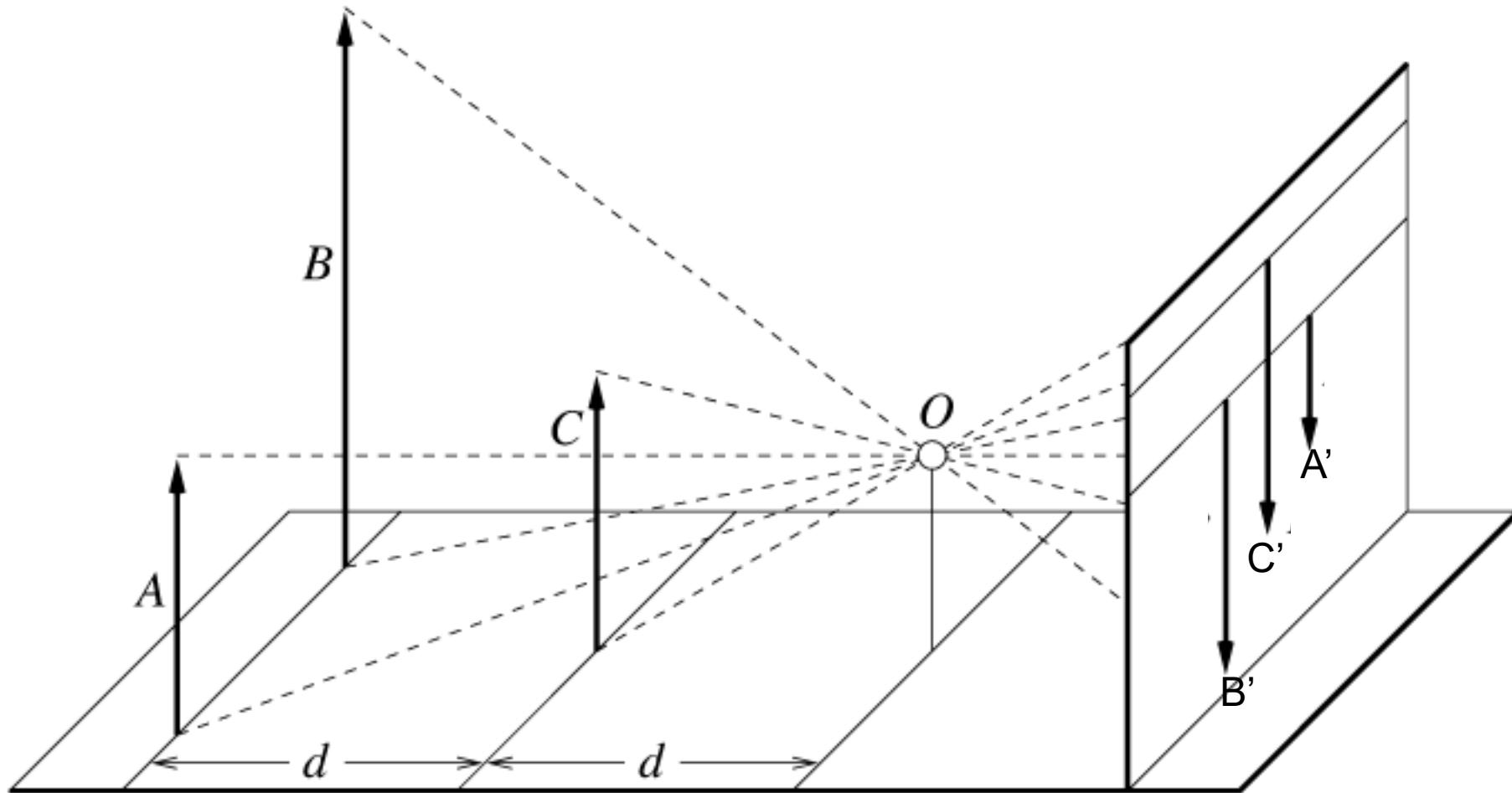
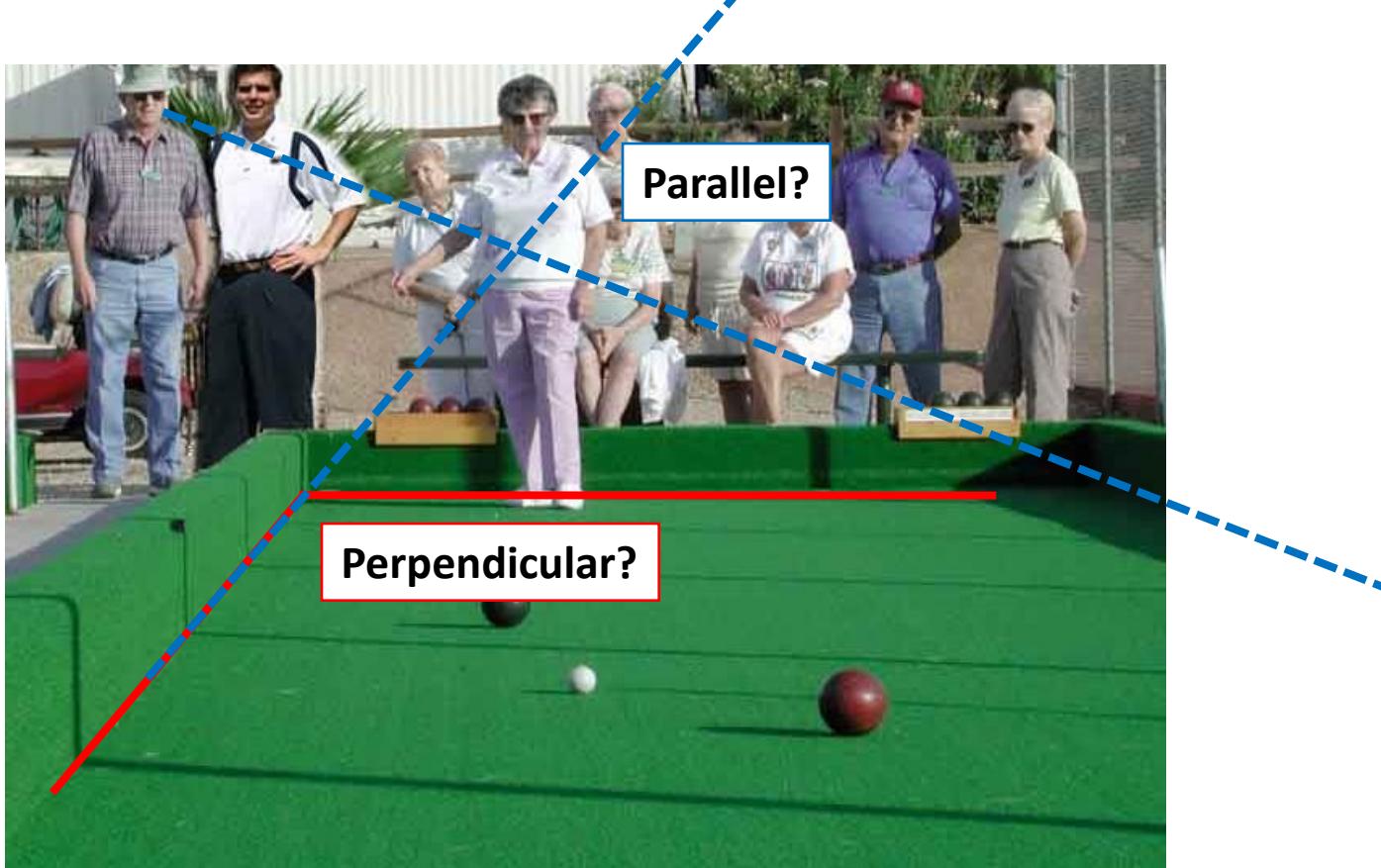


Figure by David Forsyth

Projective Geometry

What is lost?

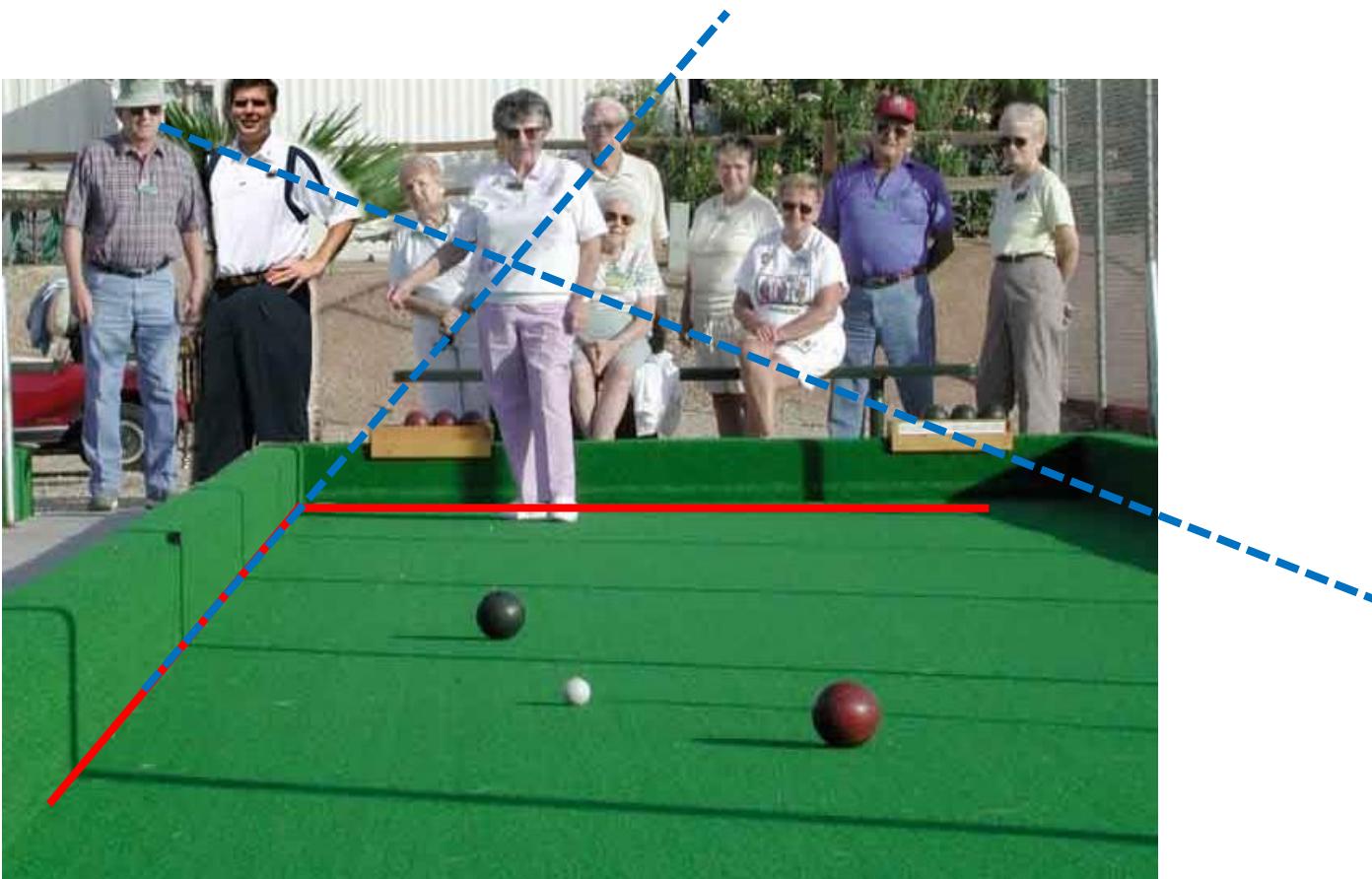
- Length
- Angles



Projective Geometry

What is preserved?

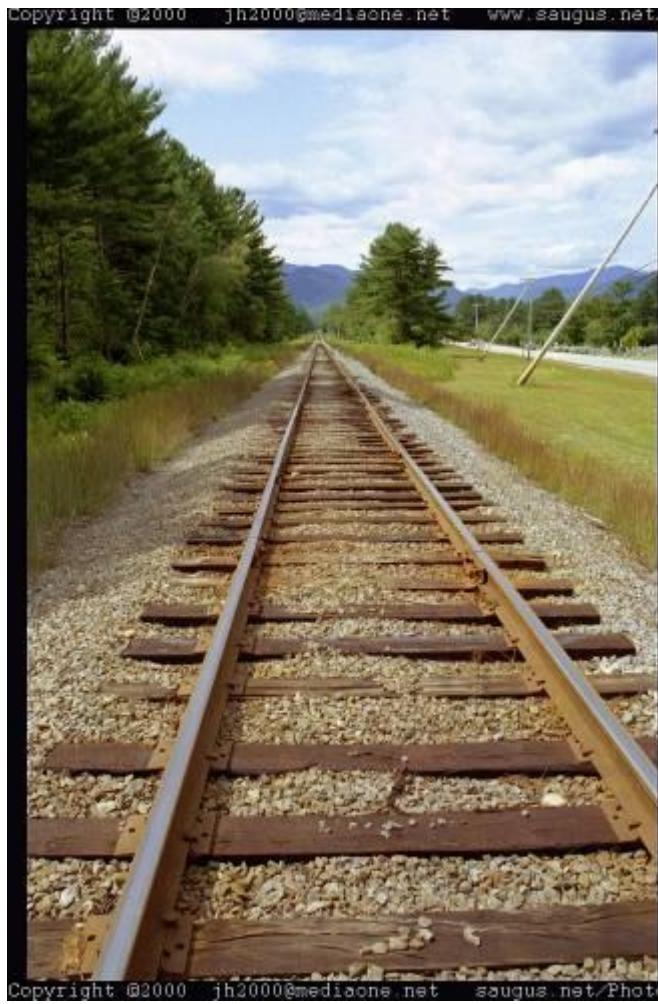
- Straight lines are still straight



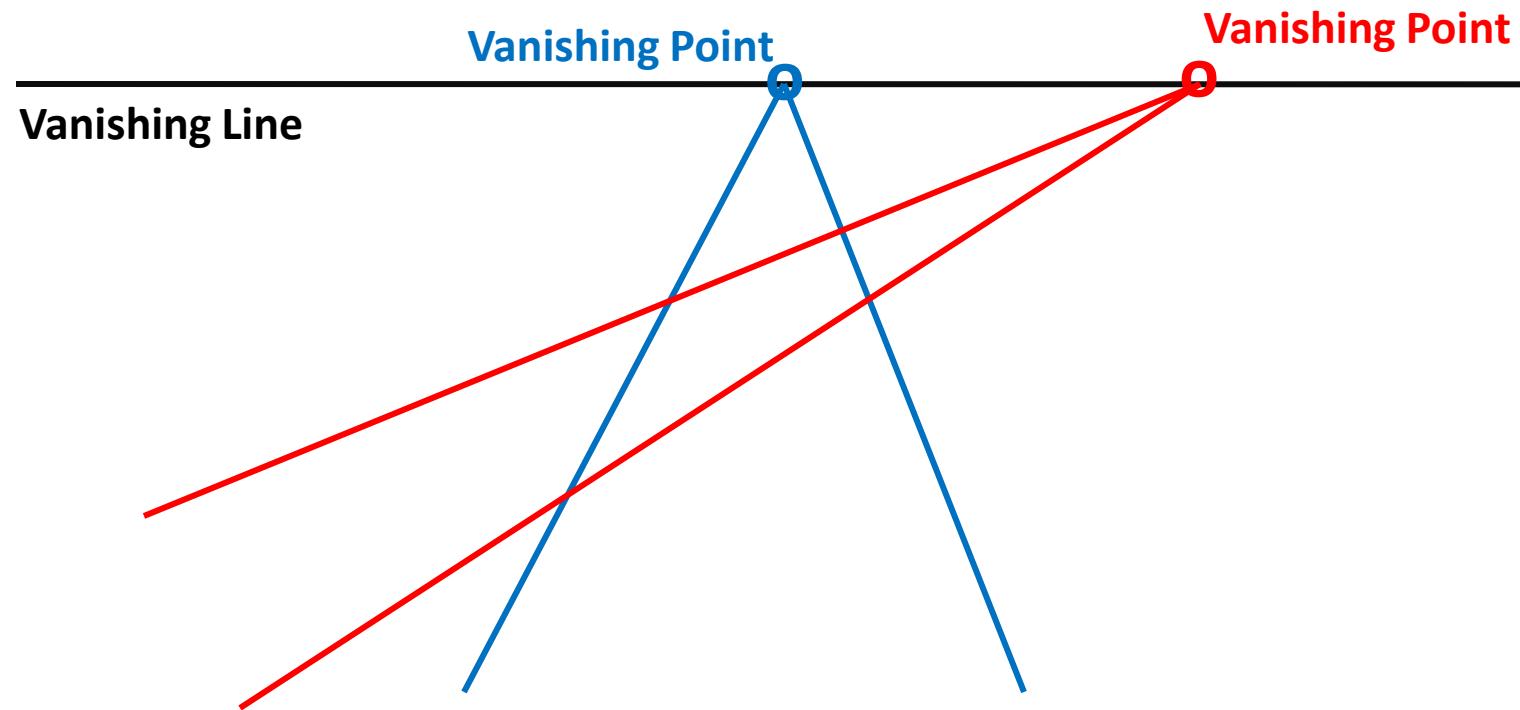
The pinhole camera model preserves straight lines, but real cameras might not

Vanishing points and lines

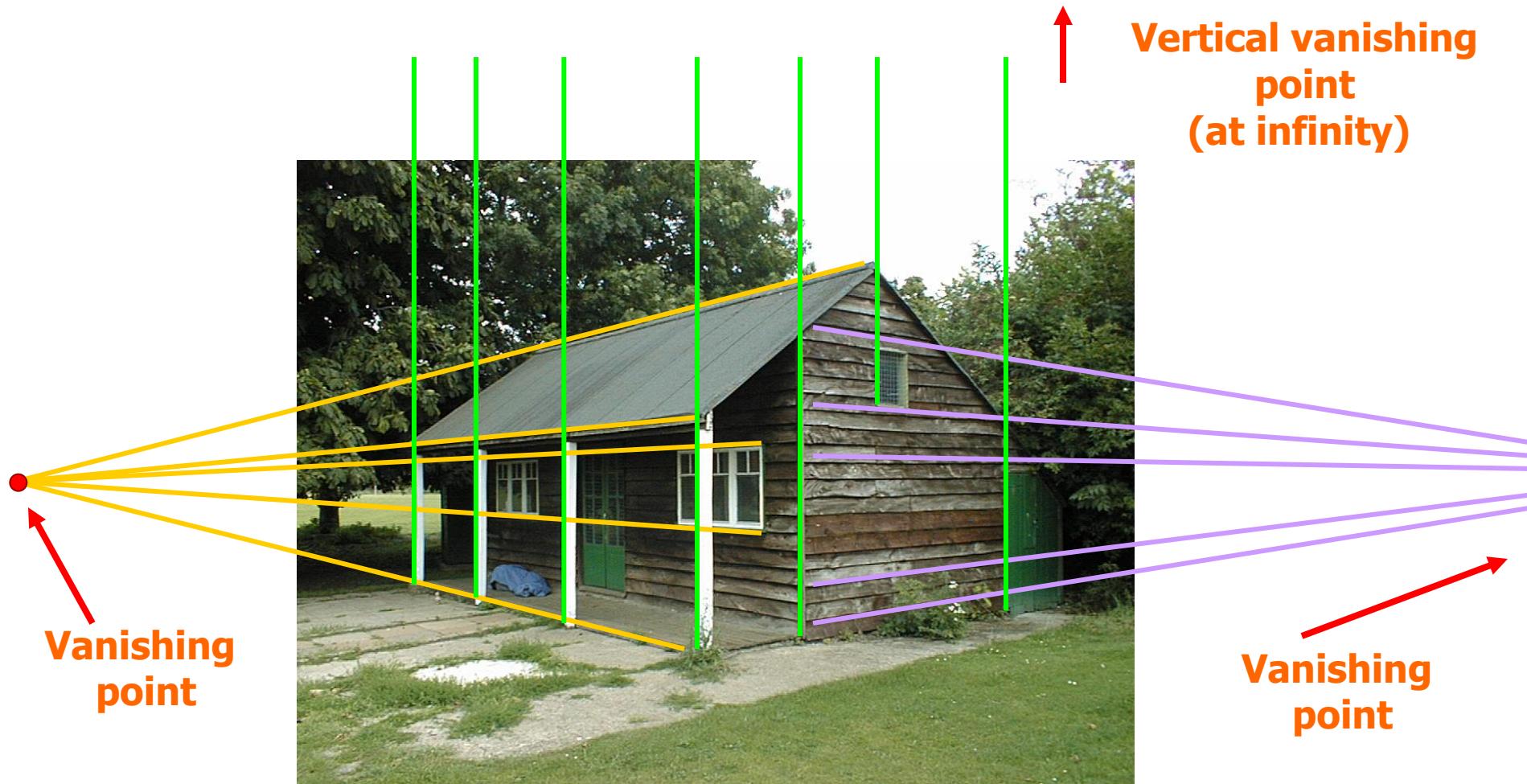
Parallel lines in the world intersect in the image at a “vanishing point”



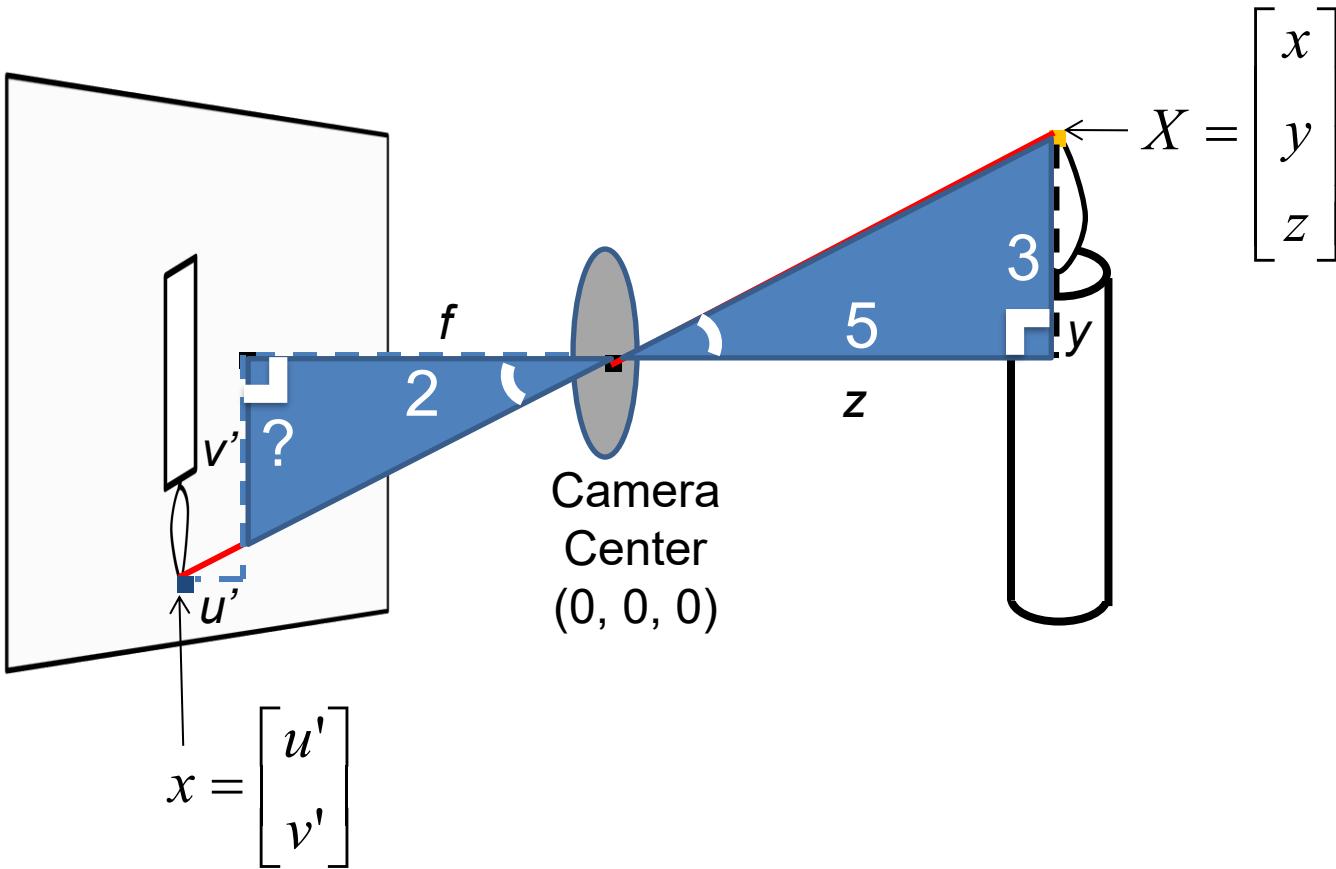
Vanishing points and lines



Vanishing points and lines



Projection: world coordinates \rightarrow image coordinates



If $x = 2$, $y = 3$, $z = 5$, and
 $f = 2$

What are u' and v' ?

$$\frac{v'}{-f} = \frac{y}{z}$$

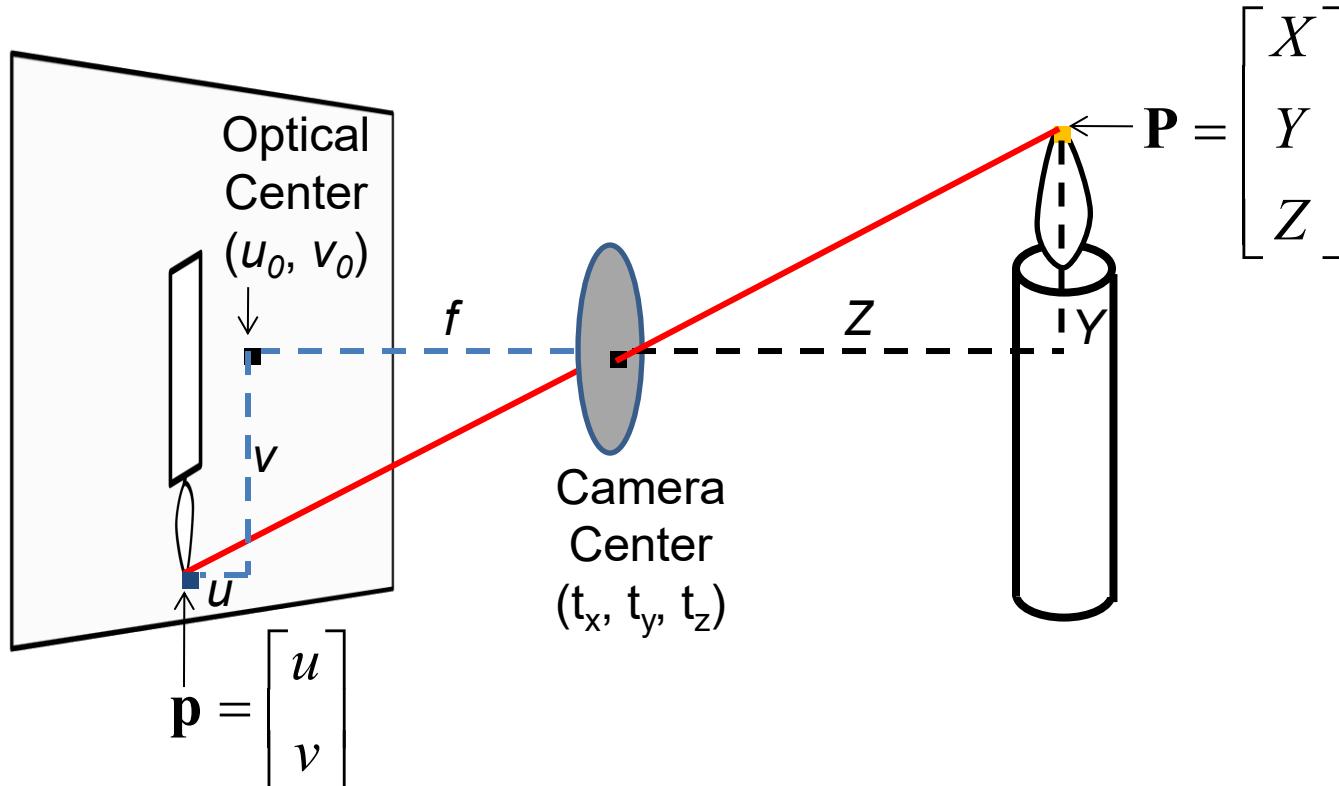
$$u' = -x * \frac{f}{z}$$

$$v' = -y * \frac{f}{z}$$

$$u' = -2 * \frac{2}{5}$$

$$v' = -3 * \frac{2}{5}$$

Projection: world coordinates \rightarrow image coordinates



How do we handle the general case?

Interlude: why does this matter?

Relating multiple views

Photo Tourism

Exploring photo collections in 3D

Noah Snavely Steven M. Seitz Richard Szeliski
University of Washington *Microsoft Research*

SIGGRAPH 2006

Upload Video

Drop Video Here
- or -
Click to Upload

3D Reconstruction (Point Cloud and Camera Poses)

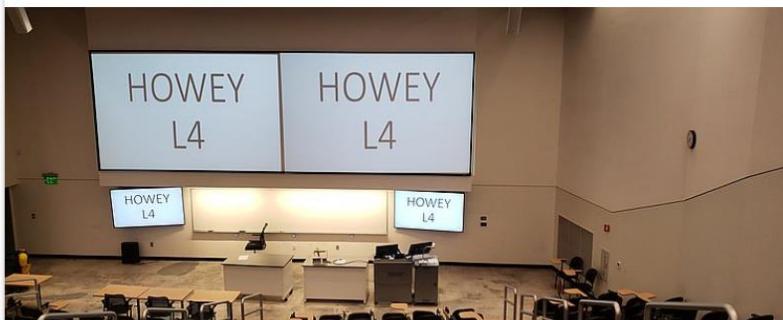
Reconstruction Success (1 frames). Waiting for visualization.

 3D Model

Upload Images

mQ_RIn5jWQnd_760x302_XtmU....jpg

38.6 KB



Reconstruct

Clear

Select a Prediction Mode

3. Method

We introduce VGGT, a large transformer that ingests a set of images as input and produces a variety of 3D quantities as output. We start by introducing the problem in Sec. 3.1, followed by our architecture in Sec. 3.2 and its prediction heads in Sec. 3.3, and finally the training setup in Sec. 3.4.

3.1. Problem definition and notation

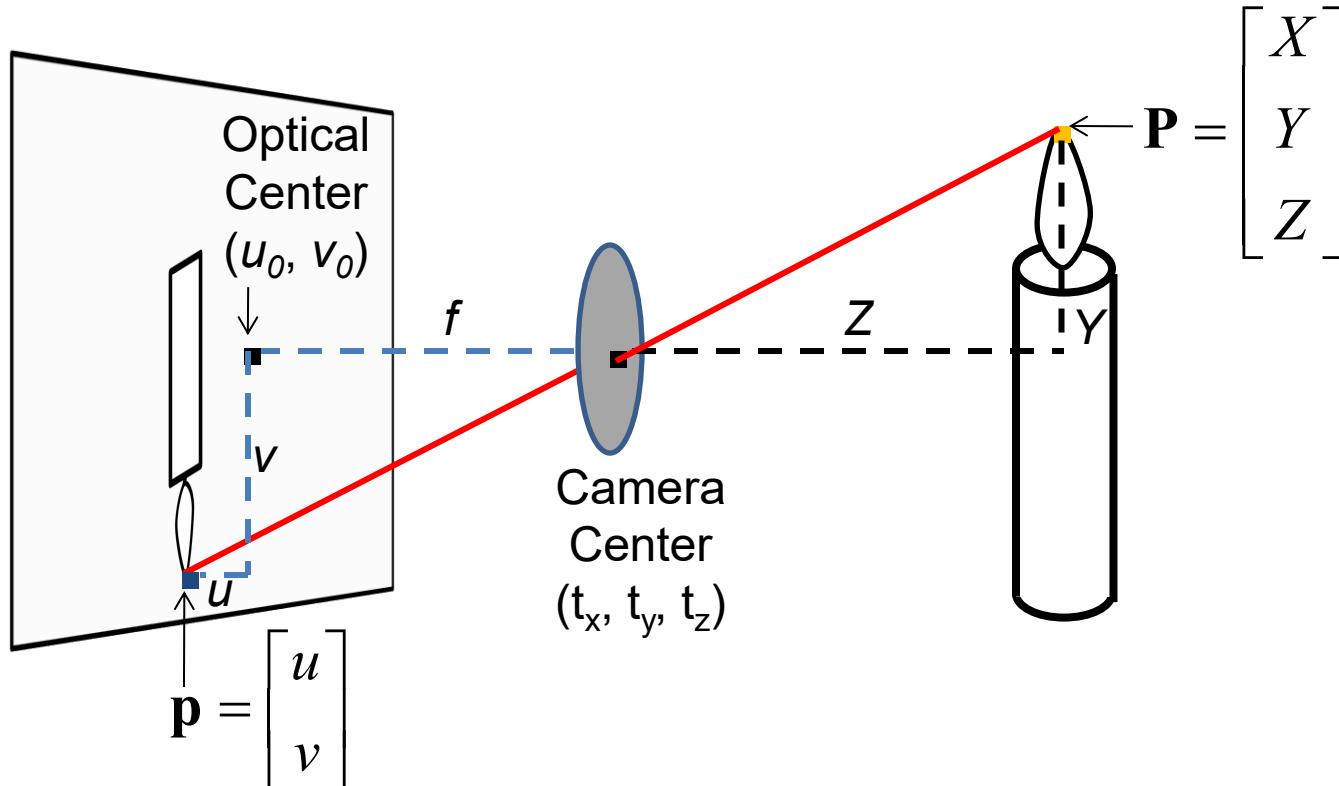
The input is a sequence $(I_i)_{i=1}^N$ of N RGB images $I_i \in \mathbb{R}^{3 \times H \times W}$, observing the same 3D scene. VGGT’s transformer is a function that maps this sequence to a corresponding set of 3D annotations, one per frame:

$$f((I_i)_{i=1}^N) = (\mathbf{g}_i, D_i, P_i, T_i)_{i=1}^N. \quad (1)$$

The transformer thus maps each image I_i to its camera parameters $\mathbf{g}_i \in \mathbb{R}^9$ (intrinsics and extrinsics), its depth map $D_i \in \mathbb{R}^{H \times W}$, its point map $P_i \in \mathbb{R}^{3 \times H \times W}$, and a grid $T_i \in \mathbb{R}^{C \times H \times W}$ of C -dimensional features for point tracking. We explain next how these are defined.

For the **camera parameters** \mathbf{g}_i , we use the parametrization from [125] and set $\mathbf{g} = [\mathbf{q}, \mathbf{t}, \mathbf{f}]$ which is the concatenation of the rotation quaternion $\mathbf{q} \in \mathbb{R}^4$, the translation vector $\mathbf{t} \in \mathbb{R}^3$, and the field of view $\mathbf{f} \in \mathbb{R}^2$. We assume that the camera’s principal point is at the image center, which is common in SfM frameworks [95, 125].

Projection: world coordinates \rightarrow image coordinates



How do we handle the general case?

Homogeneous coordinates

Conversion

Converting to *homogeneous* coordinates

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image
coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene
coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Homogeneous coordinates

Invariant to scaling

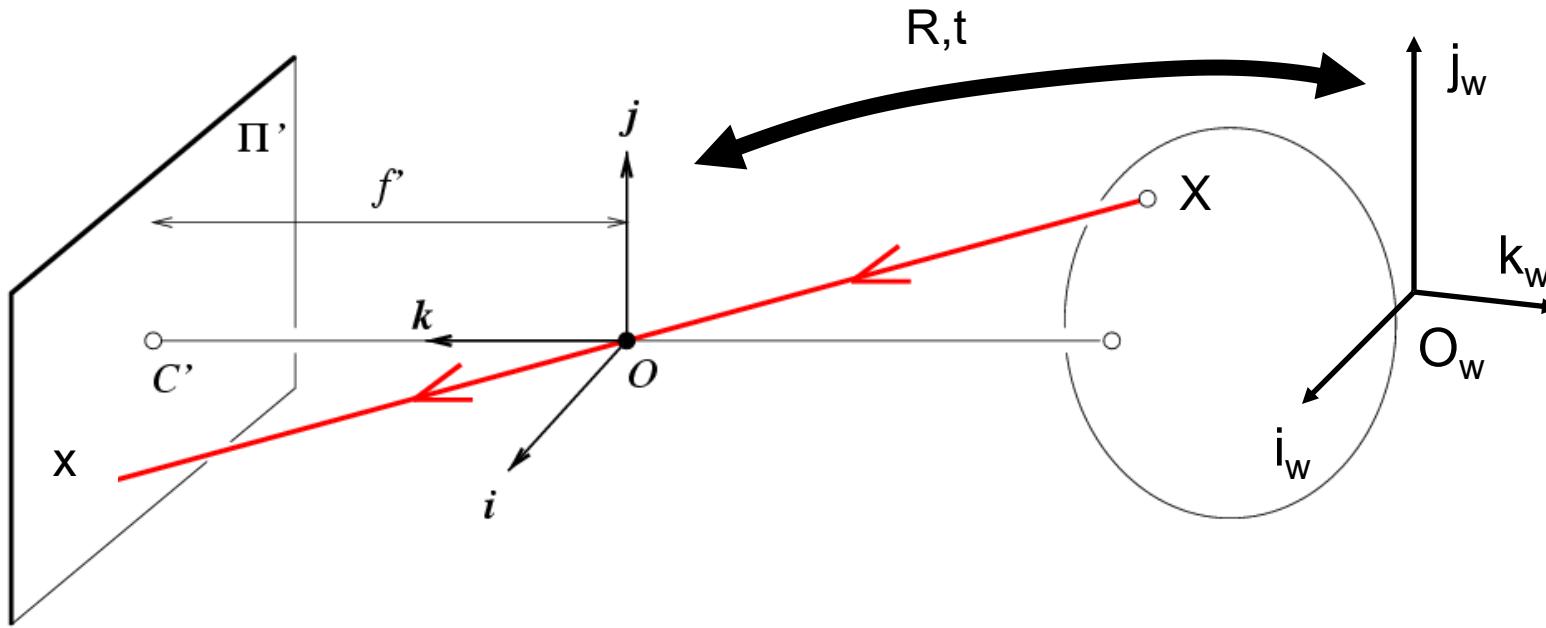
$$k \begin{bmatrix} x \\ y \\ w \end{bmatrix} = \begin{bmatrix} kx \\ ky \\ kw \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{kx}{kw} \\ \frac{ky}{kw} \end{bmatrix} = \begin{bmatrix} \frac{x}{w} \\ \frac{y}{w} \end{bmatrix}$$

Homogeneous
Coordinates

Cartesian
Coordinates

Point in Cartesian is ray in Homogeneous

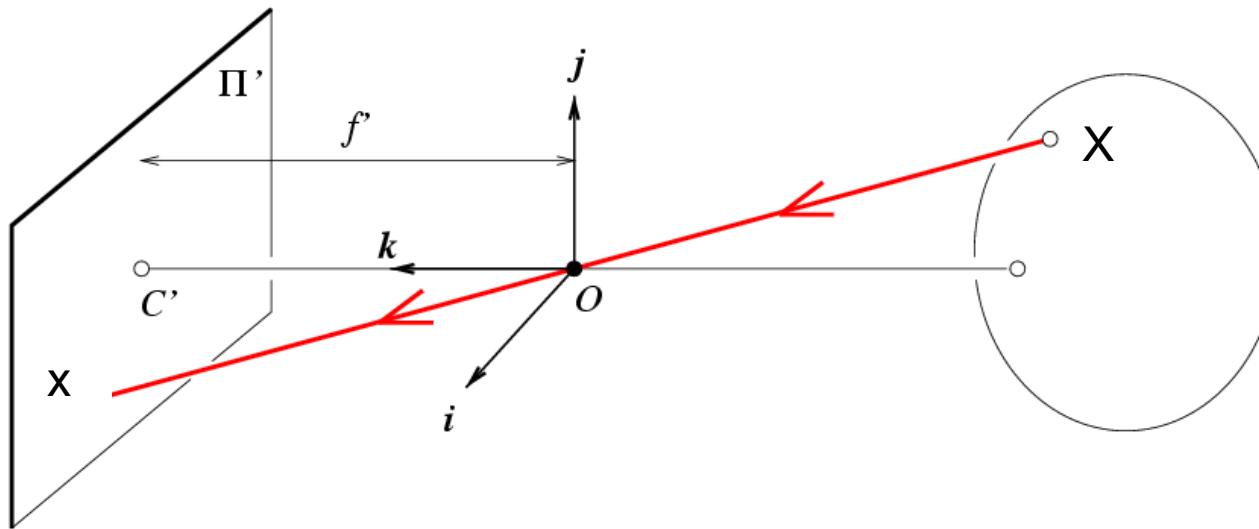
Projection matrix



$$\mathbf{x} = \mathbf{K}[\mathbf{R} \quad \mathbf{t}] \mathbf{X}$$

\mathbf{x} : Image Coordinates: $(u, v, 1)$
 \mathbf{K} : Intrinsic Matrix (3x3)
 \mathbf{R} : Rotation (3x3)
 \mathbf{t} : Translation (3x1)
 \mathbf{X} : World Coordinates: $(X, Y, Z, 1)$

Projection matrix



Intrinsic Assumptions

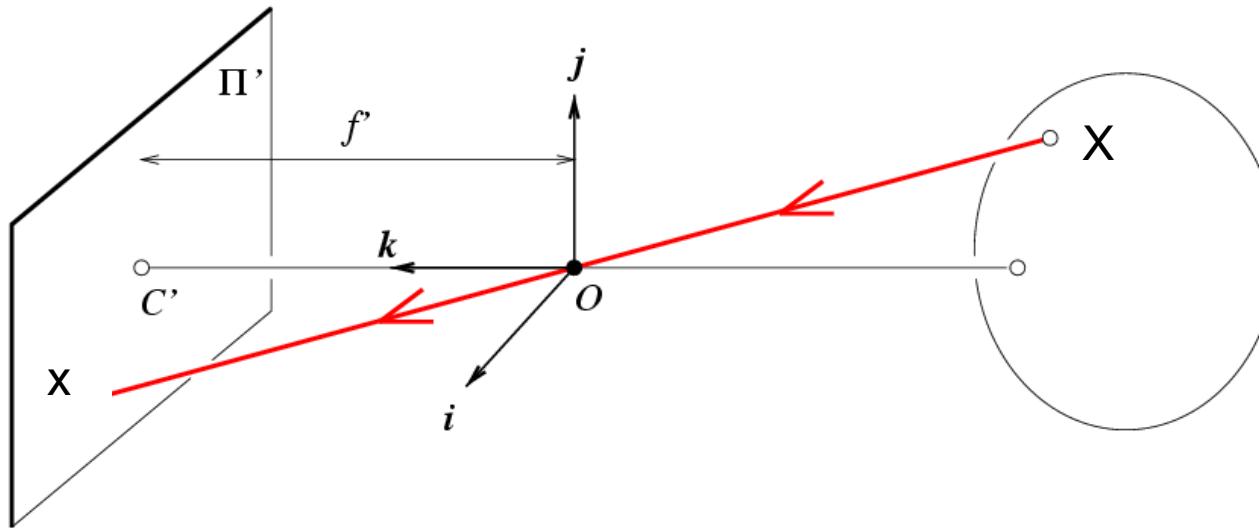
- Unit aspect ratio
- Optical center at (0,0)
- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \rightarrow \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Projection matrix



Intrinsic Assumptions

- Unit aspect ratio
- Optical center at $(0,0)$
- No skew

Extrinsic Assumptions

- No rotation
- Camera at $(0,0,0)$

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \xrightarrow{\text{w}} w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: center pixel is (0,0)

Intrinsic Assumptions

- Unit aspect ratio
- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \quad \xrightarrow{\hspace{1cm}} \quad w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 \\ 0 & f & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

Intrinsic Assumptions

- No skew

Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \rightarrow \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

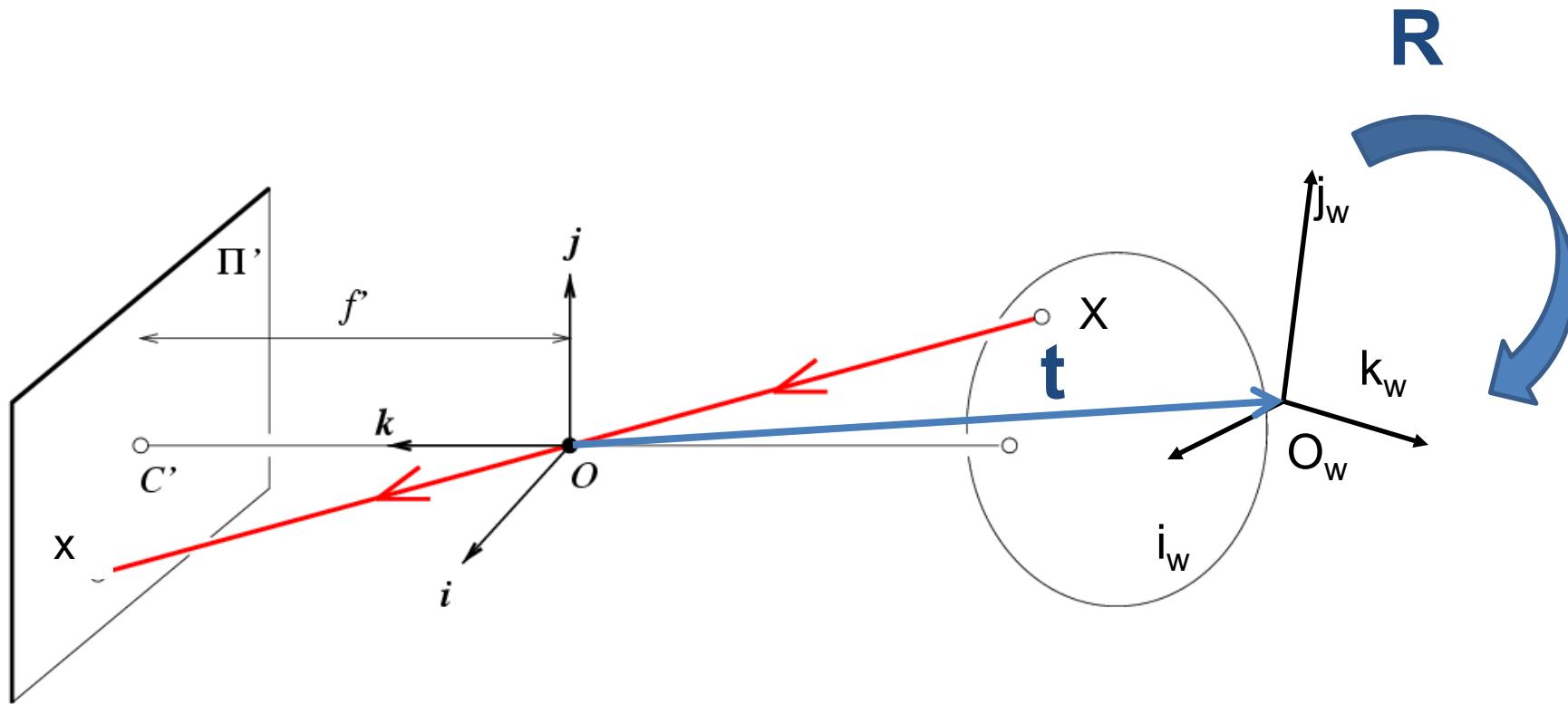
Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{X} \xrightarrow{\text{blue arrow}} w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Oriented and Translated Camera



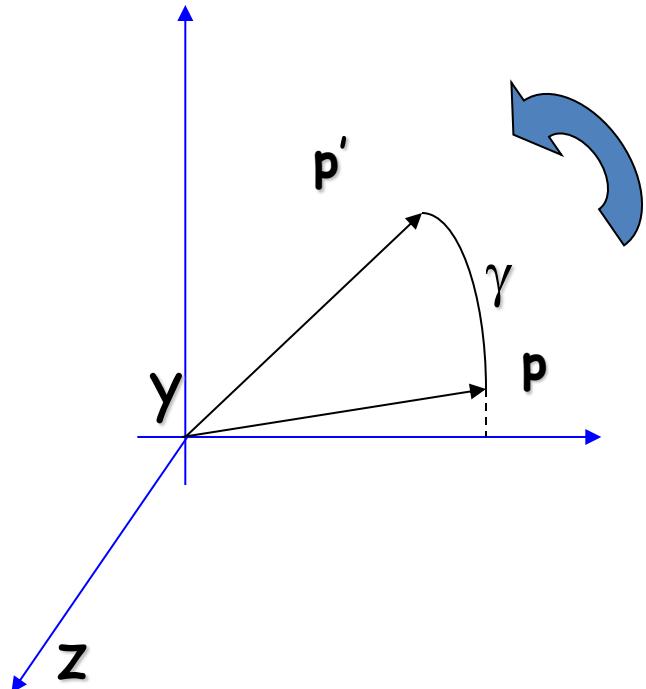
Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
• No rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{t} \end{bmatrix} \mathbf{X} \quad \xrightarrow{\text{w}} \quad w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

3D Rotation of Points

Rotation around the coordinate axes, **counter-clockwise**:



$$R_x(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_y(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

$$R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Allow camera rotation

$$\mathbf{x} = \mathbf{K} \begin{bmatrix} \mathbf{R} & \mathbf{t} \end{bmatrix} \mathbf{X}$$

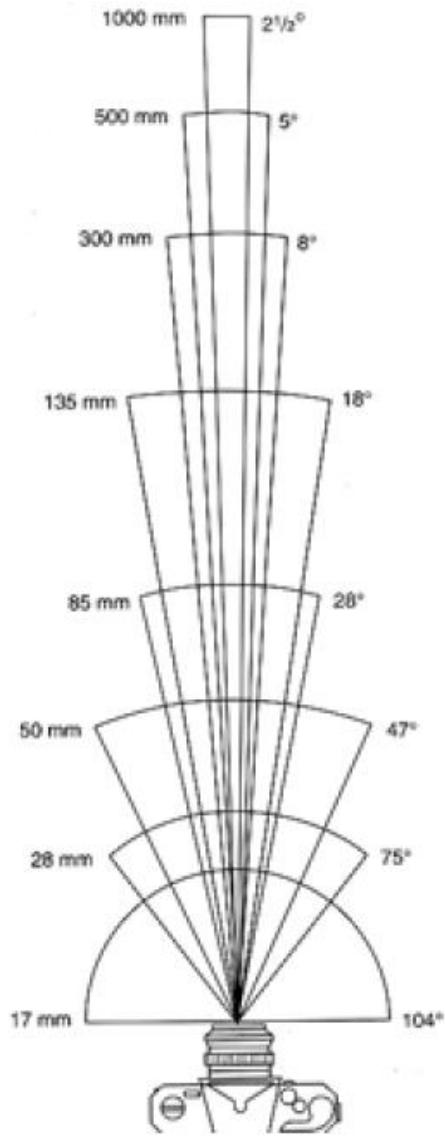
$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Degrees of freedom

$$\mathbf{x} = \mathbf{K}[\mathbf{R} \quad \mathbf{t}] \mathbf{X}$$

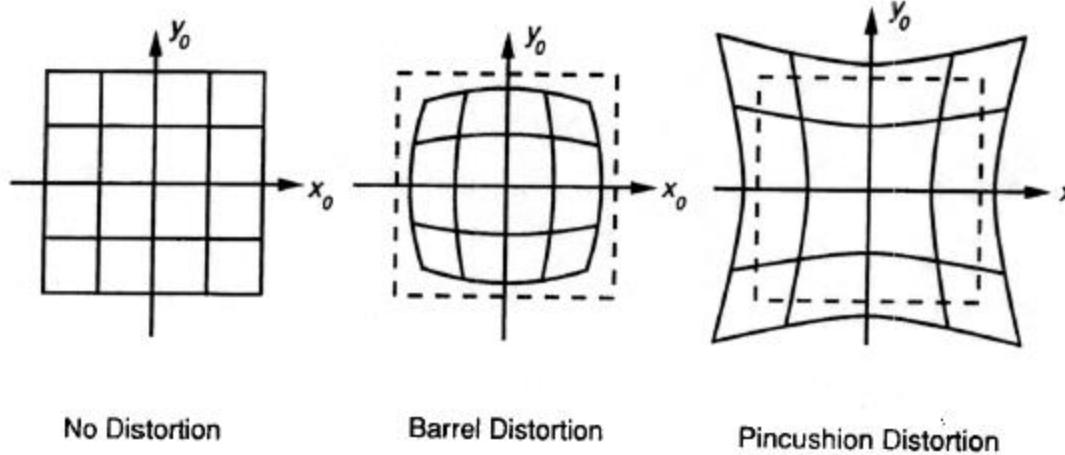
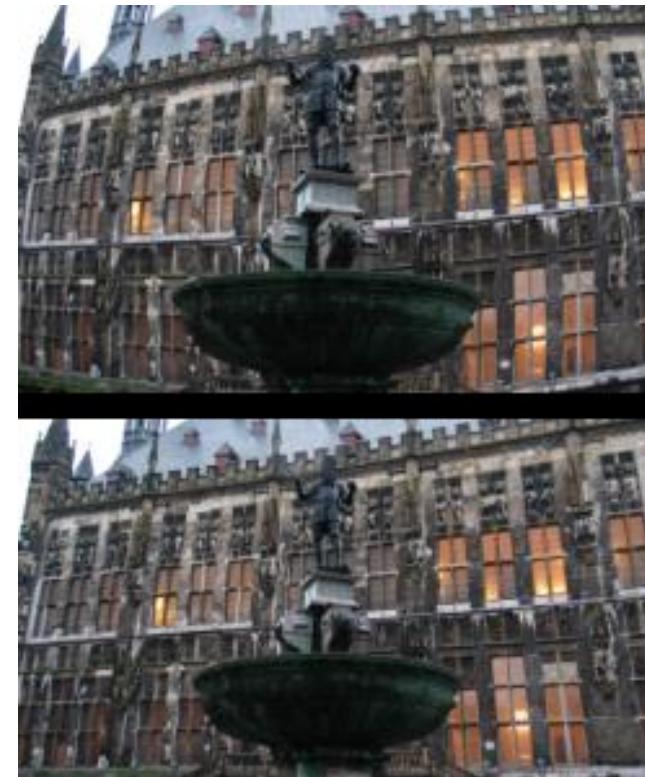
$$w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 \\ 0 & \beta & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Field of View (Zoom, focal length)



From London and Upton

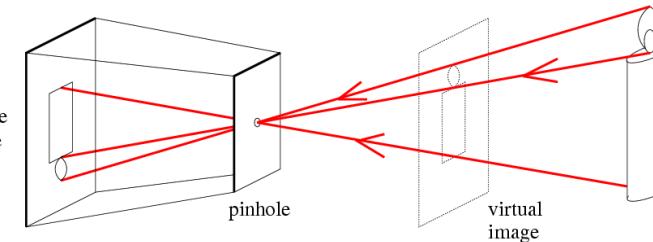
Beyond Pinholes: Radial Distortion



Corrected Barrel Distortion

Things to remember

- 3D \rightarrow 2D causes some weirdness in geometric relationships
- Pinhole camera model and camera projection matrix
- Homogeneous coordinates



$$\mathbf{x} = \mathbf{K}[\mathbf{R} \quad \mathbf{t}] \mathbf{X}$$

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

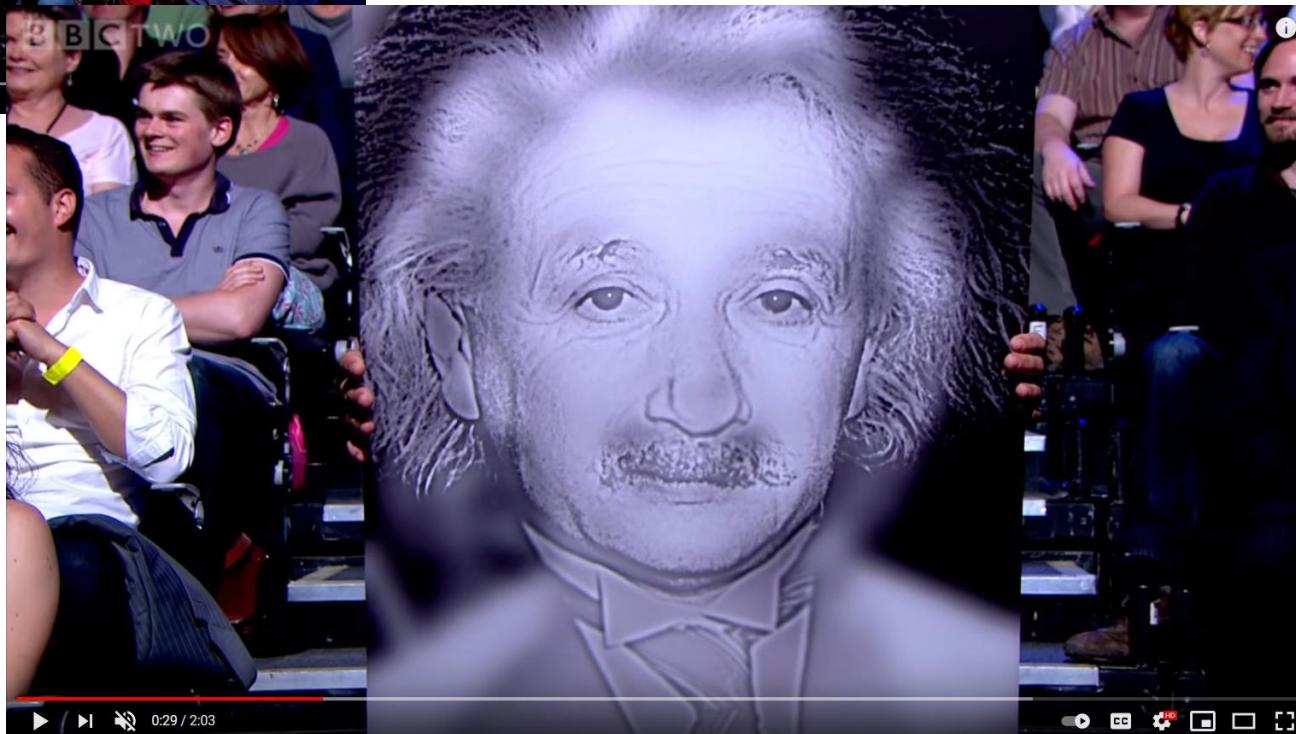
Reminder: read your book

- Lectures have assigned readings
- Szeliski 2.1 and especially 2.1.4 cover the geometry of image formation

Image Filtering

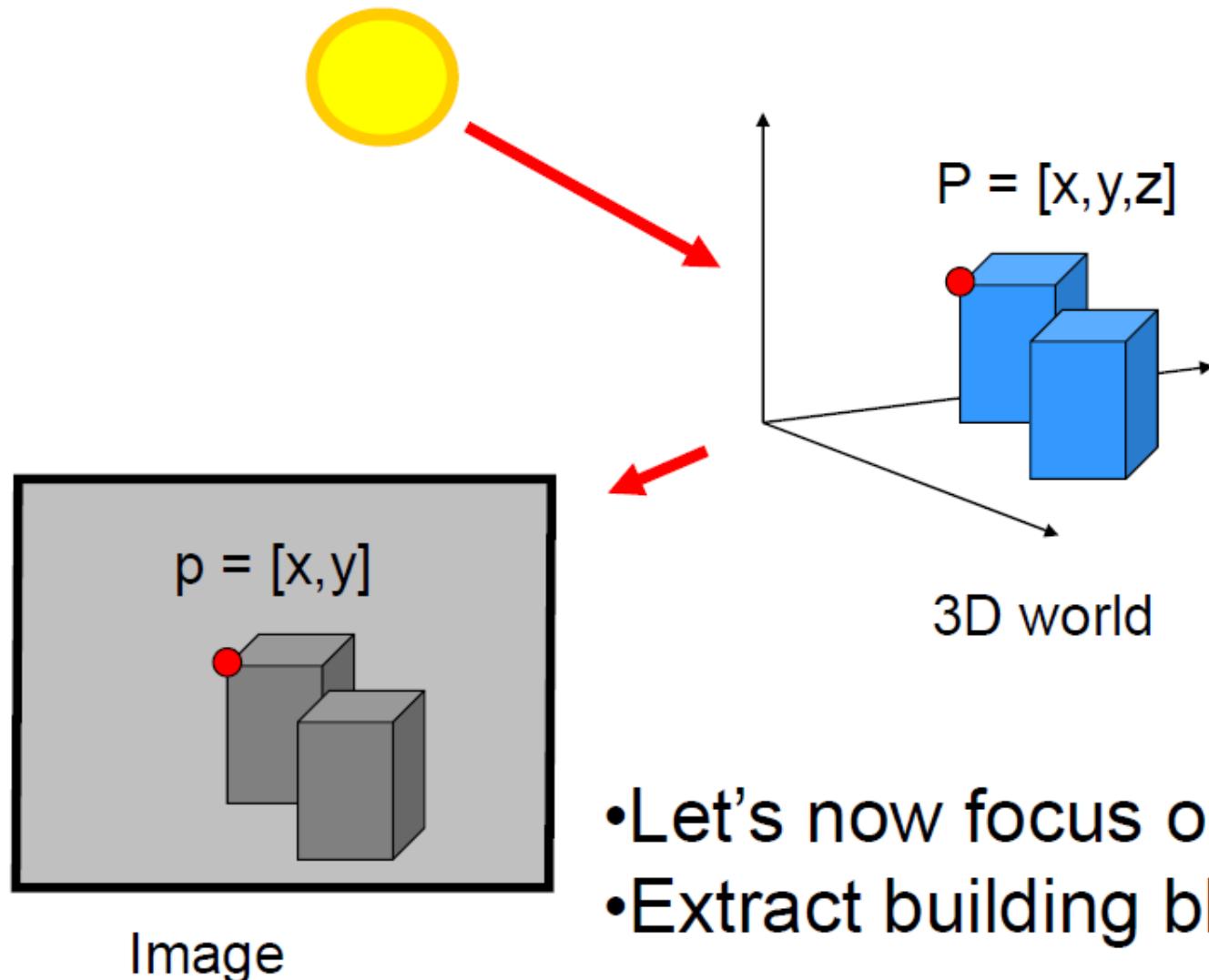
Computer Vision
James Hays

Many slides by Derek Hoiem



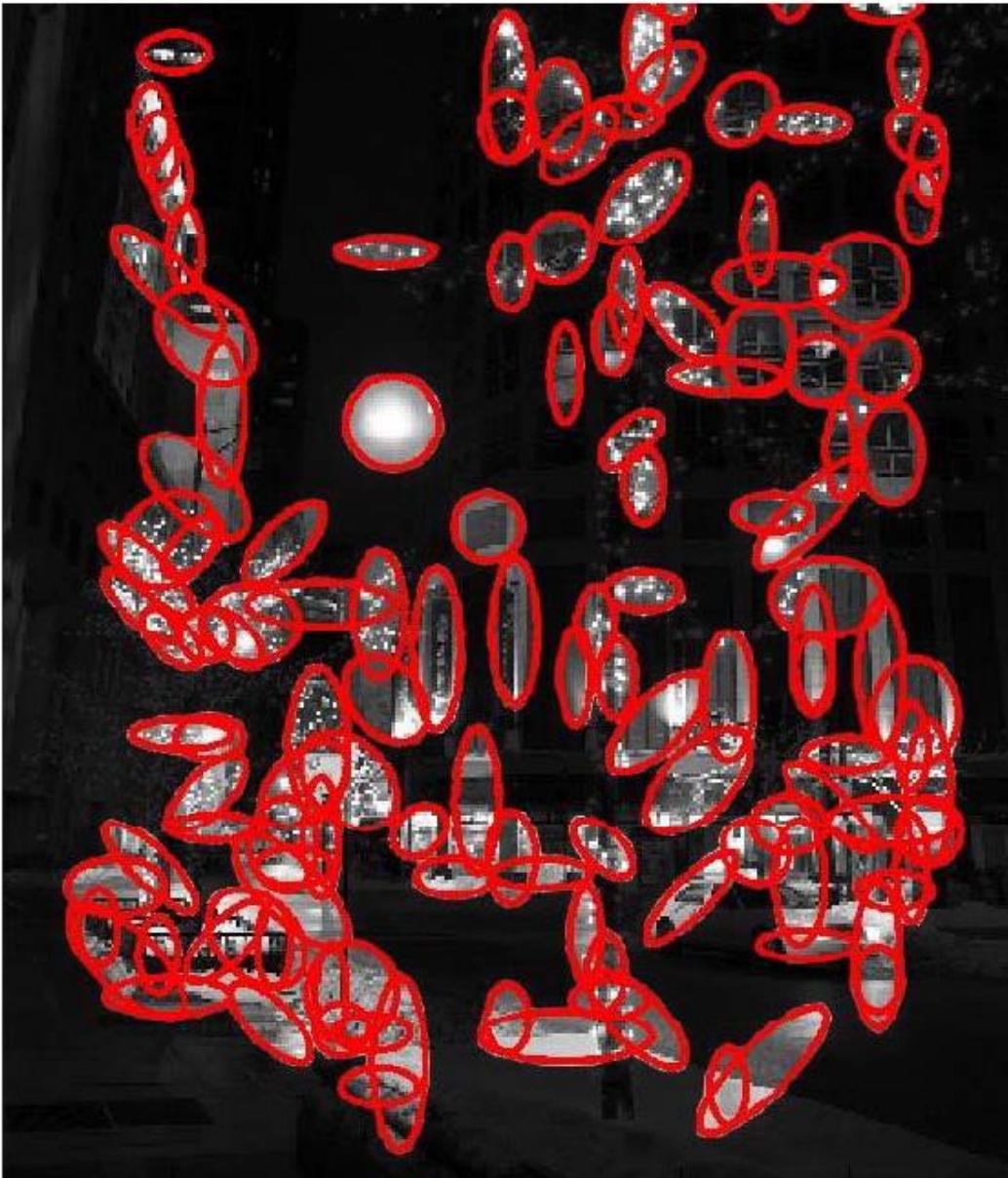
BBC Clip: <https://www.youtube.com/watch/OlumoQ05gS8>

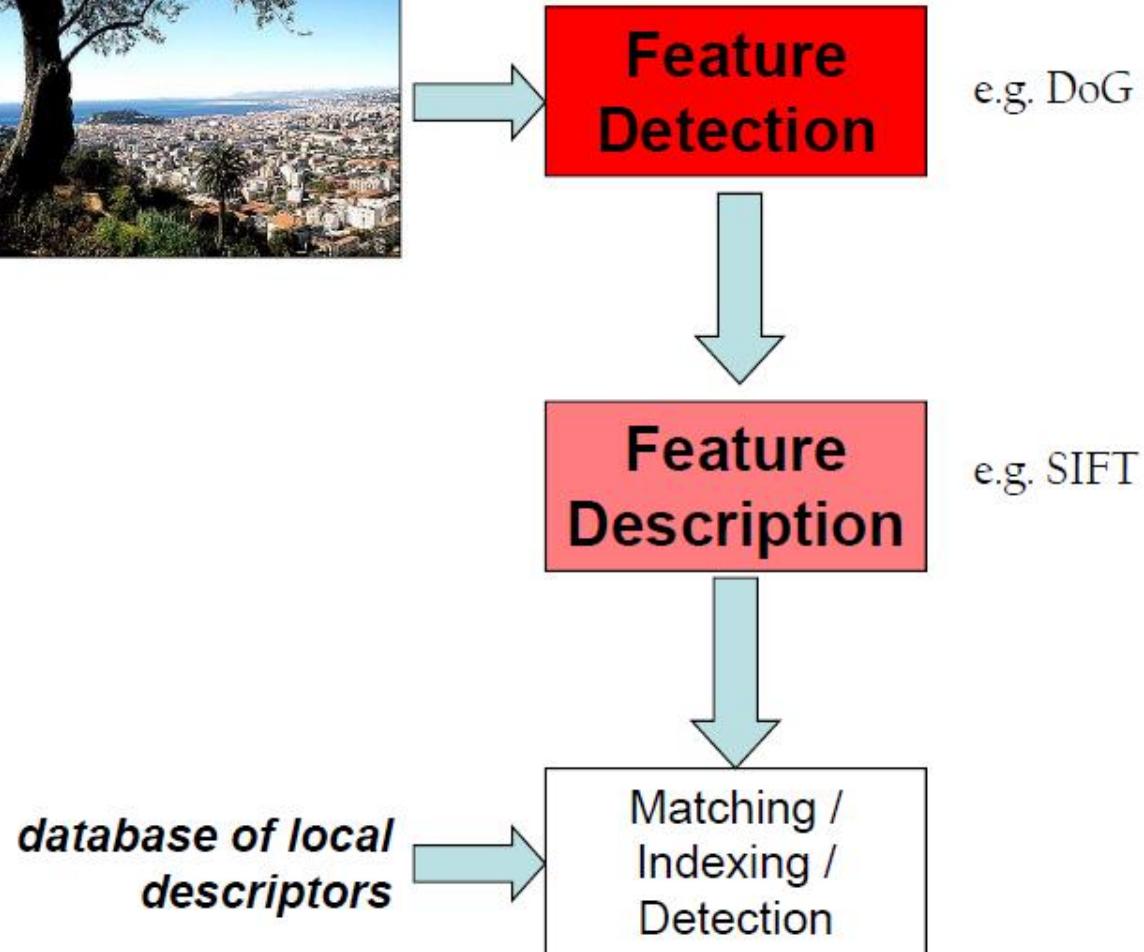
From the 3D to 2D



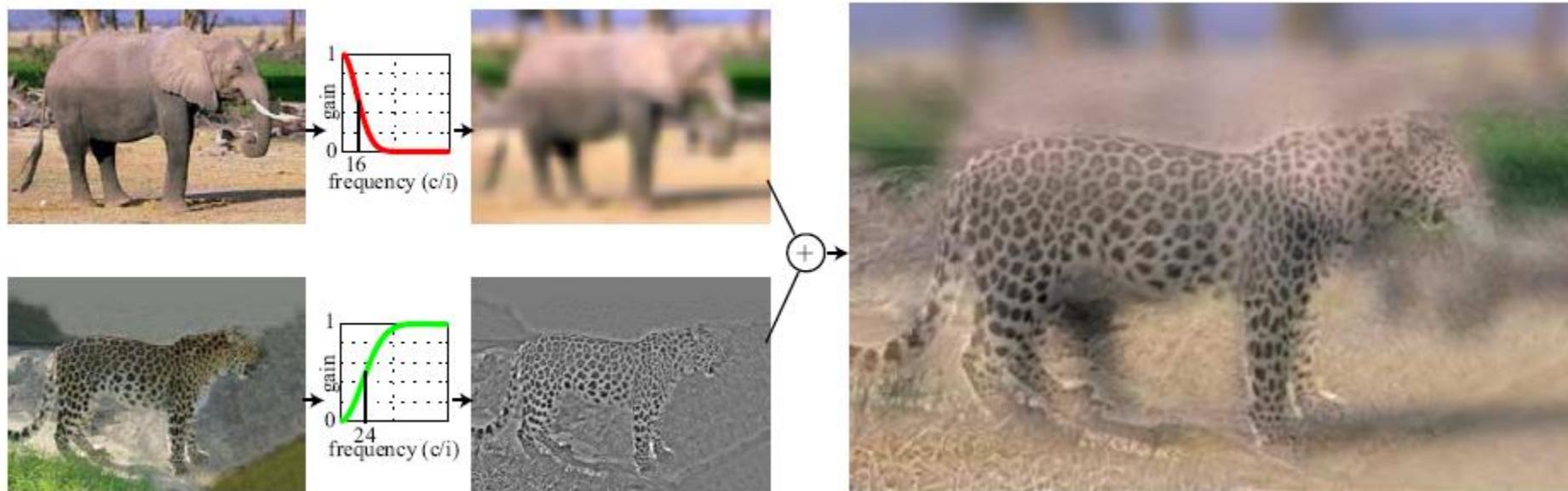
- Let's now focus on 2D
- Extract building blocks

Extract useful building blocks





Hybrid Images



- A. Oliva, A. Torralba, P.G. Schyns,
["Hybrid Images,"](#) SIGGRAPH 2006

Upcoming classes: two views of filtering

- Image filters in spatial domain
 - Filter is a mathematical operation of a grid of numbers
 - Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression

Image filtering (or convolution)

- Image filtering: compute function of local neighborhood at each position
- Really important!
 - Enhance images
 - Denoise, resize, increase contrast, etc.
 - Extract information from images
 - Texture, edges, distinctive points, etc.
 - Deep Convolutional Networks

Example: box filter

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

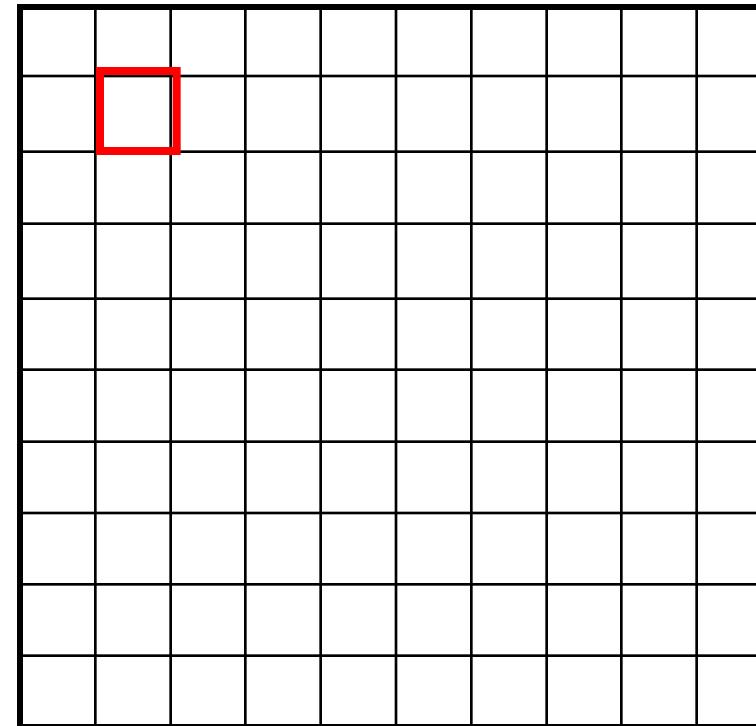
Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$$f[\cdot, \cdot]$$

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	0	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$h[\cdot, \cdot]$$



$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$$f[\cdot, \cdot]$$

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$h[\cdot, \cdot]$$

0	10									

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$$f[\cdot, \cdot]$$

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$h[\cdot, \cdot]$$

			0	10	20					

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$$f[\cdot, \cdot]$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$$h[\cdot, \cdot]$$

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$$f[\cdot, \cdot]$$

0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0	0
0	0	0	90	0	90	90	90	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

$$h[\cdot, \cdot]$$

			0	10	20	30	30				

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	0	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$h[\cdot, \cdot]$

	0	10	20	30	30					

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \frac{1}{9} \begin{array}{|c|c|c|} \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline \end{array}$$

$f[\cdot, \cdot]$

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$h[\cdot, \cdot]$

	0	10	20	30	30					

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

Image filtering

$$g[\cdot, \cdot] \quad \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$f[\cdot, \cdot]$$

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	90	0	90	90	90	0	0	0
0	0	0	90	90	90	90	90	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

$$h[\cdot, \cdot]$$

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

$$h[m, n] = \sum_{k, l} g[k, l] f[m + k, n + l]$$

Credit: S. Seitz

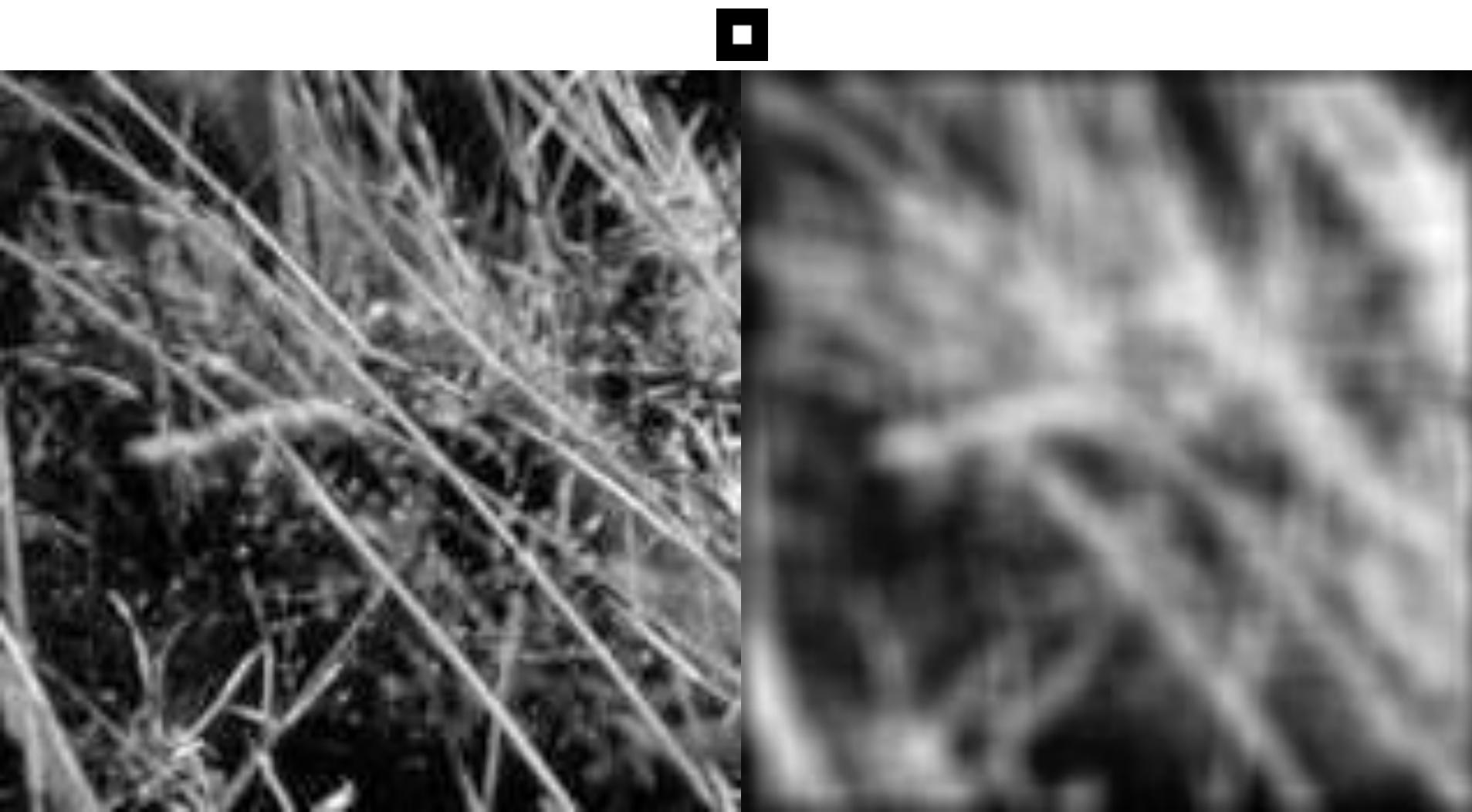
Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Smoothing with box filter



Practice with linear filters

0	0	0
0	1	0
0	0	0

?

Original

Practice with linear filters

Original

0	0	0
0	1	0
0	0	0

Filtered
(no change)

Practice with linear filters

Original

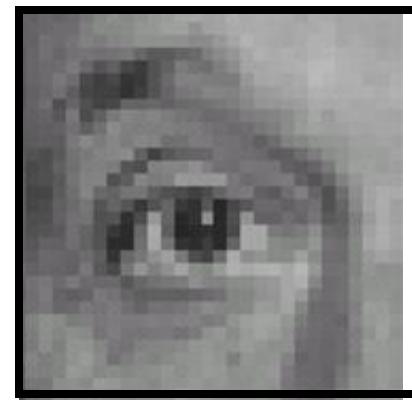
0	0	0
0	0	1
0	0	0

?

Practice with linear filters

Original

0	0	0
0	0	1
0	0	0



Shifted left
By 1 pixel

Practice with linear filters

Original

0	0	0
0	2	0
0	0	0

-

$\frac{1}{9}$	1	1	1
1	1	1	1
1	1	1	1

?

(Note that filter sums to 1)

Practice with linear filters

Original

0	0	0
0	2	0
0	0	0

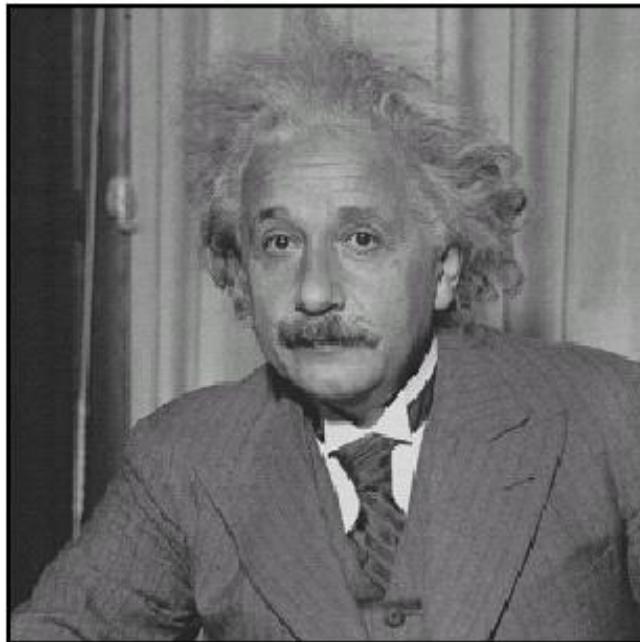
-

$\frac{1}{9}$	1	1	1
1	1	1	1
1	1	1	1

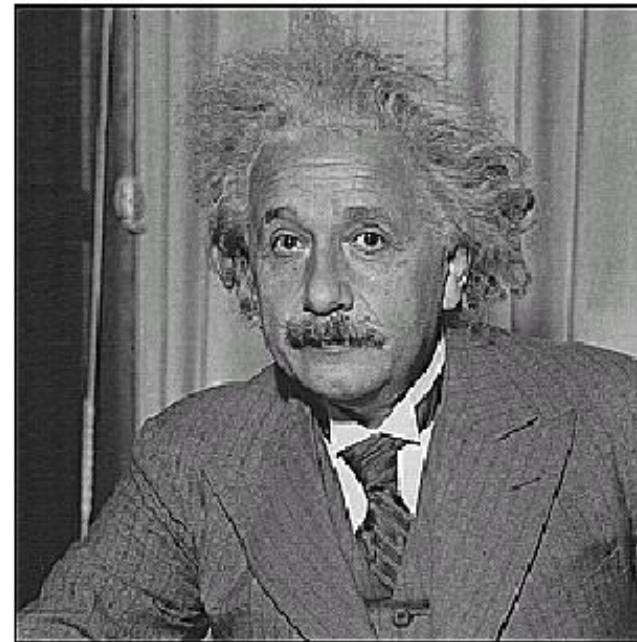
Sharpening filter

- Accentuates differences with local average

Sharpening

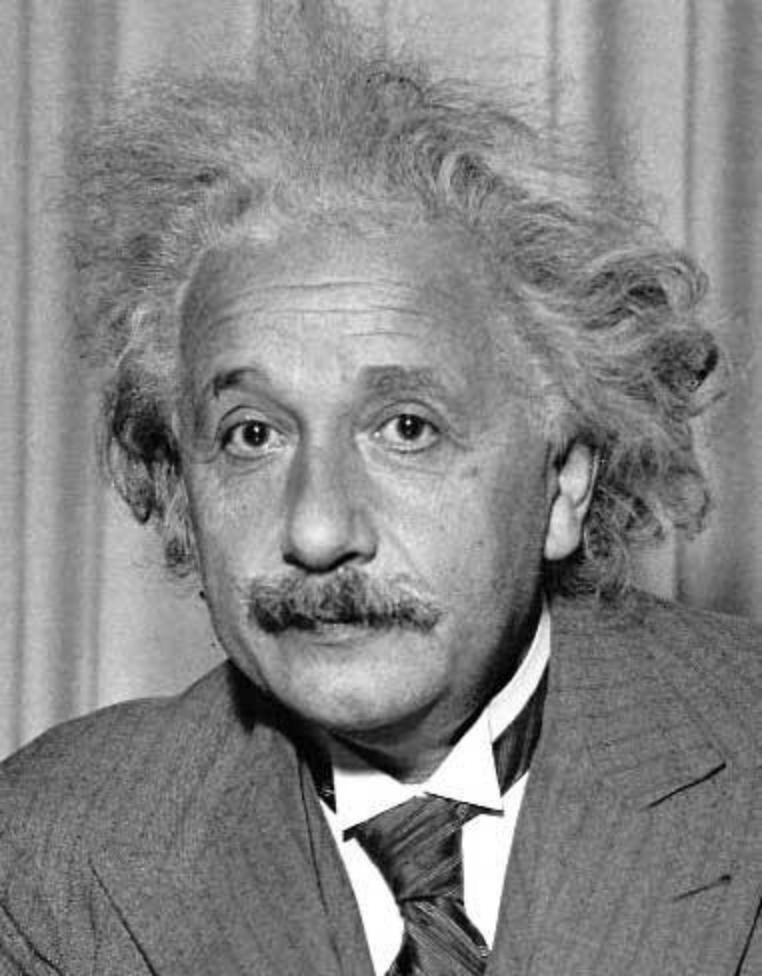


before



after

Other filters

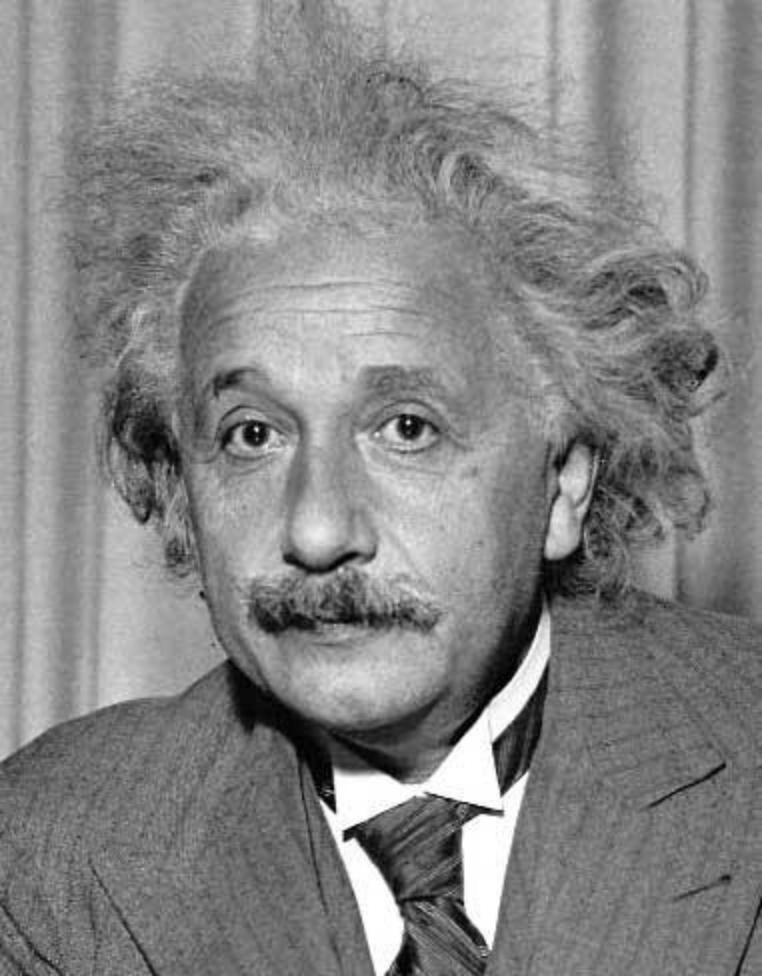


1	0	-1
2	0	-2
1	0	-1

Sobel

Vertical Edge
(absolute value)

Other filters



1	2	1
0	0	0
-1	-2	-1

Sobel

Horizontal Edge
(absolute value)

Filtering vs. Convolution

f=filter, size k x l

I=image, size m x n

- 2d filtering

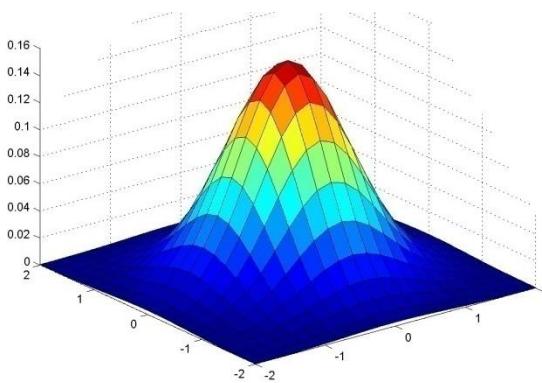
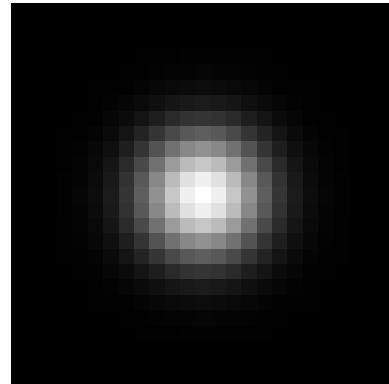
$$h[m, n] = \sum_{k, l} f[k, l] I[m + k, n + l]$$

- 2d convolution

$$h[m, n] = \sum_{k, l} f[k, l] I[m - k, n - l]$$

Important filter: Gaussian

- Weight contributions of neighboring pixels by nearness

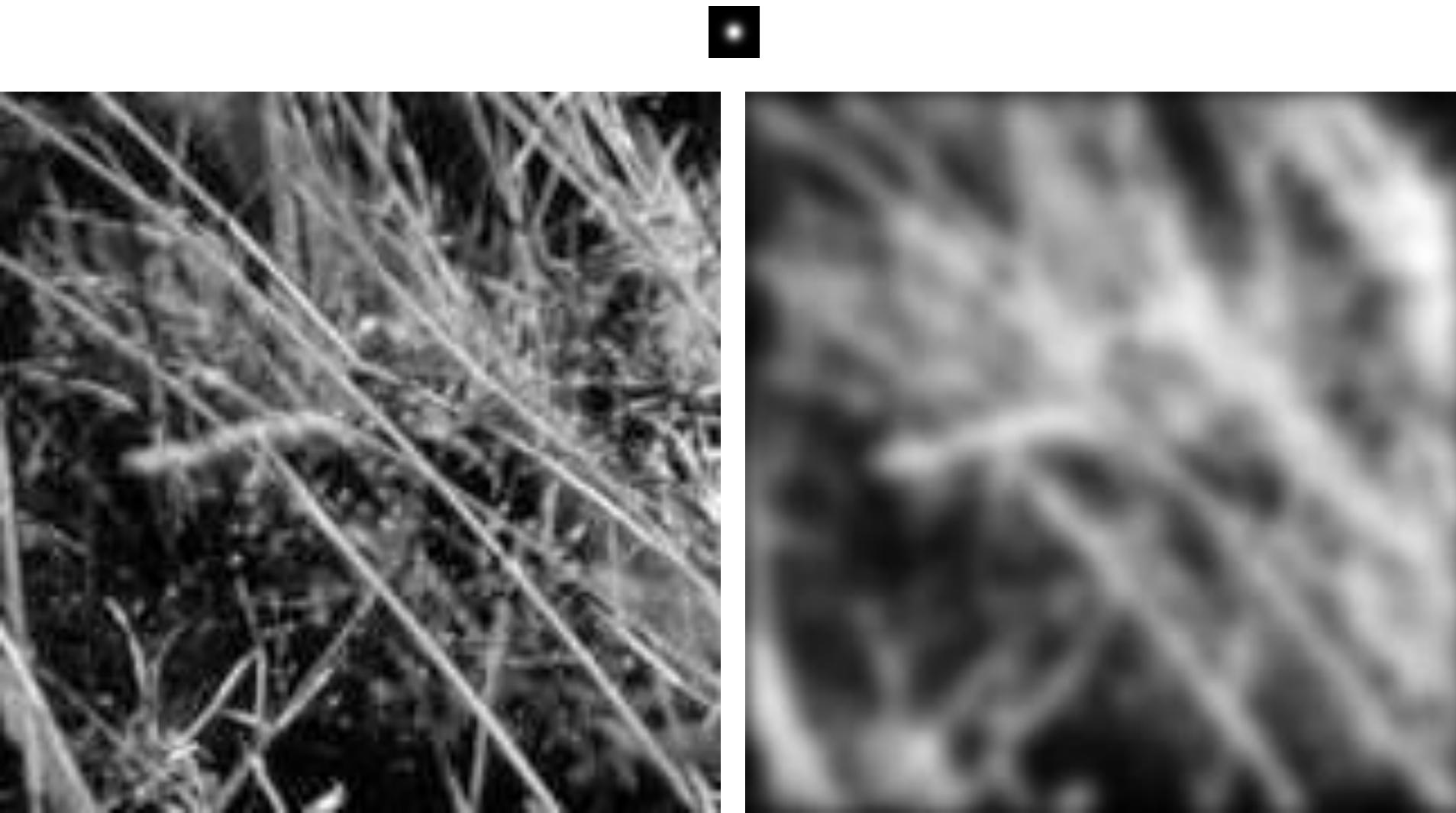


0.003	0.013	0.022	0.013	0.003
0.013	0.059	0.097	0.059	0.013
0.022	0.097	0.159	0.097	0.022
0.013	0.059	0.097	0.059	0.013
0.003	0.013	0.022	0.013	0.003

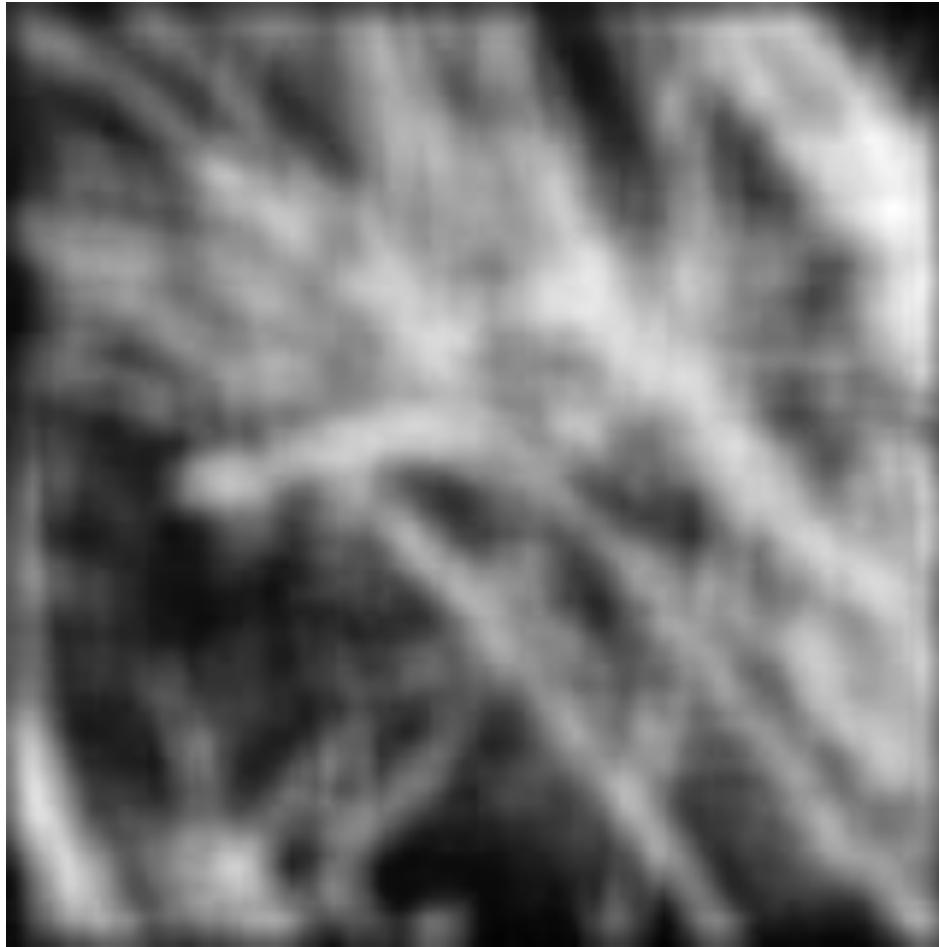
$5 \times 5, \sigma = 1$

$$G_\sigma = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

Smoothing with Gaussian filter



Smoothing with box filter



Gaussian filters

- Remove “high-frequency” components from the image (low-pass filter)
 - Images become more smooth
- Convolution with self is another Gaussian
 - So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
 - Convolving two times with Gaussian kernel of width σ is same as convolving once with kernel of width $\sigma\sqrt{2}$
- *Separable* kernel
 - Factors into product of two 1D Gaussians

Separability of the Gaussian filter

$$\begin{aligned} G_\sigma(x, y) &= \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}} \\ &= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}} \right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}} \right) \end{aligned}$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Separability example

2D convolution
(center location only)

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 5 \\ 4 & 4 & 6 \end{bmatrix}$$

The filter factors
into a product of 1D
filters:

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}$$

Perform convolution
along rows:

$$\begin{bmatrix} 1 & 2 & 1 \end{bmatrix} * \begin{bmatrix} 2 & 3 & 3 \\ 3 & 5 & 5 \\ 4 & 4 & 6 \end{bmatrix} = \begin{bmatrix} 11 & & \\ 18 & & \\ 18 & & \end{bmatrix}$$

Followed by convolution
along the remaining column:

Separability

- Why is separability useful in practice?

Some practical matters

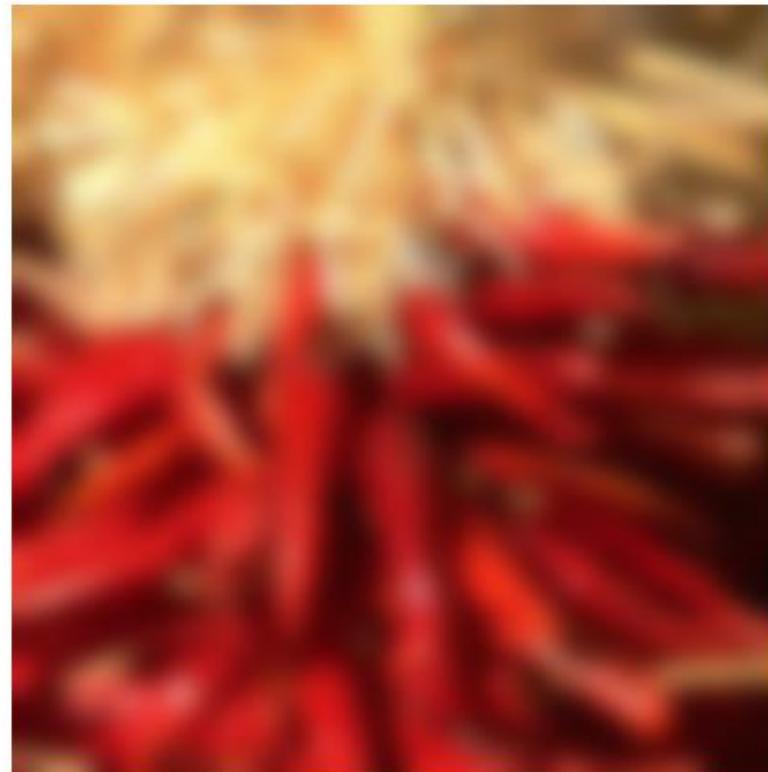
Practical matters

How big should the filter be?

- Values at edges should be near zero
- Rule of thumb for Gaussian: set filter half-width to about 3σ

Practical matters

- What about near the edge?
 - the filter window falls off the edge of the image
 - need to extrapolate
 - methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge



Next class: Light and Color and Thinking in Frequency

