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Welcome back!

Optional project O is out.

Project 1 will be out
soon.

Today

— Survey results from
Tuesday

— Image projection - Szeliski
2.1(2.1.4 in particular)

— Filtering — Szeliski 3.2
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Introduction to
Perception and
Robotics

Georgia Tech CS 3630 Fall 2025
edition

Home Book Resources

Syllabus Schedule Projects

Use of GenAl

| ask you to be present for the assignments, thoroughly understand them, and
take full ownership of the artifacts you produce. Coding with Al is now a fact of
life, and it's great, thrilling even! | encourage the use of tools like co-pilot and
cursor to help you code.

However, the use of generative Al to code up an entire assignment with minimal
involvement from your part (e.g., pasting the entire assignment in to an Al, or
using “Agentic” Al to take care of the whole project) defeats the point of the class.
Hence, this falls under the academic dishonesty policy. The purpose of the
assignment is to build intuition and skill in robotics, which cannot be outsourced.
Hence, | expect you to personally embark on each TODO in the coding
assignments, being fully engaged. This includes using Al tools as you go along,
but not to substitute your own understanding.

The assignments will frequently be accompanied with reflection questions
designed to help assess whether you have fully grokked the methods/algorithms/
techniques the assignments are designed to help you learn. | expect that you to
be the author of the answers, not the prompter.



The Geometry of Image Formation

Mapping between image and world coordinates
— Pinhole camera model

— Projective geometry
* Vanishing points and lines

— Projection matrix



What do you need to make a camera from scratch?




Image formation

clbject filrm

[ \

Let’s design a camera
— |ldea 1: put a piece of film in front of an object
— Do we get a reasonable image?

Slide source: Seitz



Pinhole camera

clbject barrier filrm

1
—>

ldea 2: add a barrier to block off most of the rays
— This reduces blurring
— The opening known as the aperture

Slide source: Seitz



Pinhole camera

—

image
plane

N pinhole virtual

image

f = focal length
c = center of the camera

Figure from Forsyth



Camera obscura: the pre-camera

* Known during classical period in China and Greece (e.g. Mo-Ti, China,
470BC to 390BC)

lllustration of Camera Obscura Freestanding camera obscura at UNC Chapel Hill

Photo by Seth llys



Camera Obscura used for Tracing

Fig, 434

Lens Based Camera Obscura, 1568



Accidental Cameras
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Accidental Pinhole and Pinspeck Cameras
Revealing the scene outside the picture.
Antonio Torralba, William T. Freeman



Accidental Cameras
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https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/
https://www.reddit.com/r/Utah/comments/177ymi6/the_partial_eclipse_shadow_through_my_trees_st/

First Photograph

Oldest surviving photograph Photograph of the first photograph

— Took 8 hours on pewter plate

Joseph Niepce, 1826 Stored at UT Austin

Niepce later teamed up with Daguerre, who eventually created Daguerrotypes
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“Louis Daguerre—the inventor of daguerreotype—shot what is not only the
world's oldest photograph of Paris, but also the first photo with humans. The 10-
minute long exposure was taken in 1839 in Place de la République and it's just
possible to make out two blurry figures in the left-hand corner.”

Source


https://mymodernmet.com/first-photograph-photography-history/

Great history lesson on
the chemistry and
engineering challenges
of early photography
from the “Technology
Connections” YouTube
channel.

https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLvOjwu7G DFV6yW240e6CbiwClLaZ0Z6PV



https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV
https://www.youtube.com/watch?v=wbbH77rYaa8&list=PLv0jwu7G_DFV6yW240e6CbiwCLaZ0Z6PV

From the 3D to 2D

P =[xy.zZ]

3D world

Slide credit Fei Fei Li



Projective Geometry

What is lost?
* Length
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Length and area are not preserved

Figure by David Forsyth



Projective Geometry

What is lost?
* Length
* Angles

Perpendicular?




Projective Geometry

What is preserved?
e Straight lines are still straight




The pinhole camera model preserves straight lines, but real
cameras might not

Before

<l

i
.............



Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”




Vanishing points and lines

Vanishing Point Vanishing Point

Vanishing Line



Vanishing points and lines

1 Vertical vanishing
point
(at infinity)

e
Vams_hlng Vanishing
point i
point

Slide from Efros, Photo from Criminisi



Projection: world coordinates—2>image coordinates

fx=2,y=3,z=95, and
f=2
What are u’ and v’?

Camera
Center
(0, 0, 0) -
u'=-—x* U
A
v'
VY et
—-f z z




Projection: world coordinates—>image coordinates

\

Optical —P=|Y
Center
A4 (Ug, V)

Camera

Center

L
. (to t, t,) —
%H

How do we handle the general case?




Interlude: why does this matter?



Relating multiple views




Photo Tourism
Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006
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3. Method

We introduce VGGT, a large transformer that ingests a set
of images as input and produces a variety of 3D quantities
as output. We start by introducing the problem in Sec. 3.1,
followed by our architecture in Sec. 3.2 and its prediction
heads in Sec. 3.3, and finally the training setup in Sec. 3.4.

3.1. Problem definition and notation

The input is a sequence (I;)Y., of N RGB images I; €
R3XHXW ~observing the same 3D scene. VGGT’s trans-
former is a function that maps this sequence to a corre-
sponding set of 3D annotations, one per frame:

! ((I%)iil) = (8 DiaPz'aTi)?il . (1)

The transformer thus maps each image I; to its camera pa-
rameters g; € RY (intrinsics and extrinsics), its depth map
D; € REXW "its point map P; € R3*H*W "and a grid
T; € REXHXW of C-dimensional features for point track-
ing. We explain next how these are defined.

For the camera parameters g;, we use the parametriza-
tion from [125] and set g = [q, t, f] which is the concatena-
tion of the rotation quaternion q € R*, the translation vec-
tor t € R3, and the field of view f € R?. We assume that
the camera’s principal point is at the image center, which is
common in StM frameworks [95, 125].



Projection: world coordinates—>image coordinates

\

Optical —P=|Y
Center
A4 (Ug, V)

Camera

Center

L
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How do we handle the general case?




Homogeneous coordinates

Conversion

Converting to homogeneous coordinates
-

T
Y
(z,9) = | y (z,y,2) = |
1 1
homogeneous image homogeneous scene
coordinates coordinates

Converting from homogeneous coordinates

y | = (@/w,y/w) | = @/wy/w, zfw)




Homogeneous coordinates

Invariant to scaling

. e [k | [ x ]
. kw | | w
kyl|=l|= L
w kw Liw ] Lw
Homogeneous Cartesian
Coordinates Coordinates

Point in Cartesian is ray in Homogeneous



Slide Credit: Savarese

Projection matrix

x: Image Coordinates: (u,v,1)
X = K[R t] X  K: Intrinsic Matrix (3x3)

R: Rotation (3x3)

t. Translation (3x1)

X: World Coordinates: (X,Y,Z,1)



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

e Unit aspect ratio * No rotation
» Optical center at (0,0)  * Cameraat (0,0,0)
* No skew K
o 2o I xl
] 770700 0
! : h%
XZK[I O]X m)w v|=0 f 010 ;
1] [0_0_1:0] |

Slide Credit: Savarese



Projection matrix

Intrinsic Assumptions Extrinsic Assumptions

e Unit aspect ratio * No rotation
» Optical center at (0,0)  * Cameraat (0,0,0)
* No skew
o __x_
u f 0 0
Y
X:K[I O]X mywiv|=|0 f 0 0 .
1] [0 0 1 O] |

Slide Credit: Savarese



Remove assumption: center pixel is (0,0)

Intrinsic Assumptions Extrinsic Assumptions

* Unit aspect ratio * No rotation
* No skew « Camera at (0,0,0)

x=K[I 0]X =

— N e X




Remove assumption: square pixels

Intrinsic Assumptions Extrinsic Assumptions

 No skew * No rotation
« Camera at (0,0,0)

u| |l 0 uoi 0
x:K[I O]X =) wv|=i0 5 v 0
1] [0 0 1!0

N




Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions
* No rotation
« Camera at (0,0,0)

u| (a s uoi 0
x=K[I 0]X=> wvi=fo 5 wio
1] 10.0_ 170

Note: different books use different notation for parameters

— N e X




Oriented and Translated Camera




Allow camera translation

Intrinsic Assumptions Extrinsic Assumptions
* No rotation

u a 0 u, 0 0
x=K[I t|X = wvi=j0 g v |0 1 0
1] [0 0 1]0 0 1

.




Slide Credit: Saverese

3D Rotation of Points

Rotation around the coordinate axes, counter-clockwise:

o

1 0 0

R (x)=|0 cosa —-sin«

0 siha cosa

v ' cosf 0 sinf
5 R.(B)=| O 1 0
Y N —sinf 0 cosf

cosy -—siny O]
R (y)=|siny cosy O
0 0 1




Allow camera rotation

u a s u,|r
wvi =0 B v, |nr
0 0 1]~

N




Degrees of freedom

x =K|R

5
u| [a s uonrn
wvi =0 B v, |nr
1 _O 0 1__r31

— N e X




Field of View (Zoom, focal length)

1000 mm

300 mm

138 mm

1w

17 o

47

75*

04"

VTmm

From London and Upton

85mm



Beyond Pinholes: Radial Distortion

— - - — - -

No Distortion Barrel Distortion Pincushion Distortion

Corrected Barrel Distortion

Image from Martin Habbecke



Things to remember

* Vertical vanishing
point
-5 (at infinity)

Vanishing (SR AE I

IT TA% ,,
e 3D ->2D causessome X\ =
Vanishing Ca

weirdness in geometric o Bt e
relationships

* Pinhole camera model
and camera projection
matrix

* Homogeneous (z,9) = | ¥
coordinates 1]



Reminder: read your book

* Lectures have assigned readings

e Szeliski 2.1 and especially 2.1.4 cover the geometry of image
formation



Image Filtering

Computer Vision

James H ays Many slides by Derek Hoiem



> » ) 017/203

P /Pl N) 029/203

BBC Clip: https://www.youtube.com/watch/OlumoQ059gS8



https://www.youtube.com/watch/OlumoQ05gS8

From the 3D to 2D

\ “ P = [x,y,Z]

3D world

|_et’'s now focus on 2D
Extract building blocks

Slide credit Fei Fei Li



Extract useful buiding blocks

Slide credit Fei Fei Li



e.g. DoG

- Feature | .. g7
Description

Matching /
Indexing /
Detection

database of local
descriptors

Slide credit Fei Fei Li



Hybrid Images

"6
B frequency (c/i) [

1
o e
gﬂ' Caee e
0

freczqt‘}mcy (c/)

* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Upcoming classes: two views of filtering

* Image filters in spatial domain
— Filter is a mathematical operation of a grid of numbers
— Smoothing, sharpening, measuring texture

* |Image filters in the frequency domain
— Filtering is a way to modify the frequencies of images
— Denoising, sampling, image compression



Image filtering (or convolution)

* Image filtering: compute function of local
neighborhood at each position

* Really important!
— Enhance images
* Denoise, resize, increase contrast, etc.

— Extract information from images

* Texture, edges, distinctive points, etc.

— Deep Convolutional Networks



Example: box filter

g[ 5" ]
1 1 1
1
— | 1 1 1
9
1 1 1

Slide credit: David Lowe (UBC)



Image filtering T

hlm,n] =) glk,l] flm+k,n+I]

k,l Credit: S. Seitz



Image filtering T

hlm,n] =) glk,l] flm+k,n+I]

k,l Credit: S. Seitz



Image filtering T

hlm,n] =) glk,l] flm+k,n+I]

k,l Credit: S. Seitz



Image filtering

20

hlm,n] =) glk,l] flm+k,n+I]

k,l

Credit: S. Seitz



Image filtering T

hlm,n] =) glk,l] flm+k,n+I]

k,l Credit: S. Seitz



Image filtering

hlm,n] =) glk,l] flm+k,n+I]

k,l

20

30

30

Credit: S. Seitz



Image filtering

hlm,n] =) glk,l] flm+k,n+I]

k,l

20

30

30

50

Credit: S. Seitz



Image filtering

hlm,n] =) glk,l] flm+k,n+I]

k,l Credit: S. Seitz



Box Filter

What does it do? gl
* Replaces each pixel with 111 1 1
an average of its 1
neighborhood — (1] 1] 1
9
111 | 1
* Achieve smoothing effect

(remove sharp features)

Slide credit: David Lowe (UBC)



Smoothing with box filter




Practice with linear filters

o|lofo 9
0|1]0 5
olo|o0

Original

Source: D. Lowe



Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe



Practice with linear filters

o|lofo 9
0|01 i
olo|o0

Original

Source: D. Lowe



Practice with linear filters

Original Shifted left
By 1 pixel

Source: D. Lowe



Practice with linear filters

000 1 11111
0(2]0 - 1111 ?
0({0]0 11111

(Note that filter sums to 1)

Original

Source: D. Lowe



Practice with linear filters

000 1 11111
0(2]0 — S 11111
0({0]0 11111

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe



Sharpening

before

Source: D. Lowe



Other filters

110 ]-1

210]-2

110]-1
Sobel

Vertical Edge
(absolute value)



Other filters

Horizontal Edge
(absolute value)



Filtering vs. Convolution

f=filter, size k x 1

I=image, size m X n

e 2d filtering

hlm,n]=>Y flk,111[m+k,n+I]

k,l
e 2d convolution

hlm,n]=> flk,111[m—k,n—I]

k,l

In Python you can use https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html



https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

Important filter: Gaussian

* Weight contributions of neighboring pixels by nearness

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5 0=1

Slide credit: Christopher Rasmussen



Smoothing with Gaussian filter




Smoothing with box filter




Gaussian filters

e Remove “high-frequency” components from the image (low-
pass filter)

— Images become more smooth

e Convolution with self is another Gaussian

— So can smooth with small-width kernel, repeat, and get same result
as larger-width kernel would have

— Convolving two times with Gaussian kernel of width o is same as
convolving once with kernel of width oVv2

e Separable kernel
— Factors into product of two 1D Gaussians

Source: K. Grauman



Separability of the Gaussian filter

Xty
G,(x — 1 207
(X.y) = 52 SXP :
1 x> y°
_ (f - 72) 1 g 22
V2To V2mo

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe



Separability example

2D convolution > la 12 1«3 [5 15
(center location only)

The filter factors 112 |1 T x [1]2]1
into a product of 1D 2 1412 (=]>
filters: 112 |1 1
2 1313 11
Perform convolution T2T71+03 15 15 |= 8
along rows:
4 14 |6 18

Followed by convolution
along the remaining column:

Source: K. Grauman



Separability

e Why is separability useful in practice?



Some practical matters



Practical matters
How big should the filter be?

* Values at edges should be near zero

e Rule of thumb for Gaussian: set filter half-width to
about3 o



Practical matters

 What about near the edge?

— the filter window falls off the edge of the image

FOT RS

— need to extrapolate

— methods:
e clip filter (black)
* wrap around

e copy edge
* reflect across edge

Source: S. Marschner



Next class: Light and Color and
Thinking in Frequency
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