The blue and green colors are actually the same






Hybrid Images
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* A. Oliva, A. Torralba, P.G. Schyns,
“Hybrid Images,” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Why do we get different, distance-dependent
interpretations of hybrid images?

Slide: Hoiem
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Recap of Filtering Discussion from Previous Lecture

* Linear filtering is dot product at each

. 1(0(-1
position 012
— Not a matrix multiplication 110 |-1

— Can smooth, sharpen, translate (among
many other uses)

— Linear filters “look for” features that
resemble the filter itself

 Be aware of details for filter size,
extrapolation, cropping




Why do we care so much about
filtering/convolution?

* Pixels are individually weak and
noisy signals. Reasoning over
neighborhoods helps.

Surely there are other ways to
extract information from images?

* Yes, but they may be more
orittle, slower to compute, or
ess easy to plug into machine
earning tools.




Alternative to Filtering - Viola Jones Face Detection

h:.

7

C D

Figure 3: The first and second features selected by Ad-
Figure 1: Example rectangle features shown relative to the aBoost. The two features are shown in the top row and then
enclosing detection window. The sum of the pixels which overlayed on a typical training face in the bottom row. The
lie within the white rectangles are subtracted from the sum first feature measures the difference in intensity between the
of pixels in the grey rectangles. Two-rectangle features are region of the eyes and a region across the upper cheeks. The
shown in (A) and (B). Figure (C) shows a three-rectangle feature capitalizes on the observation that the eye region is
feature, and (D) a four-rectangle feature. often darker than the cheeks. The second feature compares

the intensities in the eye regions to the intensity across the

bridge of the nose.

Viola, Jones. Rapid object detection using a boosted cascade of simple features. CVPR 2001.



Alternative to Filtering — Non-overlapping Patches

Vision Transformer (ViT)

' MLP \
Ball Head

Transformer Encoder

\
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* Extra learnable
[class] embedding Linear Projection of Flattened Patches
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An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G.
Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. International Conference on Learning Representations, (2021)



Filtering vs. Convolution fefilter, size X x 1

IT=image, size m X n

h=output, size m x n

e 2d filtering

hlm,n]=>Y flk 1 1[m+k,n+1]

k,l
e 2d convolution

hlm,n]=> flk,111[m—k,n—I]

k,l

In Python you can use https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html



https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.convolve2d.html

Key properties of linear filters

Linearity:
imfilter (I, £, + £,) =
imfilter (I, f,) + 1Imfilter(I,f,)

Shift invariance: same behavior regardless of

pixel location
imfilter (I, shift(f)) = shift (imfilter (I, f))

Any linear, shift-invariant operator can be
represented as a convolution

Source: S. Lazebnik



More properties

e Commutative:a*b=b*a
— Conceptually no difference between filter and signal
— But particular filtering implementations might break this equality

e Associative:a*(b*c)=(a*b)*c
— Often apply several filters one after another: (((a * b,;) * b,) * b,)
— This is equivalent to applying one filter: a * (b, * b, * b,)

e Distributes over addition:a * (b+c)=(a * b) + (a * ¢)
e Scalars factorout: ka *b=a *kb =k (a * b)

e |dentity: unitimpulsee =10, 0, 1, O, 0],
a*e=a

Source: S. Lazebnik



Median filters

* A Median Filter operates over a window by
selecting the median intensity in the window.

 What advantage does a median filter have over
a mean filter?

e |s a median filter a kind of convolution?

© 2006 Steve Marschner ¢ 14 Slide by Steve Seitz



Comparison: salt and pepper noise

Gaussian MAedian

Aax5

TRT

© 2006 Steve Marschner ® 15 Slide by Steve Seitz



Can we do edge detection in a single filtering step?



Sobel filters

110 ]-1

210]-2

110]-1
Sobel

Vertical Edge
(absolute value)



Sobel filters

Horizontal Edge
(absolute value)
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Sobel Filters for Edge Detection

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 23, NO. 2, APRIL 1988

Design of an Image Edge Detection
Filter Using the Sobel Operator

NICK KANOPOULOS, MEMBER, IEEE, NAGESH VASANTHAVADA, MEMBER, IEEE,
AND ROBERT L. BAKER

Abstract —This paper presents the design and implementation of a
monolithic image edge detection filter using the Sobel operators. The chip
architecture is highly pipelined in performing the computations of gradient
magnitude and direction for the output image samples. The chip design is
based on a 2-pm, double-metal, CMOS technology and was implemented
using a silicon compiler system in less than 2 man months. It is designed to
operate with a 10-MHz two-phase clock, and it performs approximately
200X 10% additions/s to provide the required magnitude and direction
outputs every clock cycle. The function of the chip has been demonstrated
with a prototype system that is performing image edge detection in real
time.

1. INTRODUCTION

ONTINUING advances in VLSI technology have

made it attractive to implement complex, algorithm-
specific image processing functions on a single chip to
obtain high performance while minimizing size and power
requirements at the system level. Even though parallel
image processing systems using off-the-shelf digital signal
processors have been reported in the literature recently (1],

Once an object or region has been located, 1t is examined
for identifying features that can lead to final classification
of targets. Any identified target can then be tracked through
subsequent images.

Before an image can be segmented, the objects in that
image must be detected and roughly classified as to shape
and boundary characteristics. Some techniques used to
detect objects use a gradient operator to locate potential
object boundaries or edges. The gradient operator applied
to a continuous function produces a vector at each point
whose direction gives the direction of the maximum change
of the function at that point, and whose magnitude gives
the magnitude of this maximum change. A digital gradient
is often computed by convolving two windows with an
image, one window giving the x component g, of the
gradient, and the other giving the y component g,. This
operation can be described by the expressions

g.(i,j) = mask *I(i, j), g,=mask*(i,j) (1)

https://ieeexplore.ieee.org/document/996



the magnitude of this maximum change. A digital gradient
is often computed by convolving two windows with an
image, one window giving the x component g, of the
gradient, and the other giving the y component g,. This
operation can be described by the expressions

g.(i, j) =mask *I(i, j), g,=mask*(i, ;) (1)

where [/(i, j) is indicating some neighborhood of pixel
(i, j), and * denotes convolution. Fig. 2 illustrates an
example of this operation.

plifies the directional computation. The gradient magni-
tude

Mag = [ Ej; + E}]" (2)

—2
EH= 0 0 0¥
2

— DN g
*
I~y

by
~
Il
I
[\
OO

A=(x*+y"?
A y = A sinf

8
X = A cosf

Fig. 3. Example for Euclidean norm approximation.




Review: questions

1. Write down a 3x3 filter that returns a positive value if the
average value of the 4-adjacent neighbors is less than the
center and a negative value otherwise (and zero if they are
the same)

2. Write down a filter that will compute the gradient in the x-
direction:

gradx(y,x) = im(y,x+1)-im(y,x) for each x, vy

Slide: Hoiem



Thinking in Frequency

Slides: Hoiem, Efros, and others



This section

* Fourier transform and frequency domain

— Frequency view of filtering

* Reminder: Read your textbook

— Today’s lecture covers material in 3.4

Slide: Hoiem



Why does the Gaussian give a nice smooth
image, but the square filter give edgy artifacts?

Box filter n

Gaussian




Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ Slide: Hoiem



http://www.flickr.com/photos/igorms/136916757/

Thinking in terms of frequency



Background: Change of Basis

mit.edu

STUDY MATERIALS

RELATED
RESOURCES

DOWNLOAD COURSE
MATERIALS

» Lecture 4: Factorization into A= LU

» Lecture 5: Transposes, permutations, spaces R"n

» Lecture 6: Column space and nullspace

» Lecture 7: Solving Ax = 0: pivotvariables, special solutions

» Lecture 8: Solving Ax = b: row reduced form R

» Lecture 9: Independence, basis, and dimension



Background: Change of Basis

For vectors and for image patches



Related concept: Image Compression

How is it that a 4MP image can be compressed
to a few hundred KB without a noticeable
change?



Lossy Image Compression (JPEG)

2 (&)

Block-based Discrete Cosine Transform (DCT)
https://en.wikipedia.org/wiki/JPEG



Using DCT in JPEG

* The first coefficient B(0,0) is the DC component, the average
Intensity

* The top-left coeffs represent low frequencies, the bottom right
— high frequencies

1 2 3 [§
LT IIIEIIIIIIIIII III "'(7




8x8 image patch

Lossy Image Compression (JPEG)

"

—_—

[ —415.38 -30.19 —61.20 2724 56.13 —20.10 -2.39 046
447 -21.86 —-60.76 1025 1315 -7.09 —-854 488
—46.83 737 7713 —-2456 28091 993 542 565
—4853 1207 3410 —-1476 -10.24 630 183 195
1212 -6.55 —-13.20 -—-3.95 —1.88 1.7 =279 3.4
—7.73 291 238 594 238 094 430 185
-1.03 0.18 042 -242 0838 -3.02 412 -0.66
—-0.17 014 -107 -419 -117 -010 050 1.68

Patch representation after
projecting on to DCT bases

DCT bases



Image compression using DCT

e Quantize

— More coarsely for high frequencies (which also tend to have smaller values)

— Many quantized high frequency values will be zero

e Encode

— Can decode with inverse dct

Filter responses

[ —415.38 -30.19 —61.20

447 —21.86 —60.76

_ —46.83 737 7713
G = —48.53 1207  34.10
1212 -6.55 —-13.20

—7.73 291 2.38

—1.03 0.18 0.42

—0.17 014 -—1.07

Quantized values
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1

0
0
0

1

o s Y s I s

[ 26 -3 -6
0 -2 -4

5
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27.24
10.25
—24.56
—14.76
—3.95
—5.94
—2.42
—4.19

—
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56.13
13.15
—2801
—10.24
—1.88
—2.38
—0.88
—-1.17

oo o oooo—

—20.10

oo oo oo oo

—7.09
9.93
6.30
1.75
0.94

—3.02

—0.10

co oo oo oo
L 1

—2.39
—8.54
5.42
1.83
—2.79
4.30
4.12
0.50

0.46 1

4.88
—5.65
1.95
3.14
1.85
—0.66

1.68 |

16
12
14
14
18
24
49
72

Quantization table

11
12
13
17
22
35
64
92

10
14
16
22
37
95
78
95

16
19
24
29
56
64
87
98

24
26
40
51
68
81
103
112

40
58
97
87
109
104
121
100

91
60
69
80
103
113
120
103

61
55
96
62
77
92
101
99




JPEG Compression Summary

1. Convert image to YCrCb
2. Subsample color
— People have bad spatial sensitivity for color
3. Split into blocks (8x8, typically), subtract 128

4. For each block

a. Compute DCT coefficients

b. Coarsely quantize
 Many high frequency components will become zero

5. Use run-length encoding to take advantage of runs of zeros
6. Use Huffman Coding to take advantage of frequent tokens

http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG



http://en.wikipedia.org/wiki/YCbCr
http://en.wikipedia.org/wiki/JPEG

The Fourier Transform



Jean Baptiste Joseph Fourier (1768-1830)

p
had crazy idea (1807):

Any univariate function can | analysis to integrate them still leaves something to be

rewritten as a weighted sum)
sines and cosines of differen
frequencies.

e Don’t believe it?

— Neither did Lagrange,
Laplace, Poisson and
other big wigs

— Not translated into
English until 1878!

 Butit’s (mostly) true!
— called Fourier Series

— there are some subtle
restrictions

~

...the manner in which the author arrives at these
equations is not exempt of difficulties and...his

desired on the score of generality and even rigour.

J

LagrariQe;; 3

= 2
N .
S S 7
e



Fourier, Joseph (1768-1830)

French mathematician who discovered that any periodic motion can be written as a
superposition of sinusoidal and cosinusoidal vibrations. He developed a
mathematical theory of heat & in Théorie Analytique de la Chaleur (Analytic
Theory of Heat), (1822), discussing it in terms of differential equations.

Fourier was a friend and advisor of Napoleon. [7=/ = -
pr e e EEE L R ER Rl 5=l The paper of Galois which he had
taken home to read shortly before his death was never recovered.

m Galois

Additional biographies: MacTutor (St. Andrews), Bonn

© 1996-2007 Eric W. Weisstein
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A sum of sines

Our building block:
Asin(wx + @)

Add enough of them to get
any signal g(x) you want!

f(target)=

f1 + f2+ fg...+ fﬂ+...




Frequency Spectra

. example : g(¢) = sin(2xf 1) + (1/3)sin(2x(3/) 1)

w/“\w \/ﬂ AR

frequency

Slides: Efros



Frequency Spectra




Frequency Spectra
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Frequency Spectra

Sli=




Frequency Spectra
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Frequency Spectra




Frequency Spectra

Ay % sin(27kt)
k=1
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Example: Music

* We think of music in terms of frequencies at different
magnitudes

voice waveform example Spectrum of a voice signal {15 seconds)

Slide: Hoiem



Other signals

 We can also think of all kinds of other signals the same way

Hi De. EF zaloeth
Yeak vh.. T ac odcn*u\b ook
the l—?uner transfocm of @y cat ...

gﬂ Meow

xkcd.com



Fourier Transform

* Fourier transform stores the magnitude and phase at each frequency
— Magnitude encodes how much signal there is at a particular frequency
— Phase encodes spatial information (indirectly)
— This is often notated in terms of real and complex numbers

(@)

Amplitude: A = i\/R(a))2 + ](w)z Phase: @ = tan
R(w)



Computing the Fourier Transform

H(w) = F {h(z)} = Ael

Continuous

H(w) = / h(x)e 9% dx

)

Discrete

k =-N/2..N/2

Fast Fourier Transform (FFT): NlogN

[m A

sin @

Kyl-ﬁe

Euler’s Formula



Complex plane
f=1/1
}

2mift

€

P Pl ) 1327/20:56

But what is the Fourier Transform? A visual introduction.

3Blue1Brown @
293K Share Save
@ 6.4M subscribers w Dﬁ g] A> I]

https://youtu.be/spUNpyF58BY ?si=93x8YxT5n450A3CD




Salvador Dali invented Hybrid Images?

Salvador Dali

“Gala Contemplating the Mediterranean Sea,
which at 20 meters becomes the portrait

of Abraham Lincoln”, 1976










Fourier Bases

Teases away fast vs. slow changes in the image.

Ml

This change of basis is the Fourier Transform



Fourier Bases

rier Transform 13

Fou

te



This looks a lot like DCT in JPEG compression

8x8 image patch

A 1

DCT bases

"

—_—

[ —415.38 -30.19 —61.20 2724 56.13 —20.10

447 -21.86 —-60.76 1025 1315 —-7.09
—46.83 737 7713 —-2456 28091 9.93
—4853 1207 3410 —-1476 -10.24 6.30

1212 -6.55 —-13.20 -—-3.95 —1.88 1.75

—7.73 291 238 594 238 0.94
-1.03 0.18 042 -242 088 —-3.02
—-0.17 014 -107 -419 -117 -0.10

Patch representation after
projecting on to DCT bases

—2.39
—8.54
5.42
1.83
—-2.79
4.30
4.12
0.50

0.46 1

4.88
—5.65
1.95
3.14
1.85
—0.66

1.68 |




Man-made Scene




Can change spectrum, then reconstruct

+FFT of ARCOSL.TGA

. FFT of ARCOSL.TGA : ARCOSL TGA 1 - FFT of ARCOSL.TGA ‘ARCOSL.TGA 1 =10 x|

il




Low and High Pass filtering

1ARCOSL. TGA O] x| {FFT of ARCOSL.TGA O x| ARCOSL.TGA 1 [_ (O] x|
i |




Reminder

 The Fourier transform can be thought of as a change of basis
onto which “building blocks”?




The Convolution Theorem

* The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[A]

* Convolution in spatial domain is equivalent to
multiplication in frequency domain!

g*h=F [F[g]F[A]]
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