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The Spectrum of Biological Inspiration

Lidar Humanoid and 

Quadruped robots

Radar Traditional 

cameras

Tesla 

autopilot

Less biologically inspired More biologically inspired



Interest Points and Corners

Computer Vision

James Hays

Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial

Read Szeliski 7.1.1 and 7.1.2



Correspondence across views

• Correspondence: matching points, patches, edges, or regions 
across images

≈



Example: estimating “fundamental matrix” 
that corresponds two views

Slide from Silvio Savarese



Application: structure from motion



Invariant Local Features

Image content is transformed into local feature coordinates that are 

invariant to translation, rotation, scale, and other imaging parameters

Features Descriptors





Project 2: interest points and local features

I use “interest points” and “keypoints” and 
“SIFT features” interchangeably



This class: interest points

• Suppose you have to 
click on some point,  
go away and come 
back after I deform the 
image, and click on the 
same points again.  

– Which points would 
you choose?

original

deformed



Overview of Keypoint Matching

K. Grauman, B. Leibe

Af
Bf

A1

A2 A3

Tffd BA ),(

1. Find a set of distinctive 

keypoints 

2. Compute a local 

descriptor from the 

region around each     

keypoint

3. Match local    

descriptors



Goals for Keypoints

Detect points that are repeatable and distinctive



Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?



Local features: main components

1) Detection: Identify the 

interest points

2) Description: Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views
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Kristen Grauman



Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Goal: interest operator repeatability

• We want to detect (at least some of) the 

same points in both images.

• Yet we have to be able to run the detection 

procedure independently per image.

No chance to find true matches!

Kristen Grauman



Goal: descriptor distinctiveness

• We want to be able to reliably determine 

which point goes with which.

• Must provide some invariance to geometric 

and photometric differences between the two 

views.

?

Kristen Grauman



Local features: main components

1) Detection: Identify the 

interest points

2) Description:Extract vector 

feature descriptor 

surrounding each interest 

point.

3) Matching: Determine 

correspondence between 

descriptors in two views



Many Existing Detectors Available

K. Grauman, B. Leibe

Hessian & Harris  [Beaudet ‘78], [Harris ‘88]
Laplacian, DoG  [Lindeberg ‘98], [Lowe 1999]
Harris-/Hessian-Laplace       [Mikolajczyk & Schmid ‘01]
Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
EBR and IBR   [Tuytelaars & Van Gool ‘04] 

MSER    [Matas ‘02]
Salient Regions  [Kadir & Brady ‘01] 
Others…



Corner Detection: Basic Idea

• We should easily recognize the point by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Source: A. Efros



Corner Detection: Baseline strategies

• First, cornerness is a property of a “patch”, 
not a single pixel

• Let’s look for patches that have high 
gradients in the x and y directions.

“edge”:

gradients in one 

direction

“corner”:

gradients in 

both directions

“flat” region:

no gradients

Source: James Hays



Reminder: gradients measured with filtering

-101

-202

-101

Vertical Edge

(absolute value)

Sobel



Reminder: gradients measured with filtering

-1-2-1

000

121

Horizontal Edge

(absolute value)

Sobel



Corner Detection: Baseline strategies

• First, cornerness is a property of a “patch”, 
not a single pixel

• Let’s look for patches that have high 
gradients in the x and y directions.

“edge”:

gradients in one 

direction

“corner”:

gradients in 

both directions

“flat” region:

no gradients

Source: James Hays

“edge”:

gradients in 

both directions



Corner Detection: Baseline strategies

• Let’s look for patches that have high 
gradients in the x and y directions.

“edge”:

gradients in one 

direction

“corner”:

gradients in 

both directions

“flat” region:

no gradients

Source: James Hays

“edge”:

gradients in 

both directions

Not a sufficient 

strategy



Corner Detection: Baseline strategies

• Let’s write down what the gradients actually 
look like in different scenarios

“edge”:

gradients in one 

direction

“corner”:

gradients in 

both directions

“flat” region:

no gradients

Source: James Hays

“edge”:

gradients in 

both directions



Corner Detection: Baseline strategies

• For a patch to be a corner, the gradient 
distribution needs to be full rank

• We should check more than 2 pixels

• How do we measure this rank?

“edge”:

gradients in one 

direction

“corner”:

gradients in 

both directions

“flat” region:

no gradients

Source: James Hays

“edge”:

gradients in 

both directions



Eigenvalues tell us the rank

https://en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

I = [-5, 0

      0, 3

     -3, 0

      5, 5

       …

       ...]
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 

neighborhood of a point).

Notation:

M



Different 

derivations 

exist. 

 This is the 

textbook 

version.



The surface E(u,v) is locally approximated by a 

quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.

const][ =
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v
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined by the 

eigenvalues and the orientation is determined by R

direction of the 

slowest change

direction of the 

fastest change
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Diagonalization of M:



If you’re not comfortable with Eigenvalues and Eigenvectors, 

Gilbert Strang’s linear algebra lectures are linked from the 

course homepage



Interpreting the eigenvalues

1

2

“Corner”

1 and 2 are large,

 1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region

Classification of image points using eigenvalues of M:
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Corner response function

“Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small
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Harris corner detector

1) Compute M matrix for each image window to 

get their cornerness scores.

2) Find points whose surrounding window gave 

large corner response (f> threshold)

3) Take the points of local maxima, i.e., perform 

non-maximum suppression

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.  

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Harris Detector [Harris88]

• Second moment matrix












=

)()(

)()(
)(),(

2

2

DyDyx

DyxDx

IDI
III

III
g




 1. Image 

derivatives

2. Square of 

derivatives

3. Gaussian 

filter g(I)

Ix Iy

Ix
2 Iy

2 IxIy

g(Ix
2) g(Iy

2) g(IxIy)

222222
)]()([)]([)()( yxyxyx IgIgIIgIgIg +−− 

=−= ])),([trace()],(det[
2

DIDIhar 

4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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Harris Corners – Why so complicated?

• Can’t we just check for regions with lots of 
gradients in the x and y directions?

– No! A diagonal line would satisfy that criteria

Current 

Window



Harris Detector [Harris88]

• Second moment matrix
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Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Current 

Window



Harris Corners – Why so complicated?

• What does the structure matrix look here?


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
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C

C

0

0

-101

-202

-101

-1-2-1

000

121

We will measure 

x gradients by 

filtering with:

We will measure 

y gradients by 

filtering with:

Current 

Window
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Harris Corners – Why so complicated?

10-1

20-2
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121

000

-1-2-1

We will measure 

x gradients by 

filtering with:

We will measure 

y gradients by 

filtering with:
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Harris Corners – Why so complicated?

10-1

20-2

10-1

121

000

-1-2-1

We will measure 

x gradients by 

filtering with:

We will measure 

y gradients by 

filtering with:
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Harris Corners – Why so complicated?
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We will measure 

x gradients by 

filtering with:

We will measure 

y gradients by 
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Harris Corners – Why so complicated?

• What does the structure matrix look here?
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Harris Detector [Harris88]

• Second moment matrix
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4. Cornerness function – both eigenvalues are strong

har5. Non-maxima suppression
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Harris Detector: Steps



Harris Detector: Steps

Compute corner response R



Harris Detector: Steps

Find points with large corner response: R>threshold



Harris Detector: Steps

Take only the points of local maxima of R



Harris Detector: Steps
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