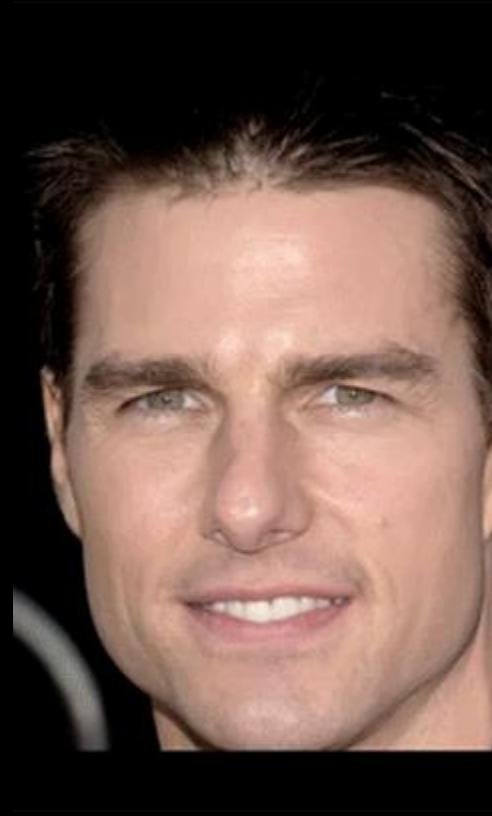


Read Szeliski 7.1.2 and 7.1.3

Local Image Features

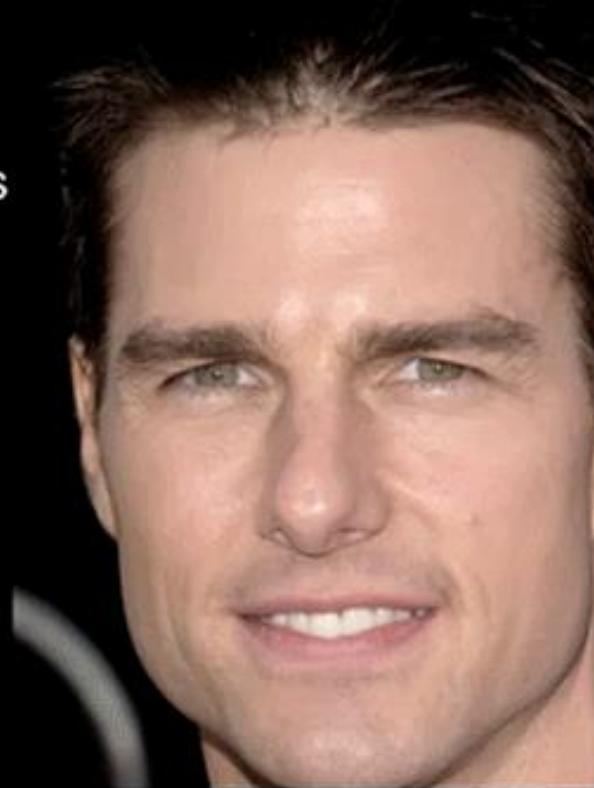
Computer Vision

James Hays



“Flashed Face Distortion”
2nd Place in the 8th Annual
Best Illusion of the Year
Contest , VSS 2012

Keep your eyes
on the cross



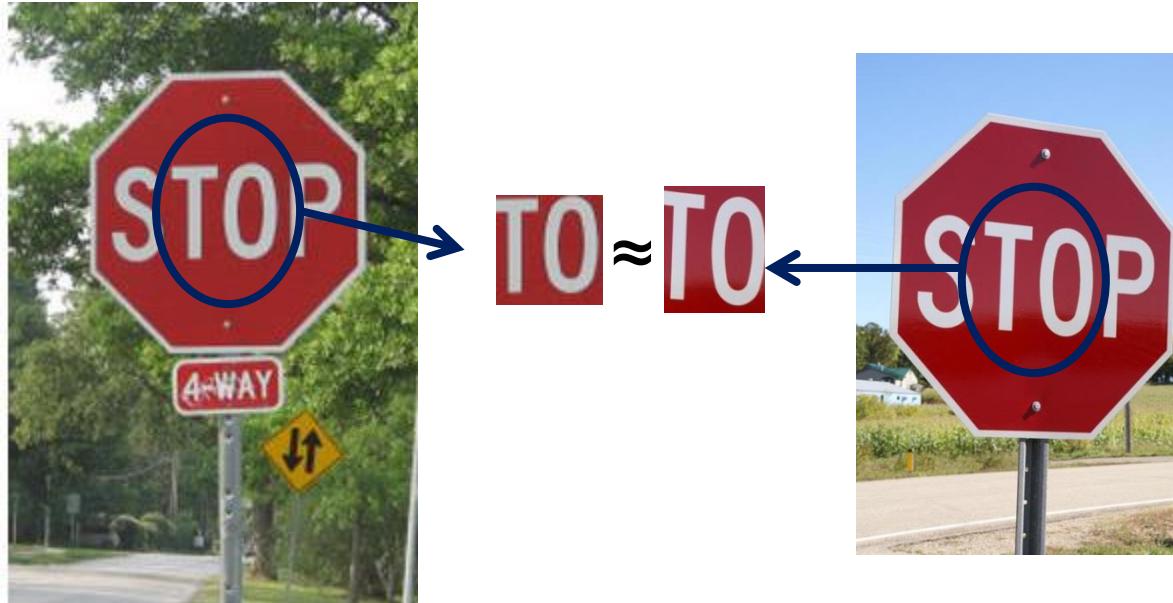
Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and 7 were incorrect (highlighted in red).

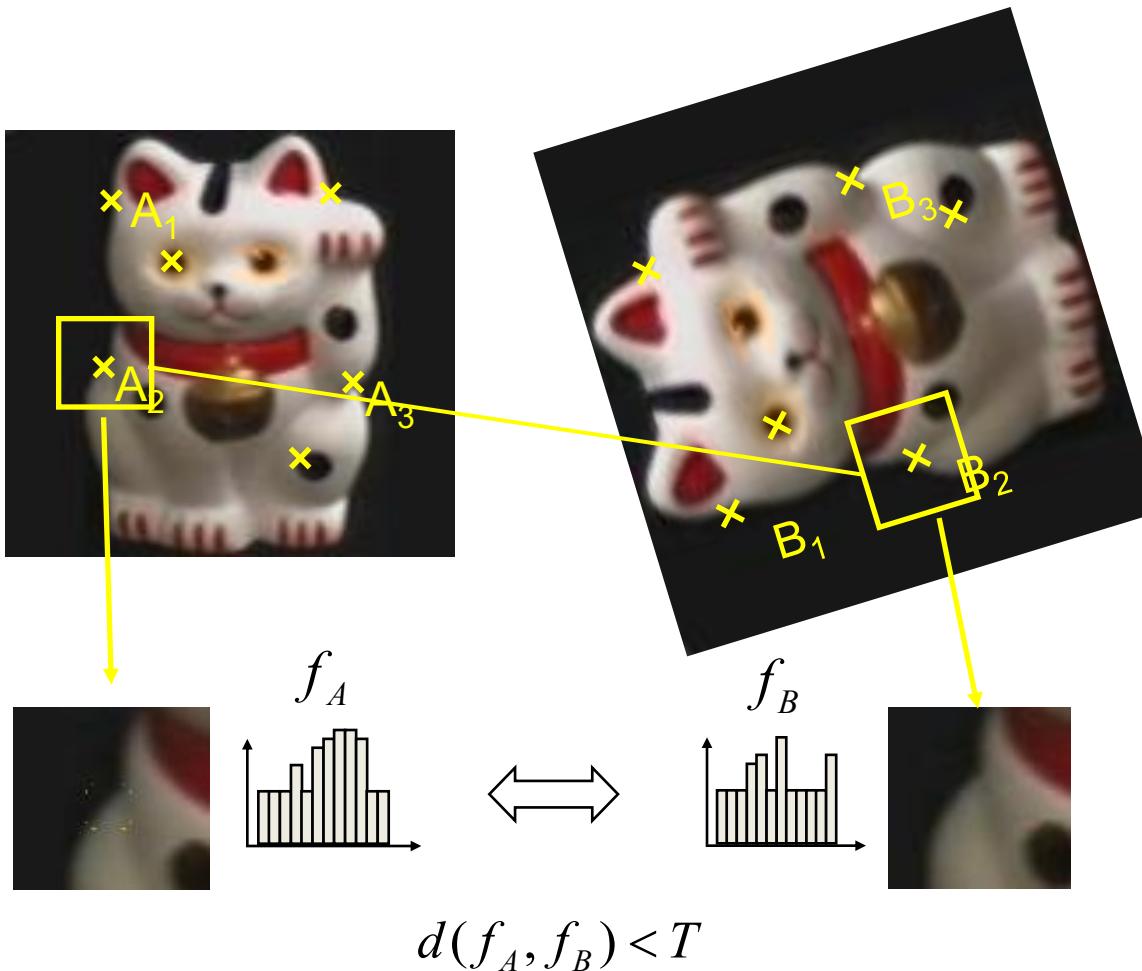
Project 2: Local Feature Matching

This section: correspondence and alignment

- Correspondence: matching points, patches, edges, or regions across images



Overview of Keypoint Matching



1. Find a set of distinctive keypoints

2. Compute a local descriptor from the region around each keypoint

3. Match local descriptors

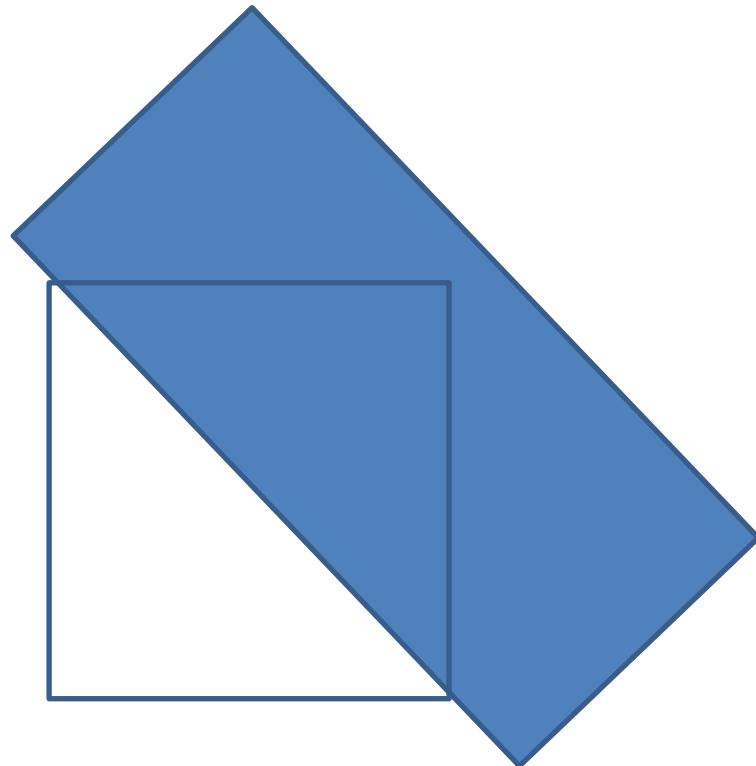
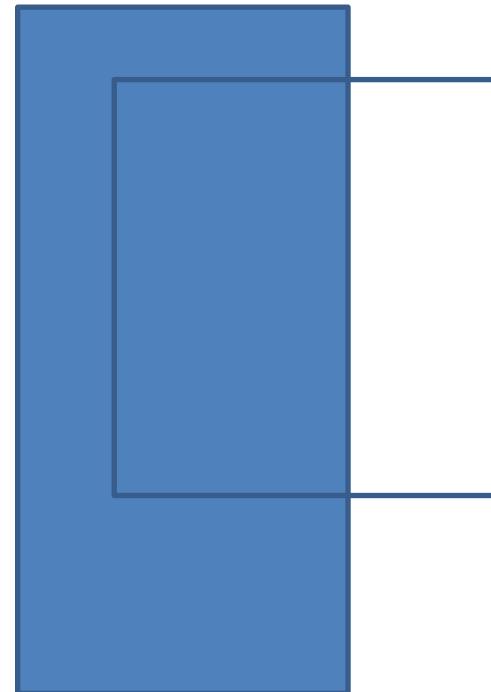
Review: Harris corner detector

- We want to find *distinctive* patches that don't look self-similar to neighboring patches
- If there are *gradients* in a patch, those gradients indicate distinctiveness in a particular direction.
- We want to check that we have strong, independent gradients in all directions.
- The eigenvalues of a collection of gradients in a patch tell us this.

What do the gradients / structure matrix look like?

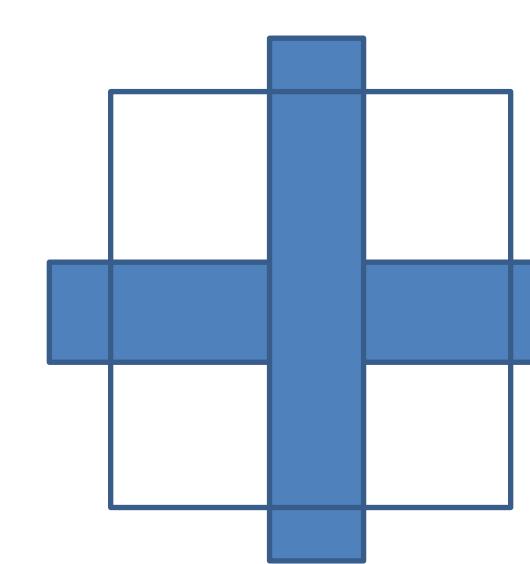
$$[\begin{array}{cc} 0 & 0 \\ -1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \\ -1 & 1 \\ 0 & 0 \\ \dots \end{array}]$$

$$\begin{bmatrix} C & -C \\ -C & C \end{bmatrix}$$



$$\begin{bmatrix} C & 0 \\ 0 & 0 \end{bmatrix}$$

$$[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ \dots \end{array}]$$



$$\begin{bmatrix} C & 0 \\ 0 & C \end{bmatrix}$$

Current
Window

$$[\begin{array}{cc} 0 & 0 \\ -1 & 0 \\ -1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ \dots \end{array}]$$

If you're not comfortable with Eigenvalues and Eigenvectors, Gilbert Strang's linear algebra lectures are linked from the course homepage

Lecture 21: Eigenvalues and eigenvectors

COURSE HOME

SYLLABUS

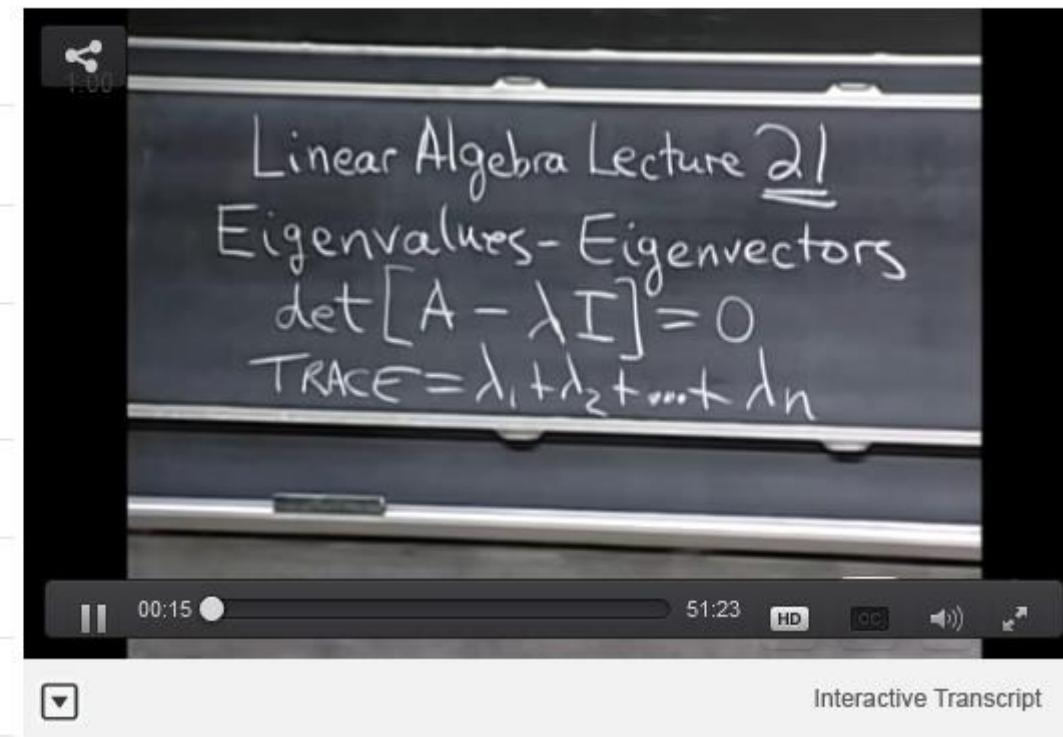
CALENDAR

INSTRUCTOR
INSIGHTS

VIDEO LECTURES

READINGS

ASSIGNMENTS



Harris Detector [Harris88]

- Second moment matrix

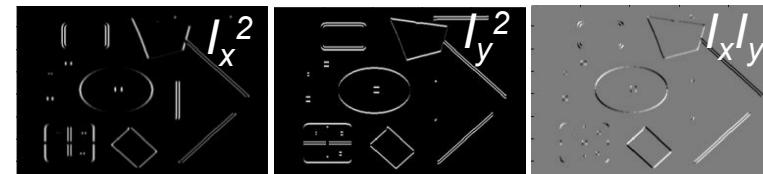
$$\mu(\sigma_I, \sigma_D) = g(\sigma_I) * \begin{bmatrix} I_x^2(\sigma_D) & I_x I_y(\sigma_D) \\ I_x I_y(\sigma_D) & I_y^2(\sigma_D) \end{bmatrix}$$

$$\det M = \lambda_1 \lambda_2$$

$$\text{trace } M = \lambda_1 + \lambda_2$$

1. Image derivatives
(optionally, blur first)

2. Square of derivatives



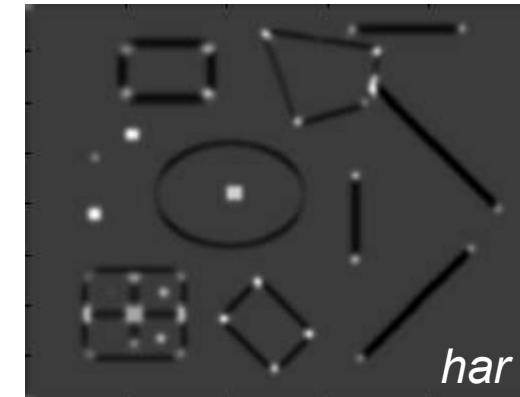
3. Gaussian filter $g(\sigma_I)$

4. Cornerness function – both eigenvalues are strong

$$har = \det[\mu(\sigma_I, \sigma_D)] - \alpha[\text{trace}(\mu(\sigma_I, \sigma_D))^2] =$$

$$g(I_x^2)g(I_y^2) - [g(I_x I_y)]^2 - \alpha[g(I_x^2) + g(I_y^2)]^2$$

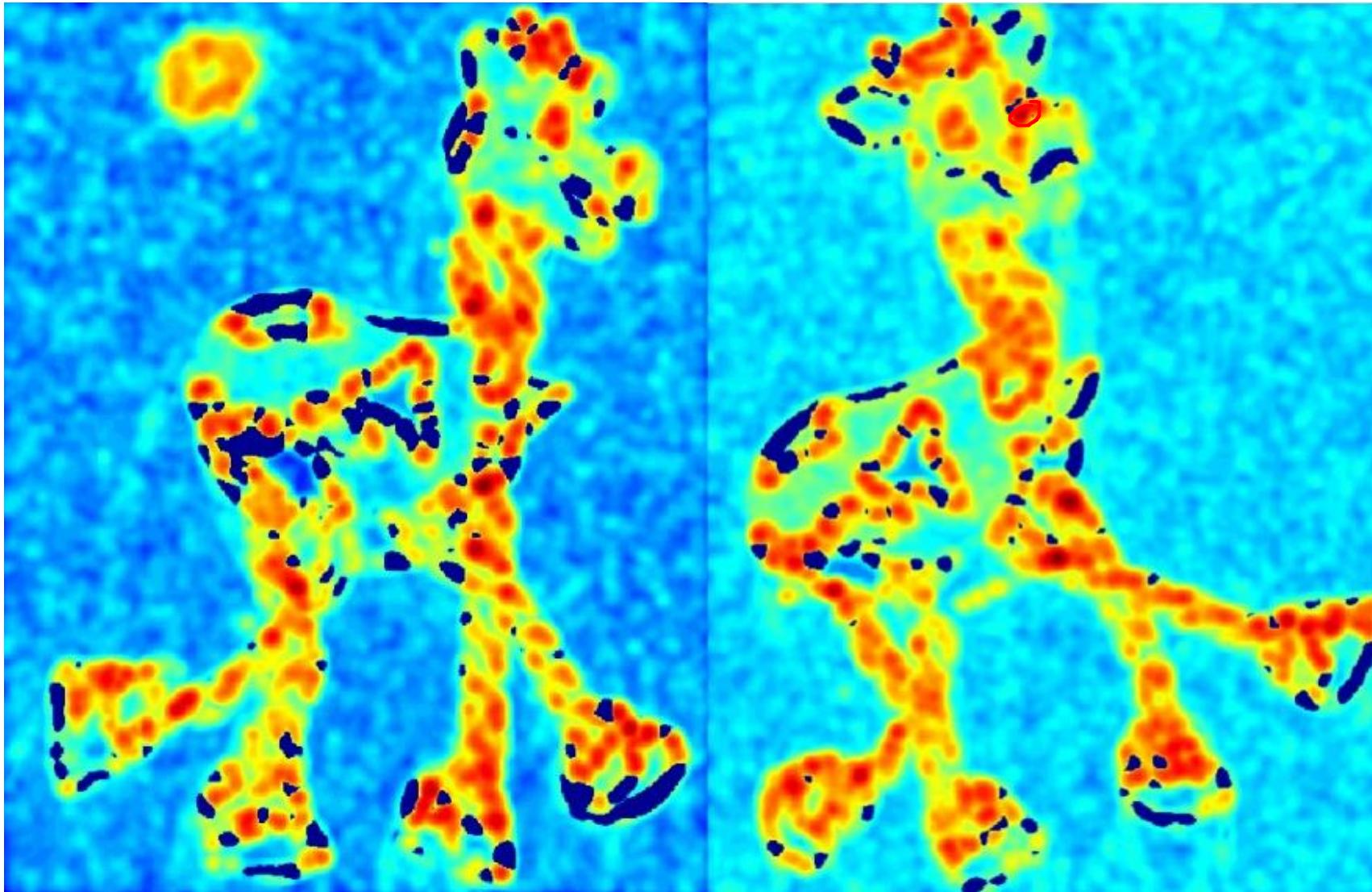
5. Non-maxima suppression



Harris Detector: Steps

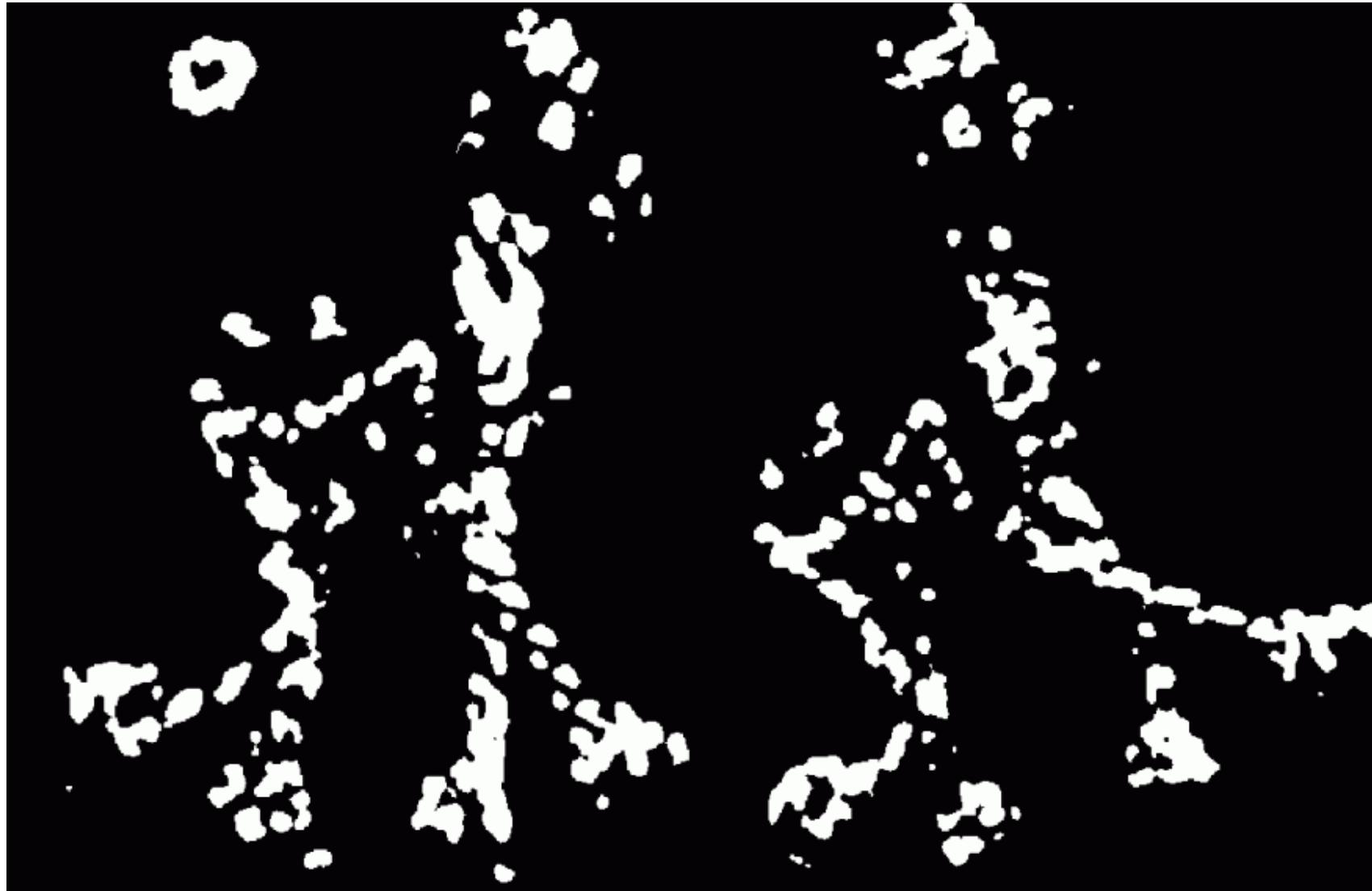
Harris Detector: Steps

Compute corner response R



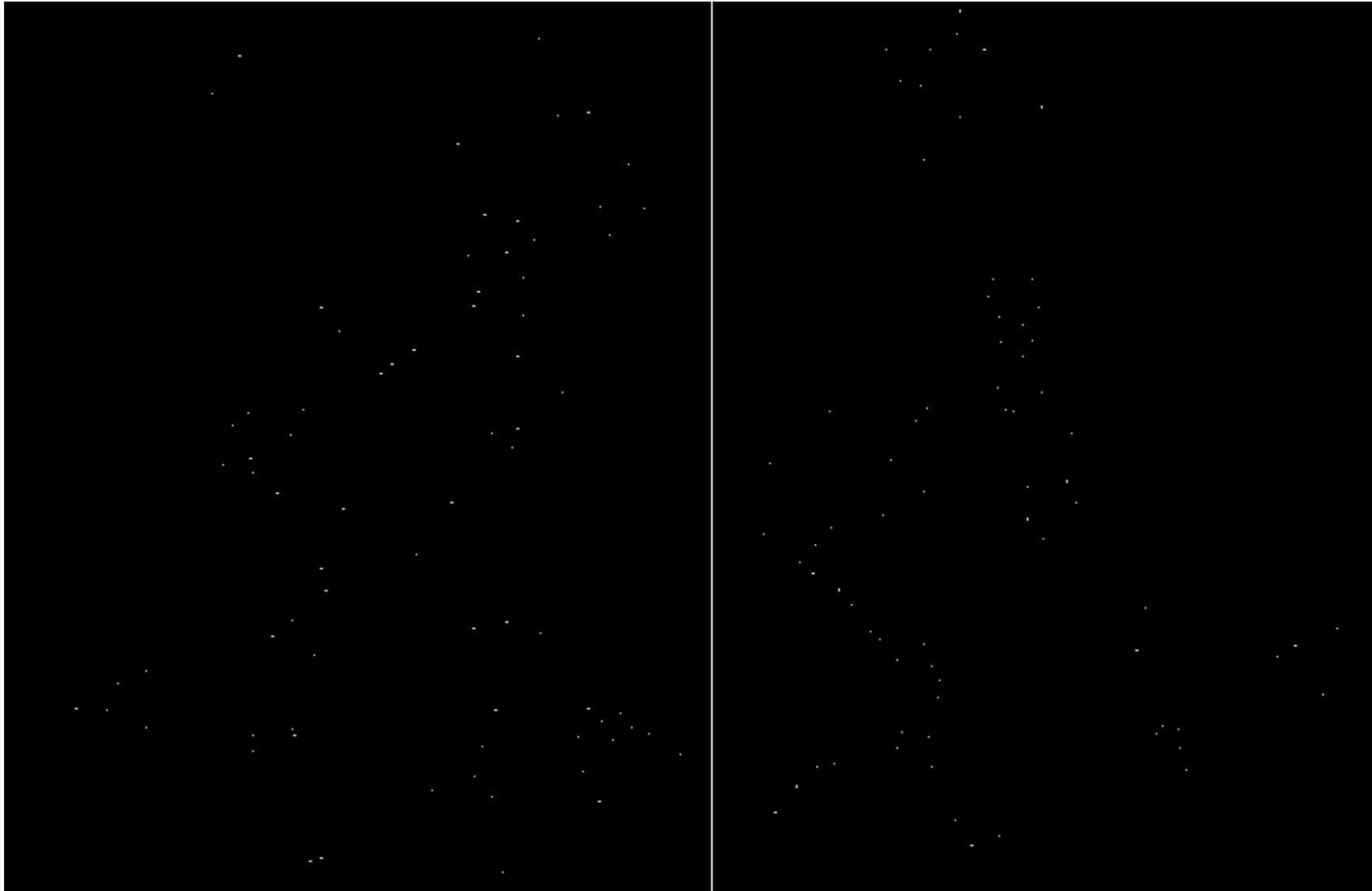
Harris Detector: Steps

Find points with large corner response: $R>\text{threshold}$



Harris Detector: Steps

Take only the points of local maxima of R

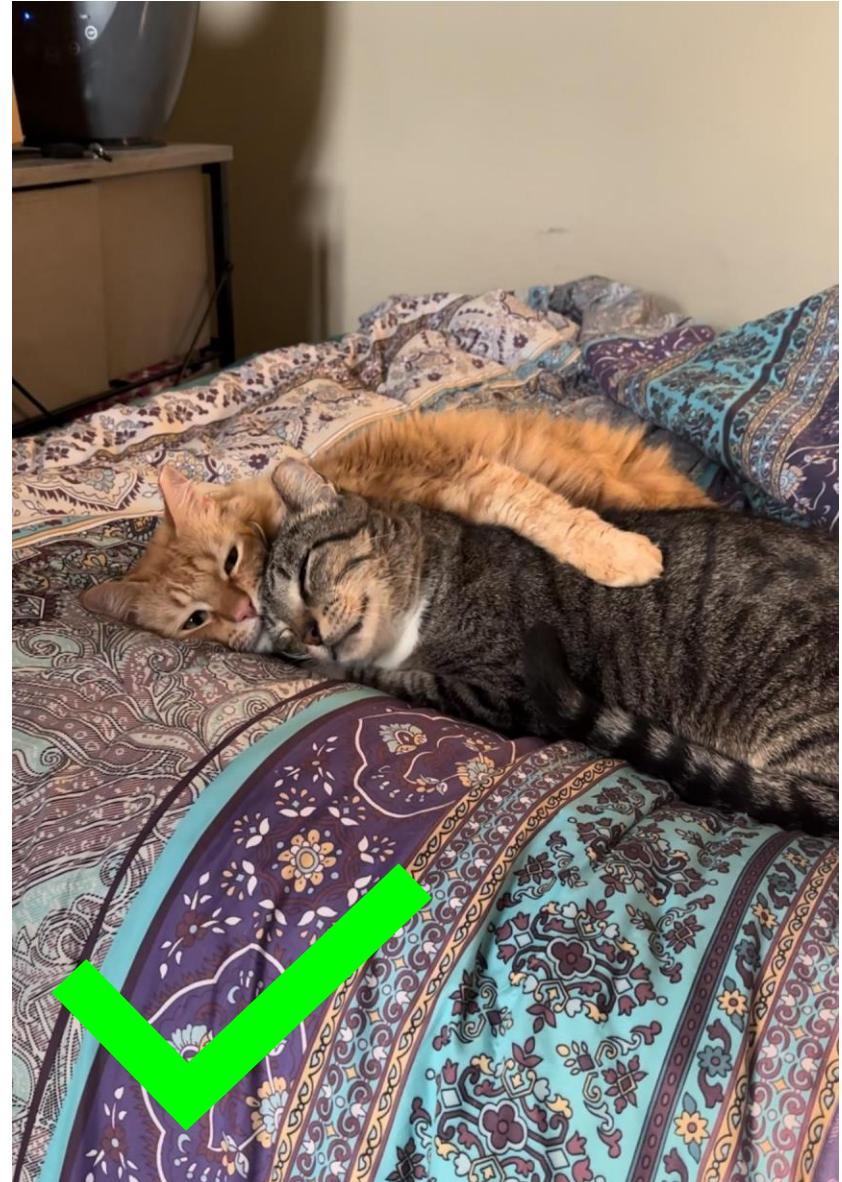
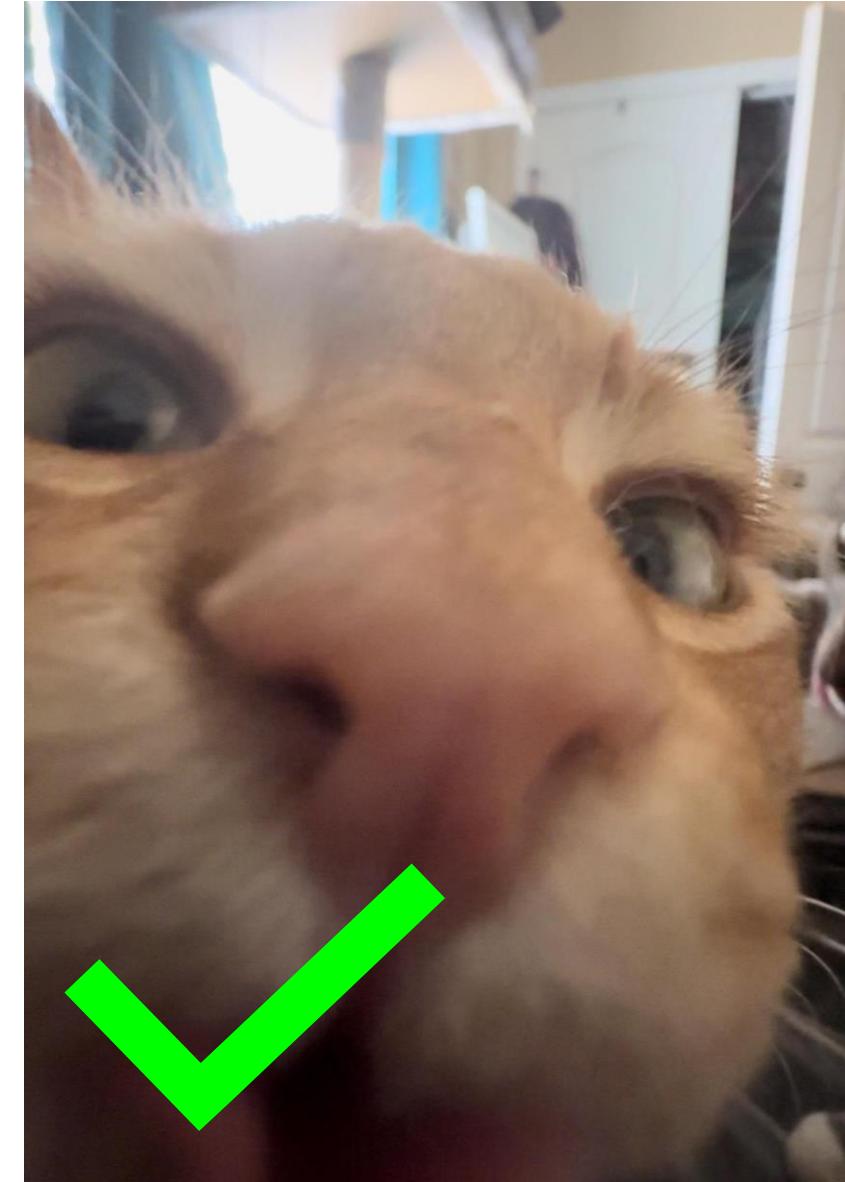


Harris Detector: Steps

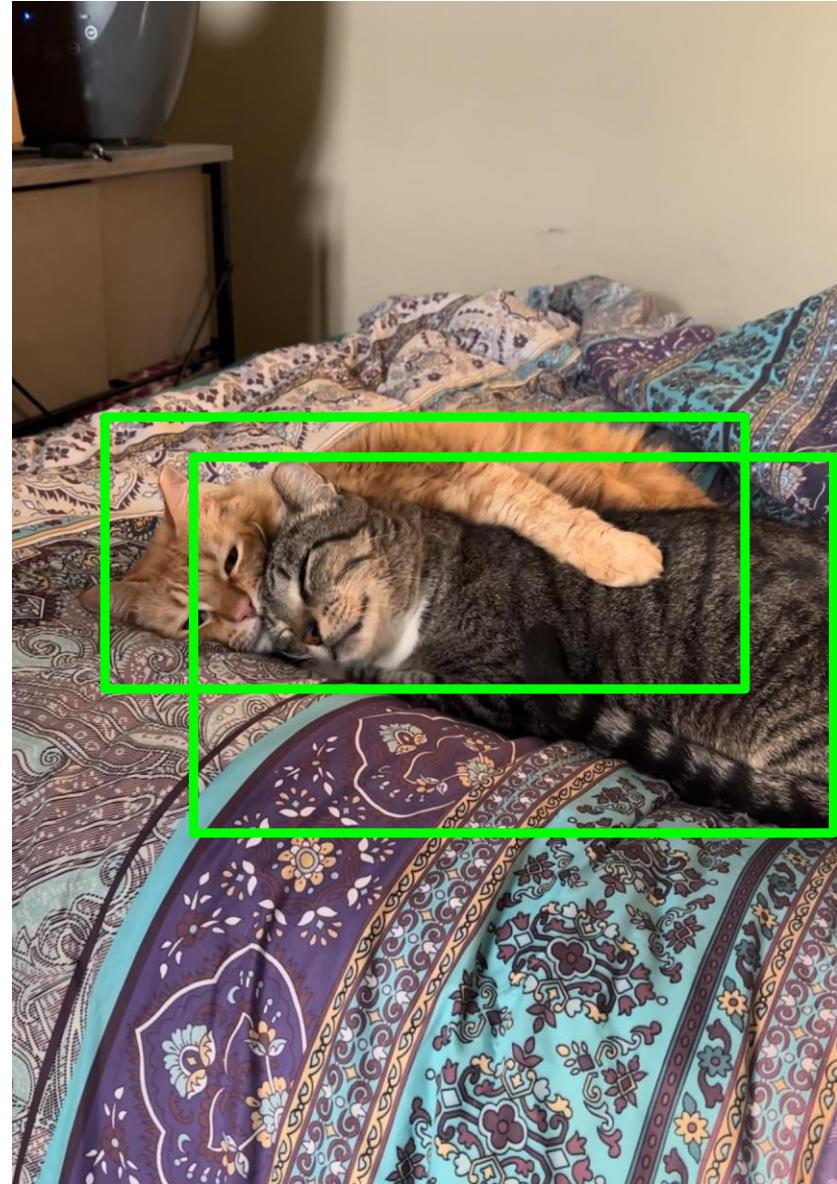
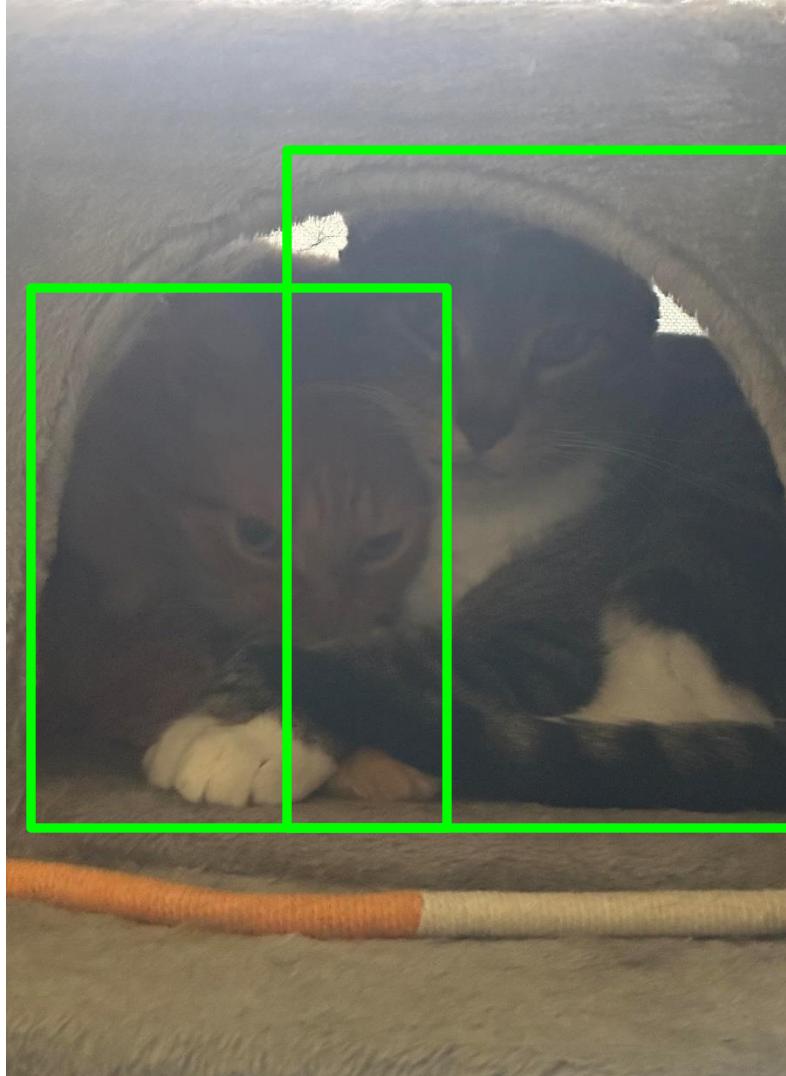
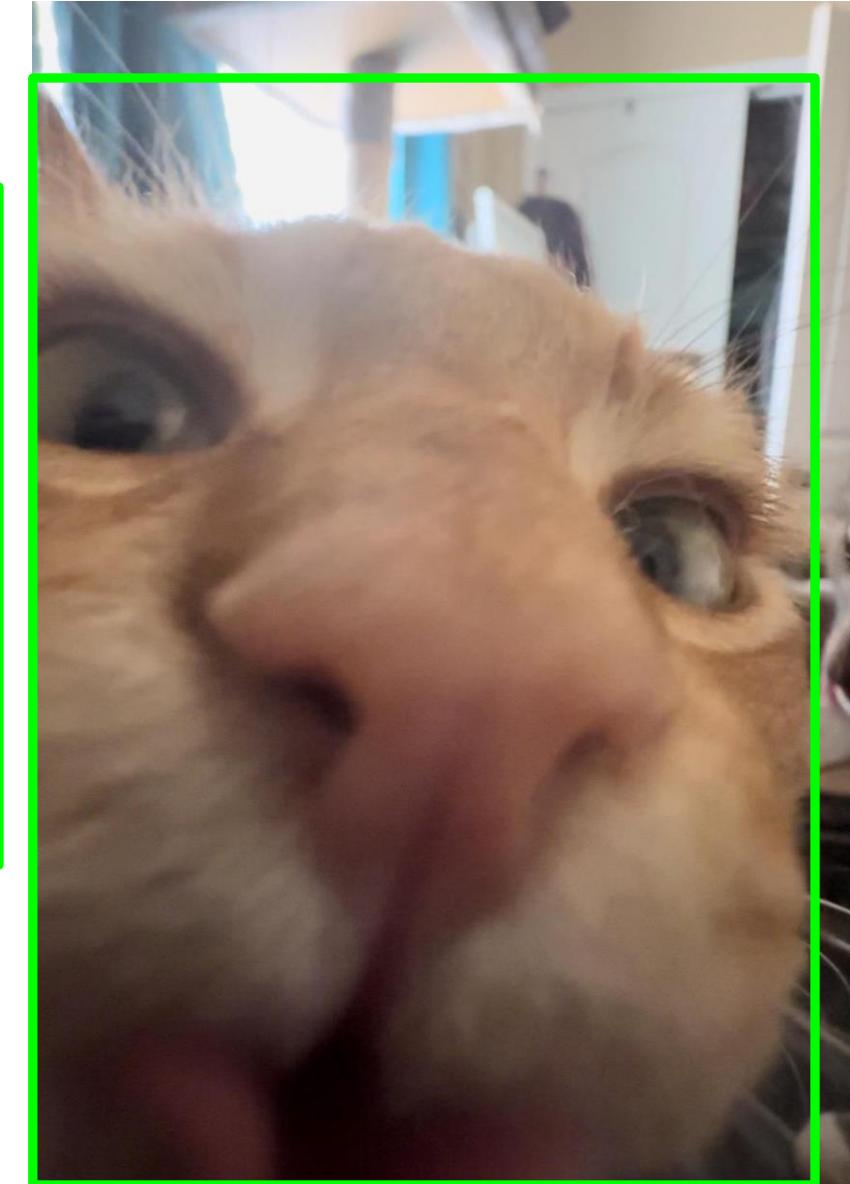
Invariance and covariance

- We want corner locations to be *invariant* to photometric transformations and *covariant* to geometric transformations
 - **Invariance:** image is transformed and corner locations do not change
 - **Covariance:** if we have two transformed versions of the same image, features should be detected in corresponding locations

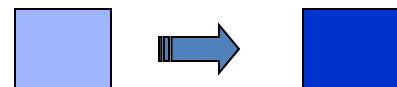
Cat Classifier – we want invariance



Cat Detector – we want covariance

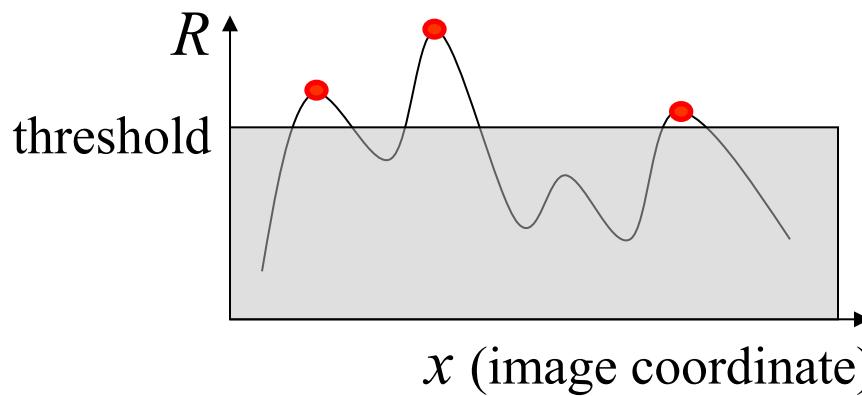
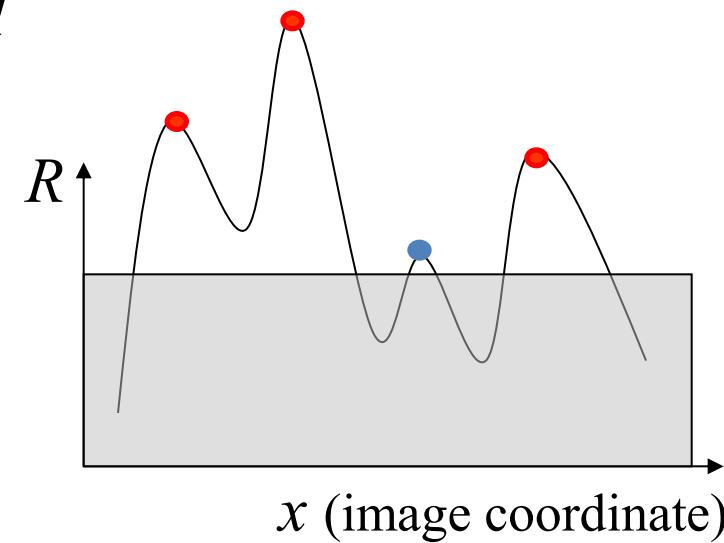


Affine intensity change



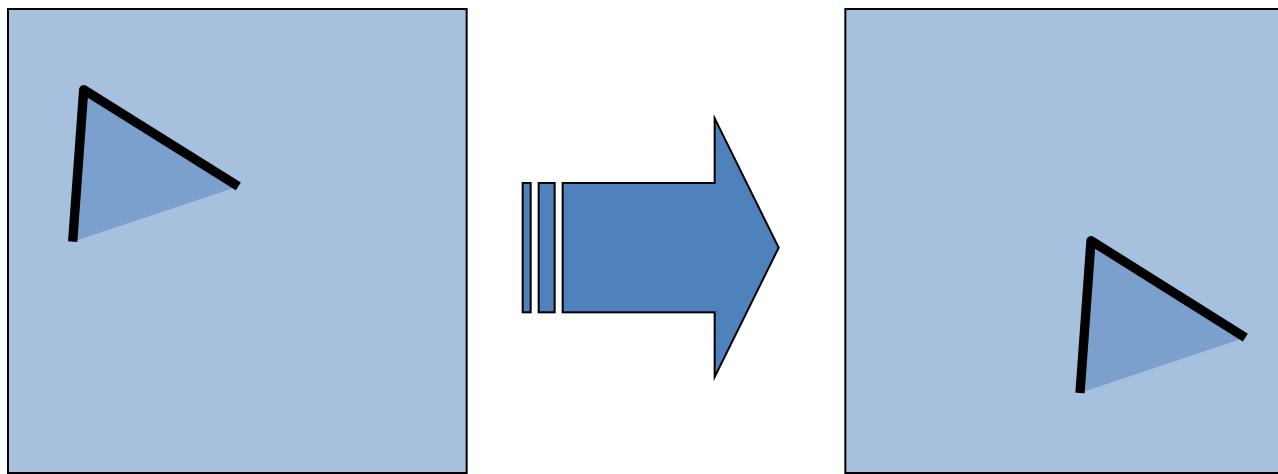
$$I \rightarrow a I + b$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$



Partially invariant to affine intensity change

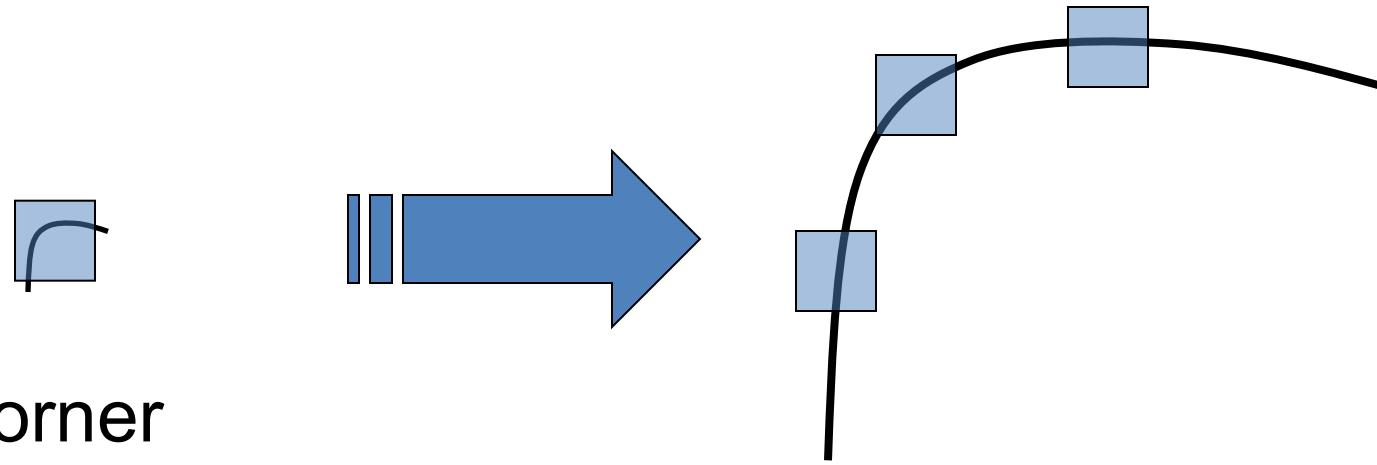
Image translation



- Derivatives and window function are shift-invariant

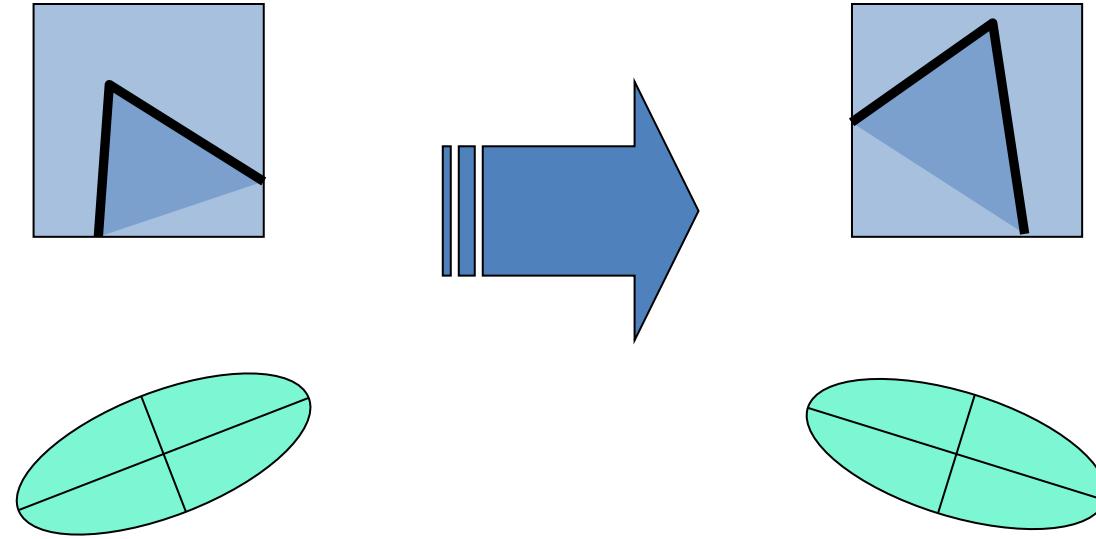
Corner location is covariant w.r.t. translation

Spatial Scaling / Zoom



Corner location is not covariant to scaling!

Image rotation



Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

So far: can localize in x-y, but not scale

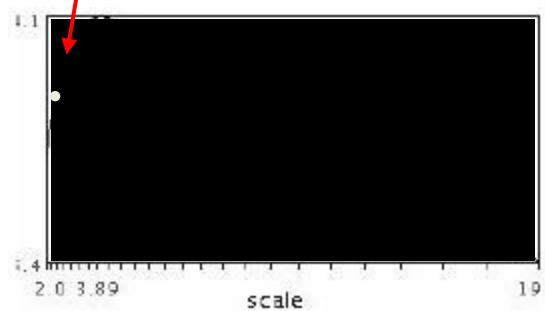
Automatic Scale Selection

$$f(I_{i_1 \dots i_m}(x, \sigma)) = f(I_{i_1 \dots i_m}(x', \sigma'))$$

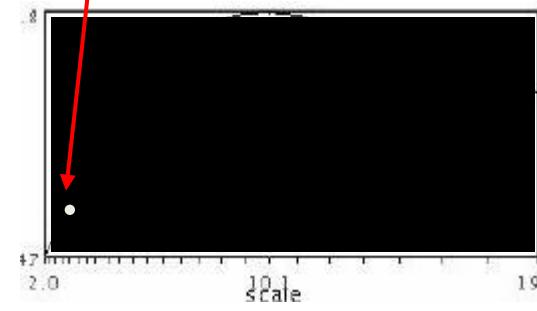
How to find corresponding patch sizes?

Automatic Scale Selection

- Function responses for increasing scale (scale signature)



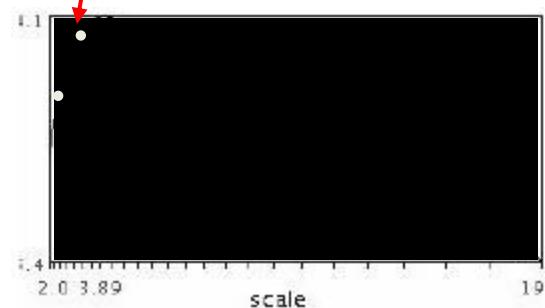
$$f(I_{i_1 \dots i_m}(x, \sigma))$$



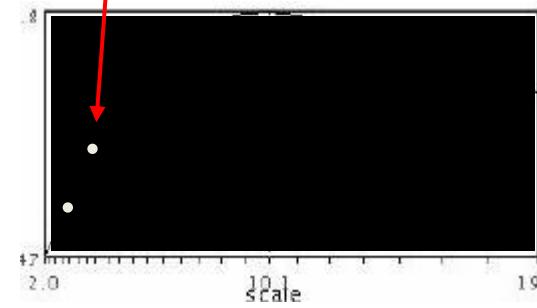
$$f(I_{i_1 \dots i_m}(x', \sigma))$$

Automatic Scale Selection

- Function responses for increasing scale (scale signature)



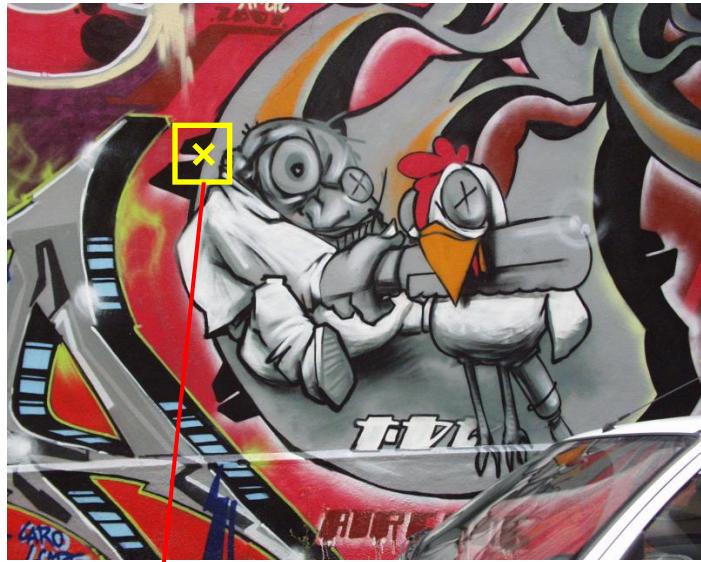
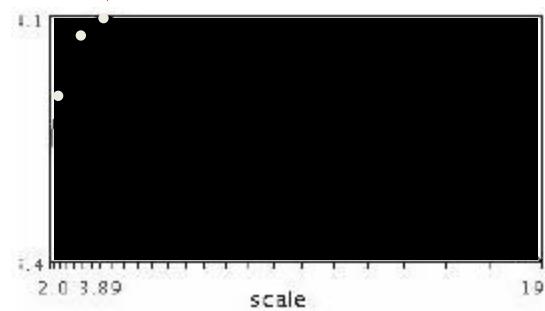
$$f(I_{i_1 \dots i_m}(x, \sigma))$$



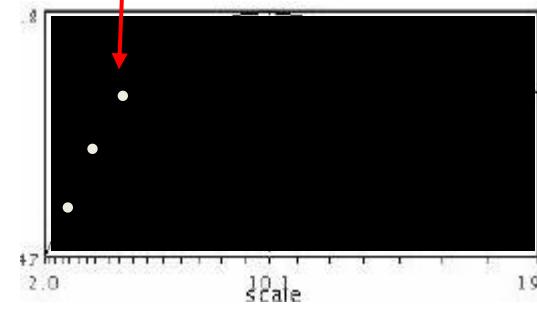
$$f(I_{i_1 \dots i_m}(x', \sigma))$$

Automatic Scale Selection

- Function responses for increasing scale (scale signature)



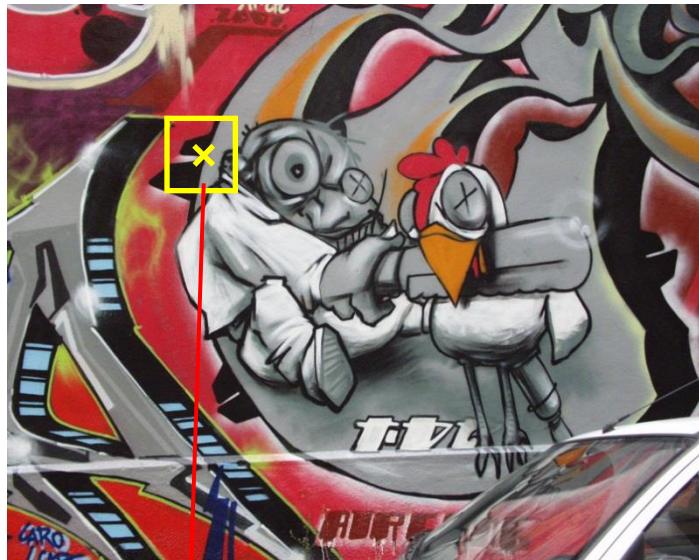
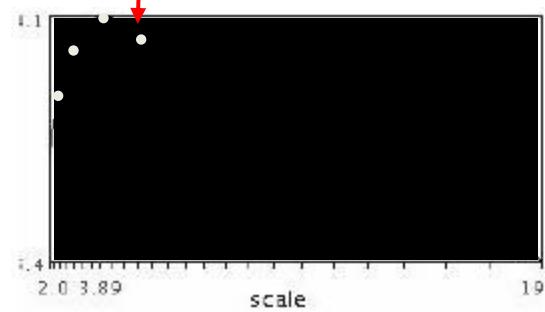
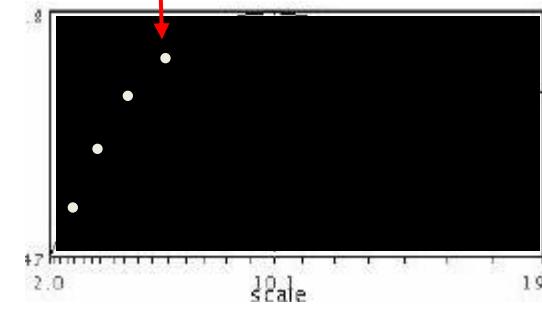
$$f(I_{i_1 \dots i_m}(x, \sigma))$$



$$f(I_{i_1 \dots i_m}(x', \sigma))$$

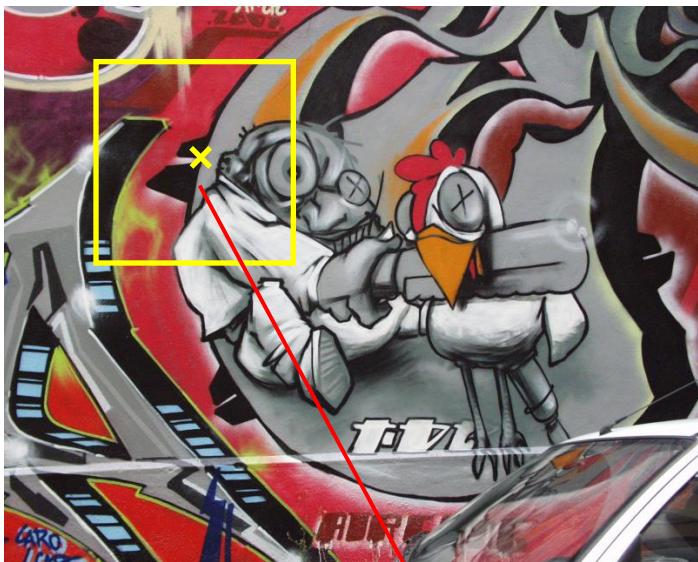
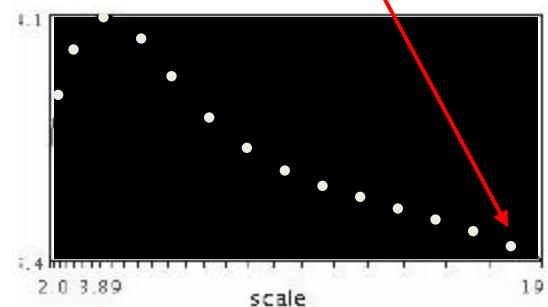
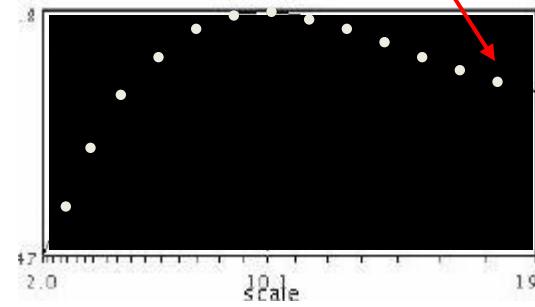
Automatic Scale Selection

- Function responses for increasing scale (scale signature)



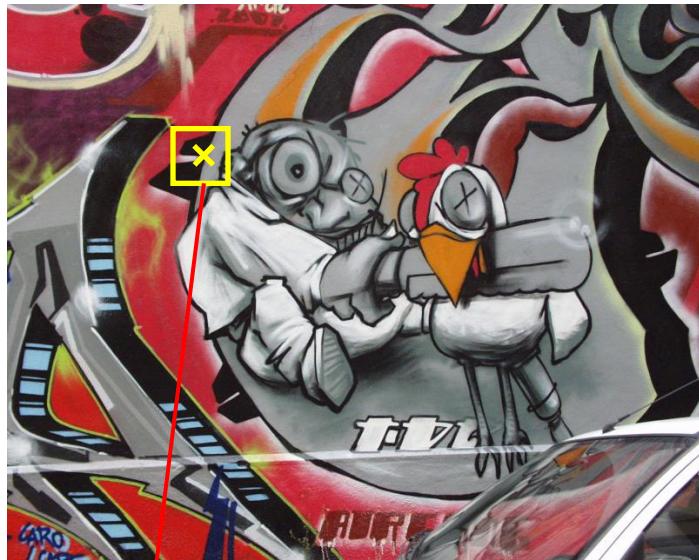
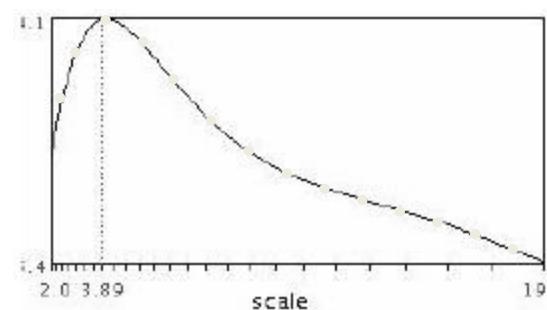
Automatic Scale Selection

- Function responses for increasing scale (scale signature)

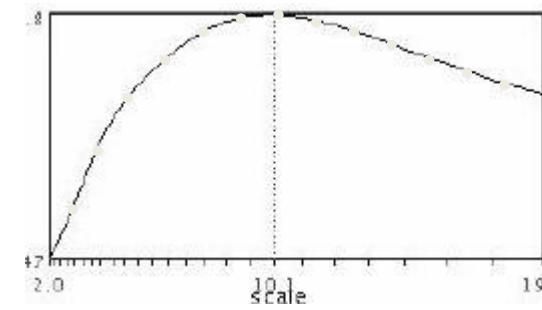


Automatic Scale Selection

- Function responses for increasing scale (scale signature)



$$f(I_{i_1 \dots i_m}(x, \sigma))$$

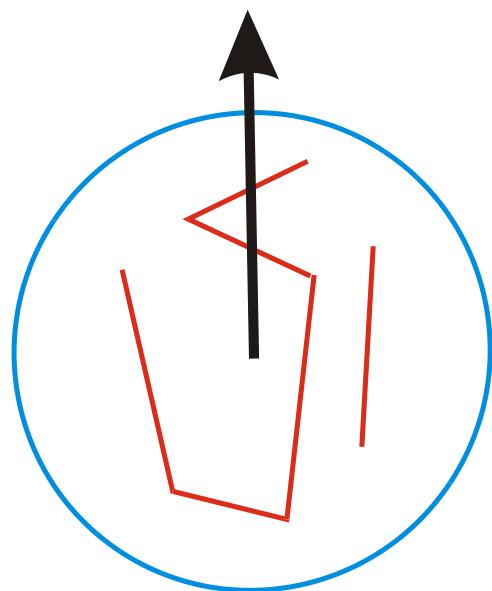
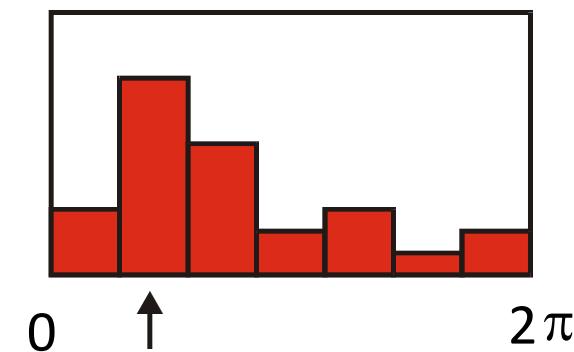


$$f(I_{i_1 \dots i_m}(x', \sigma'))$$

Orientation Normalization

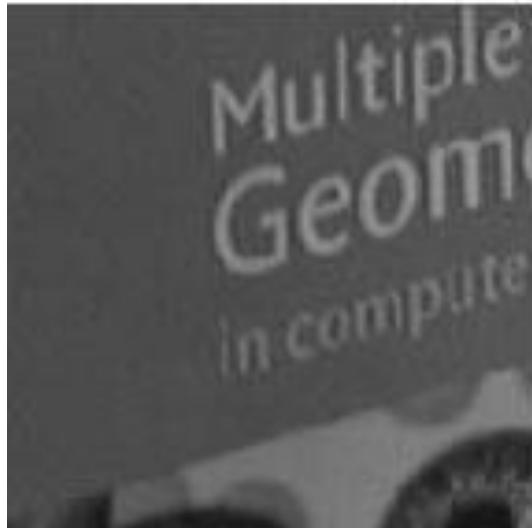
- Compute orientation histogram
- Select dominant orientation
- Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999]



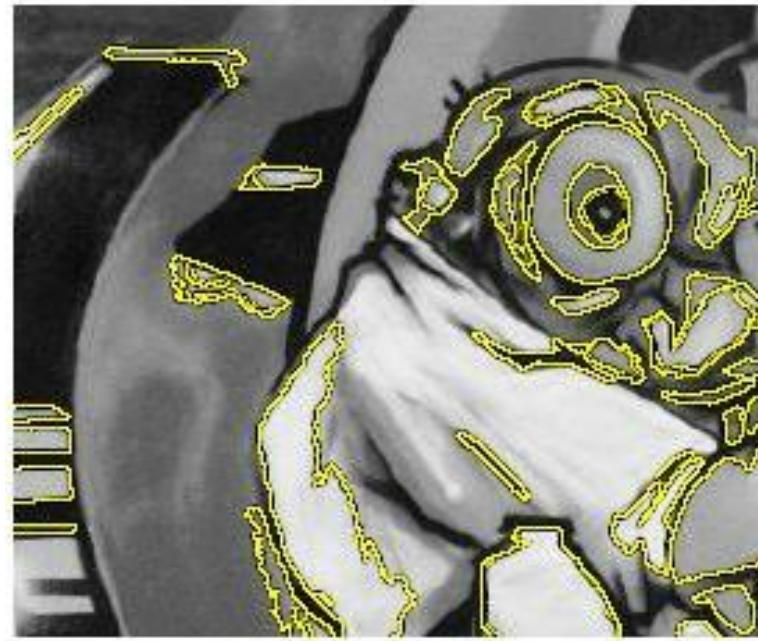
Maximally Stable Extremal Regions

- Based on Watershed segmentation algorithm
- Select regions that stay stable over a large parameter range

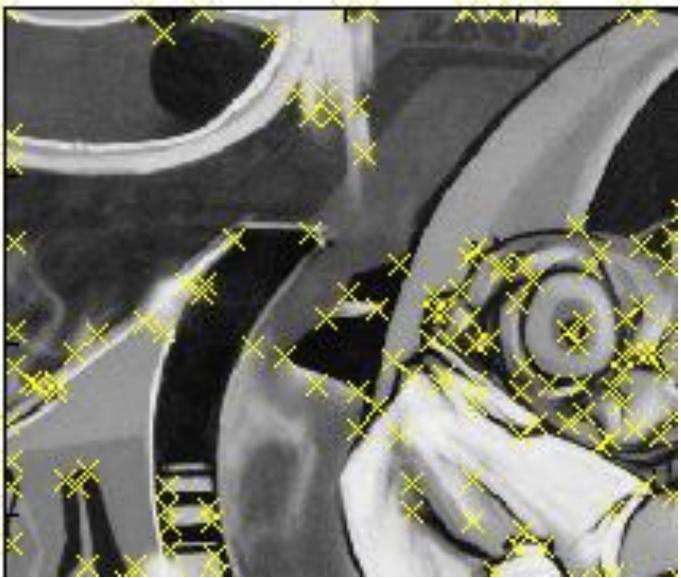


"Robust Wide Baseline Stereo from Maximally Stable Extremal Regions",
Matas, Chum, Urban, and Pajdla, BMVC 2002
6k+ citations

Example Results: MSER

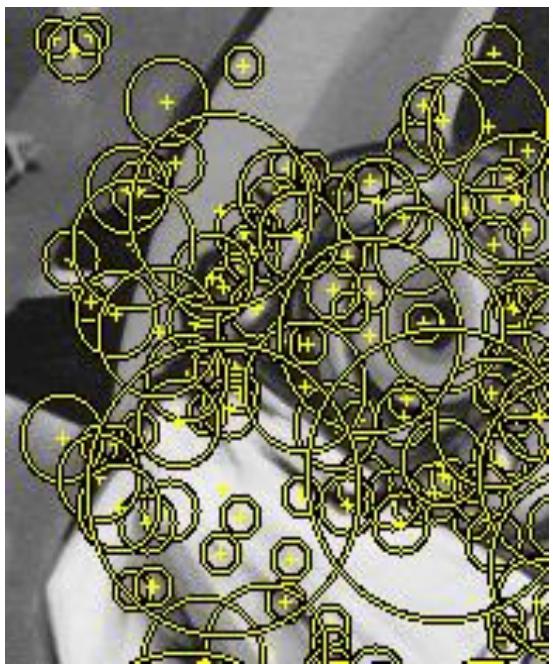


Comparison



Harris

Hessian

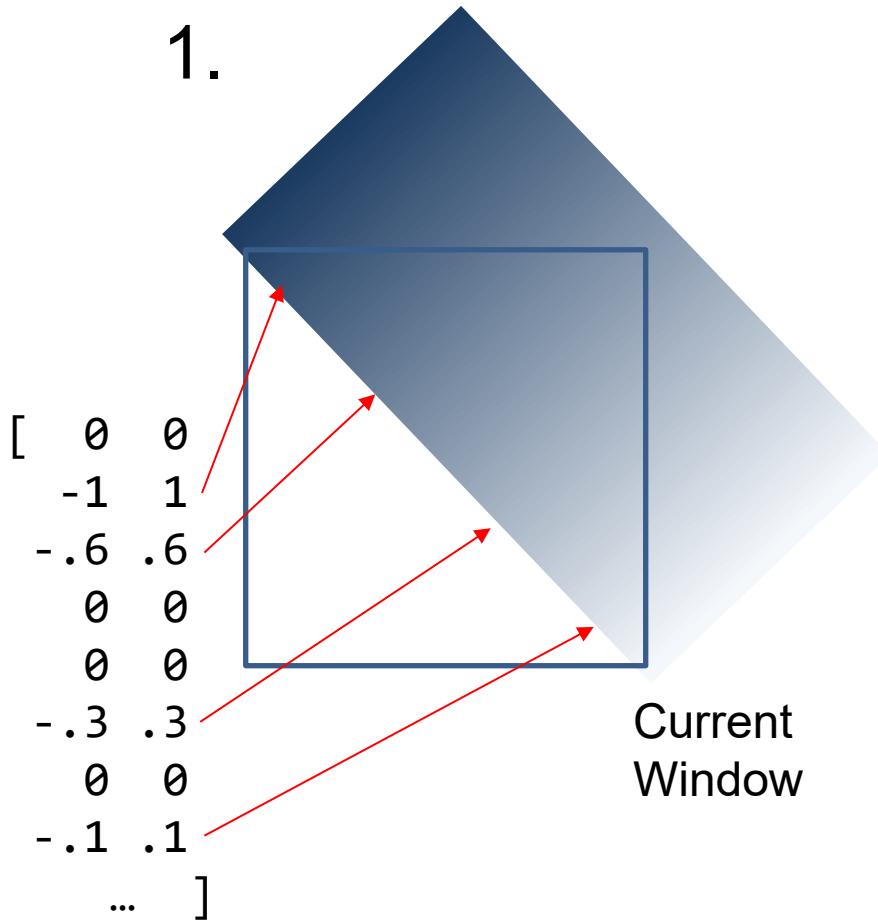


LoG

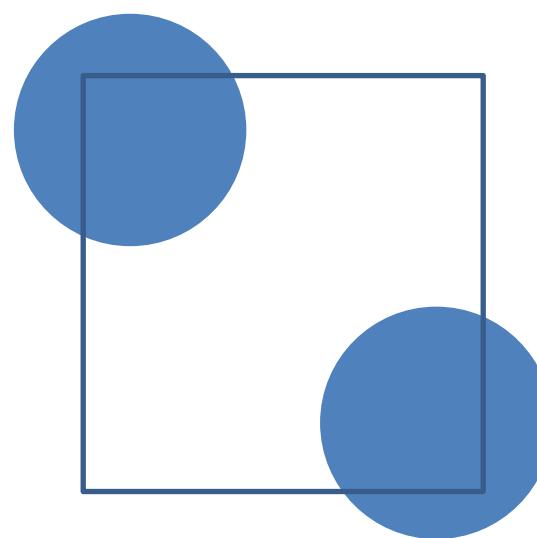
MSER

Recap Quiz: Are these Harris Corners?

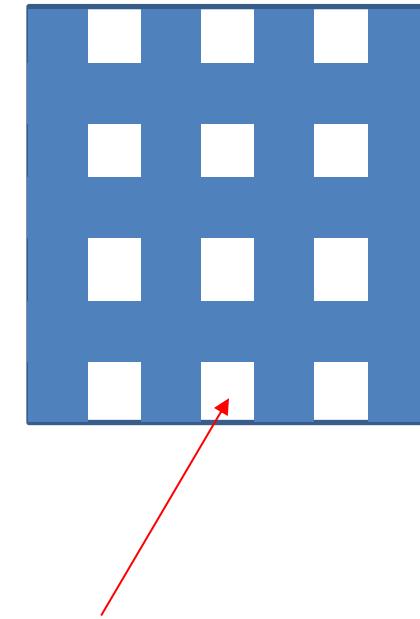
1.



2.



3.

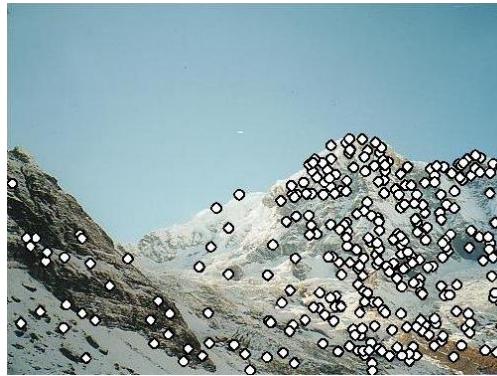


Light and dark regions are a single pixel in width

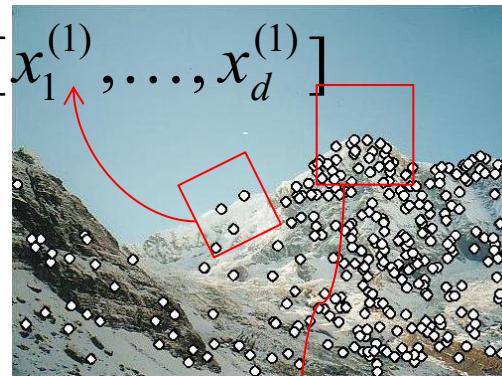
Matrix contains pairs of (x,y)
gradients at pixels in the patch

Local features: main components

1) Detection: Identify the interest points



2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.



3) Matching: Determine correspondence between descriptors in two views

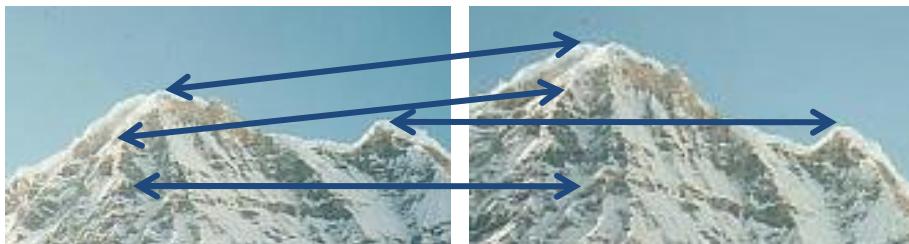
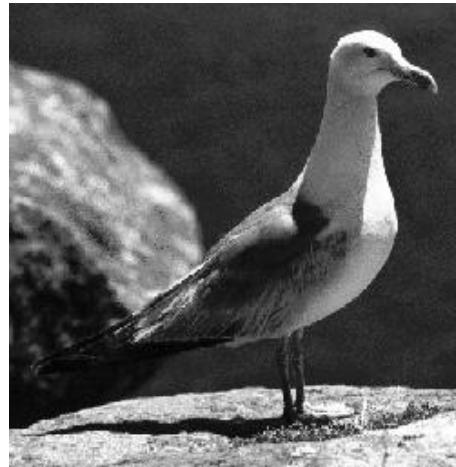


Image representations

- **Templates**
 - Intensity, color, gradients, etc.
 - Keeps spatial layout



23	31	25	17	22	80	170	38
81	77	42	21	17	75	85	67
88	83	24	30	29	34	51	21
79	85	92	61	112	103	181	20
75	77	113	103	75	83	97	19
57	68	106	98	86	97	51	41
61	52	89	97	115	97	103	101
155	196	180	183	183	197	201	212

- **Histograms**
 - Distribution of intensity, color, texture, SIFT descriptors, etc.
 - Discards spatial layout

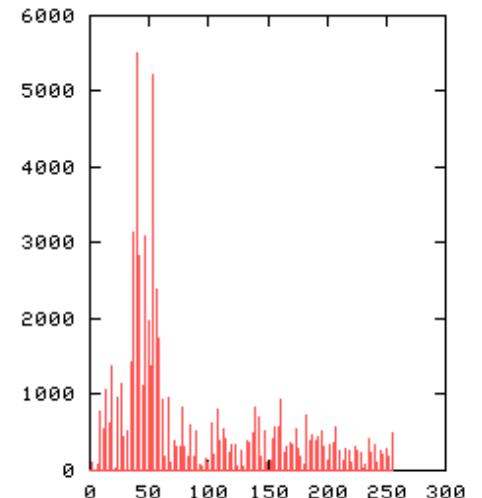
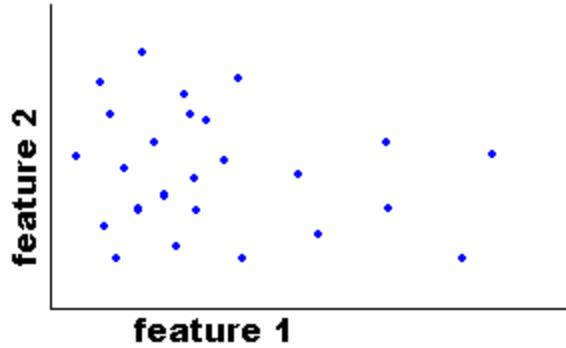
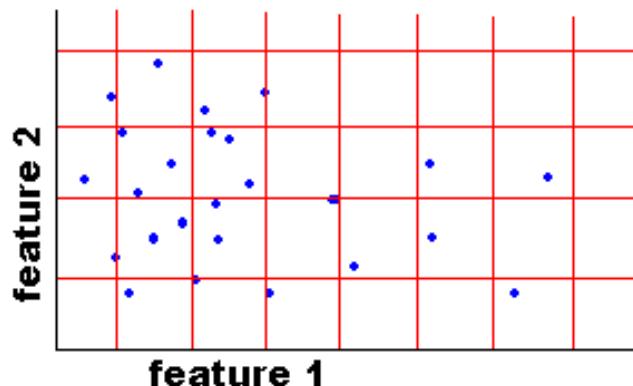


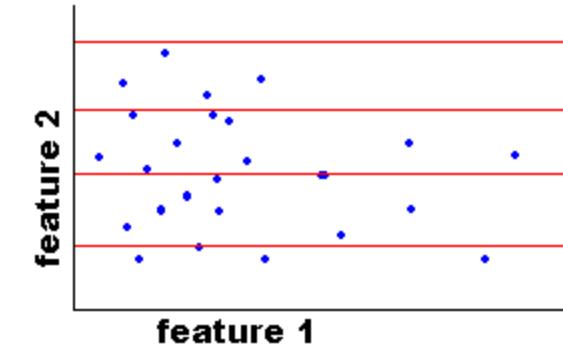
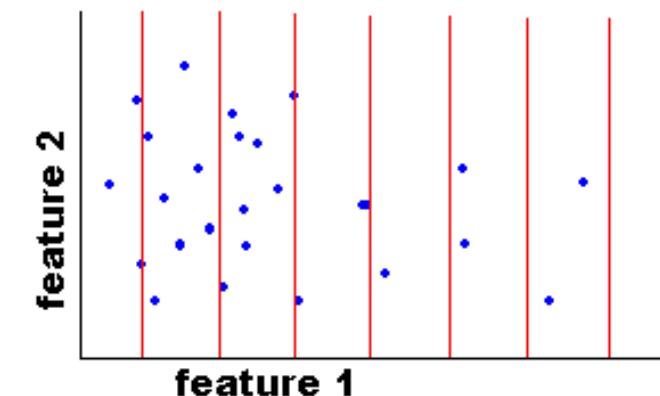
Image Representations: Histograms

Histogram: Probability or count of data in each bin



- **Joint histogram**

- Requires lots of data
- Loss of resolution to avoid empty bins

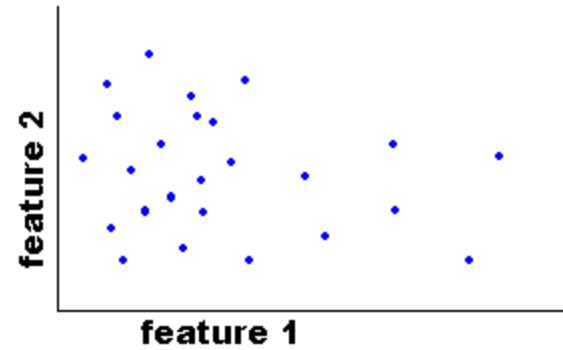
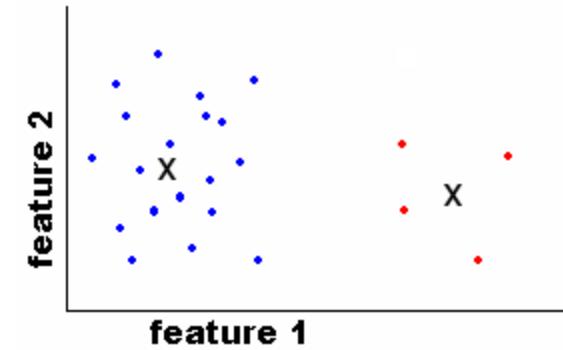


- **Marginal histogram**

- Requires independent features
- More data/bin than joint histogram

Image Representations: Histograms

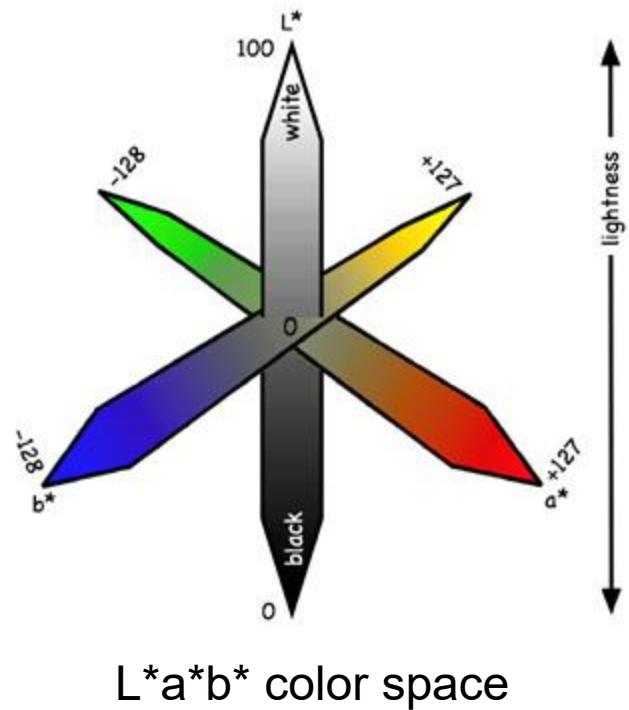
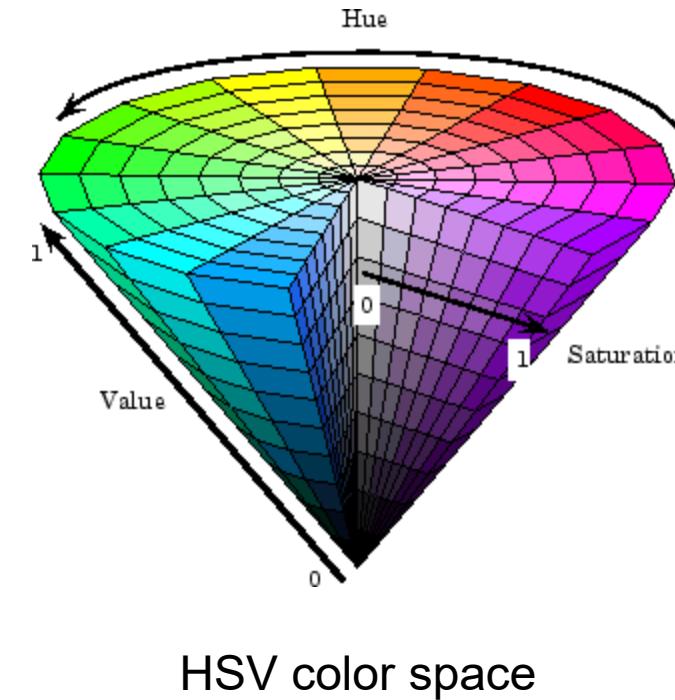
Clustering



Use the same cluster centers for all images

What kind of things do we compute histograms of?

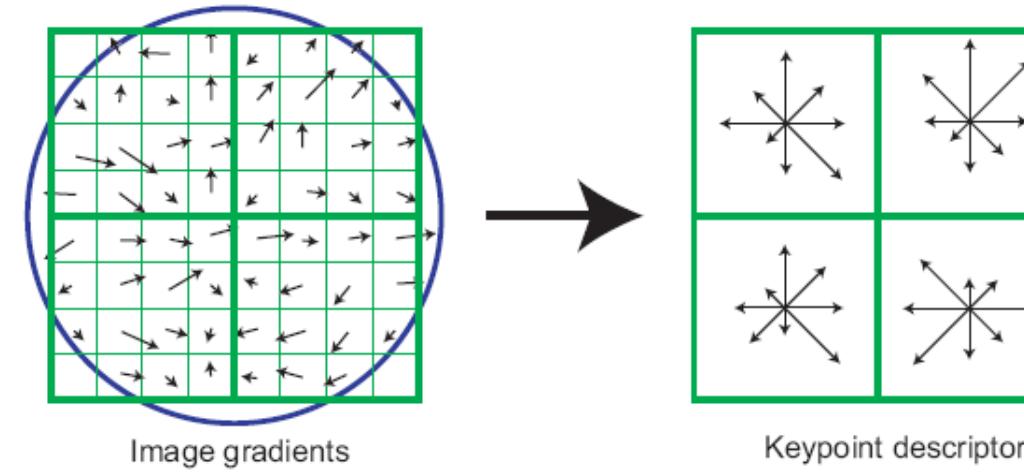
- Color



- Texture (filter banks or HOG over regions)

What kind of things do we compute histograms of?

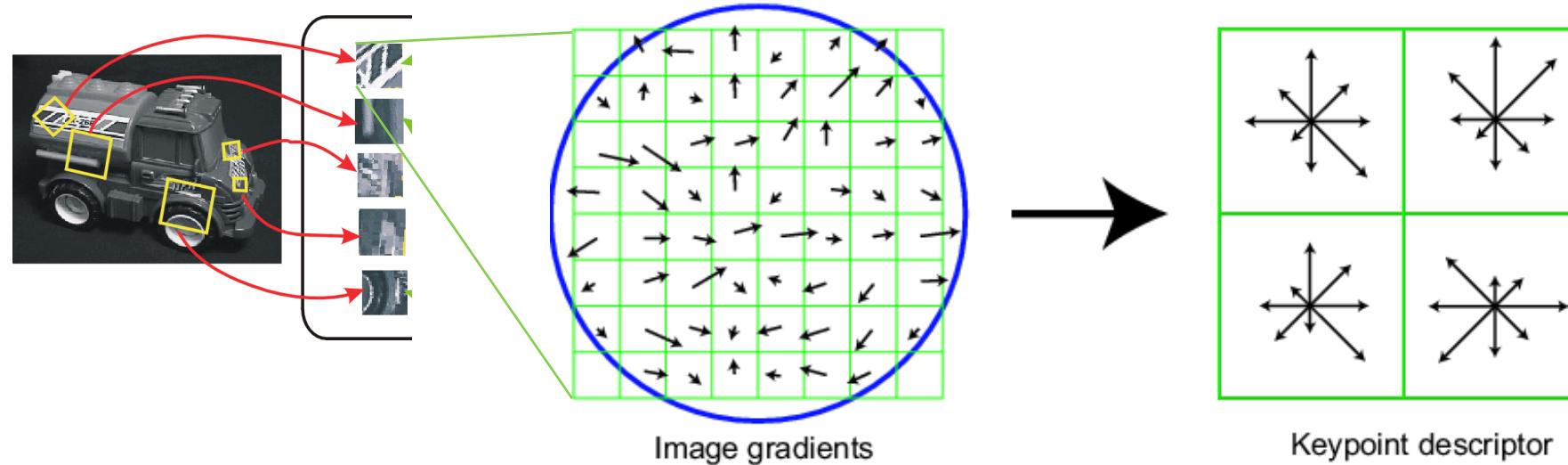
- Histograms of oriented gradients



SIFT – Lowe IJCV 2004

SIFT vector formation

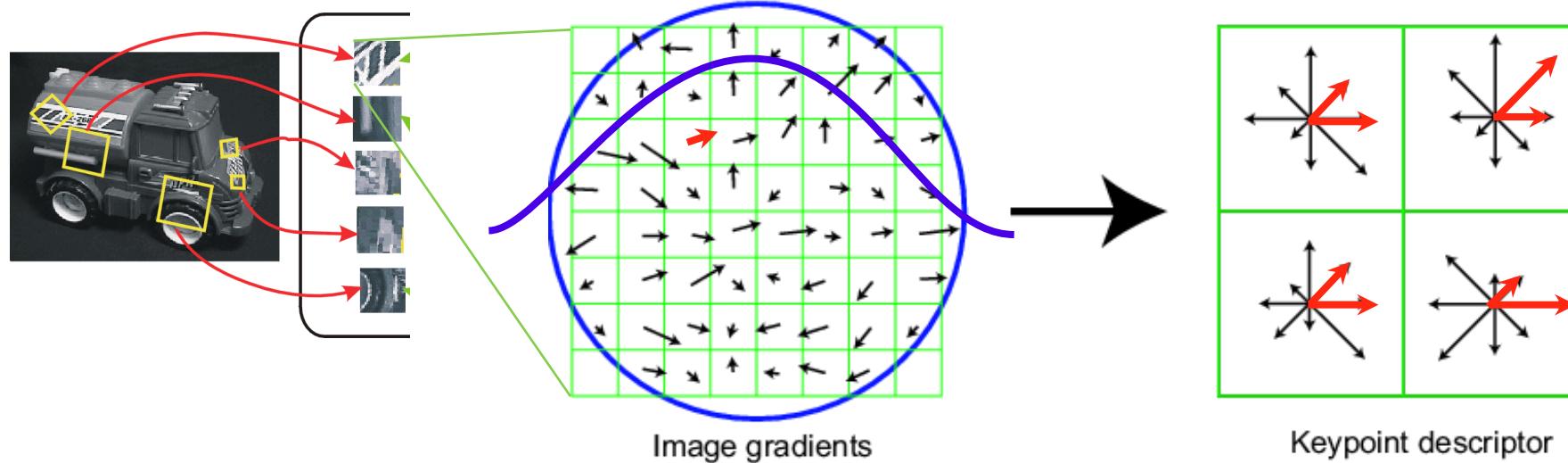
- 4x4 array of gradient orientation histogram weighted by magnitude
- 8 orientations x 4x4 array = 128 dimensions
- Motivation: some sensitivity to spatial layout, but not too much.



showing only 2x2 here, but typical feature would be 4x4

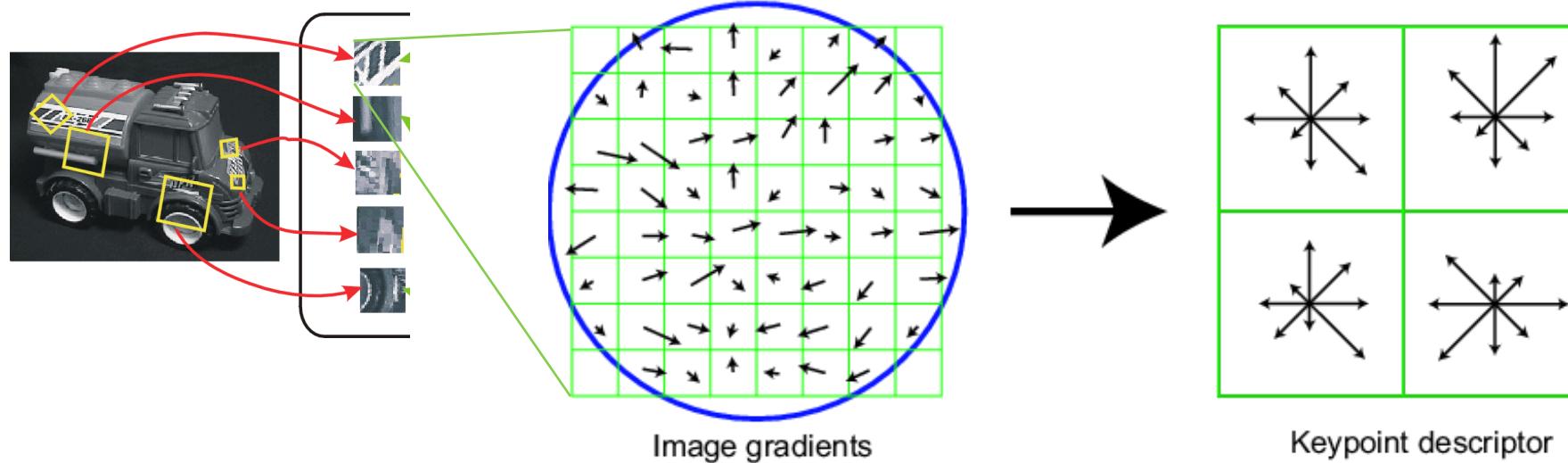
Ensure smoothness

- Gaussian weight
- Interpolation
 - a given gradient contributes to 8 bins:
4 in space times 2 in orientation

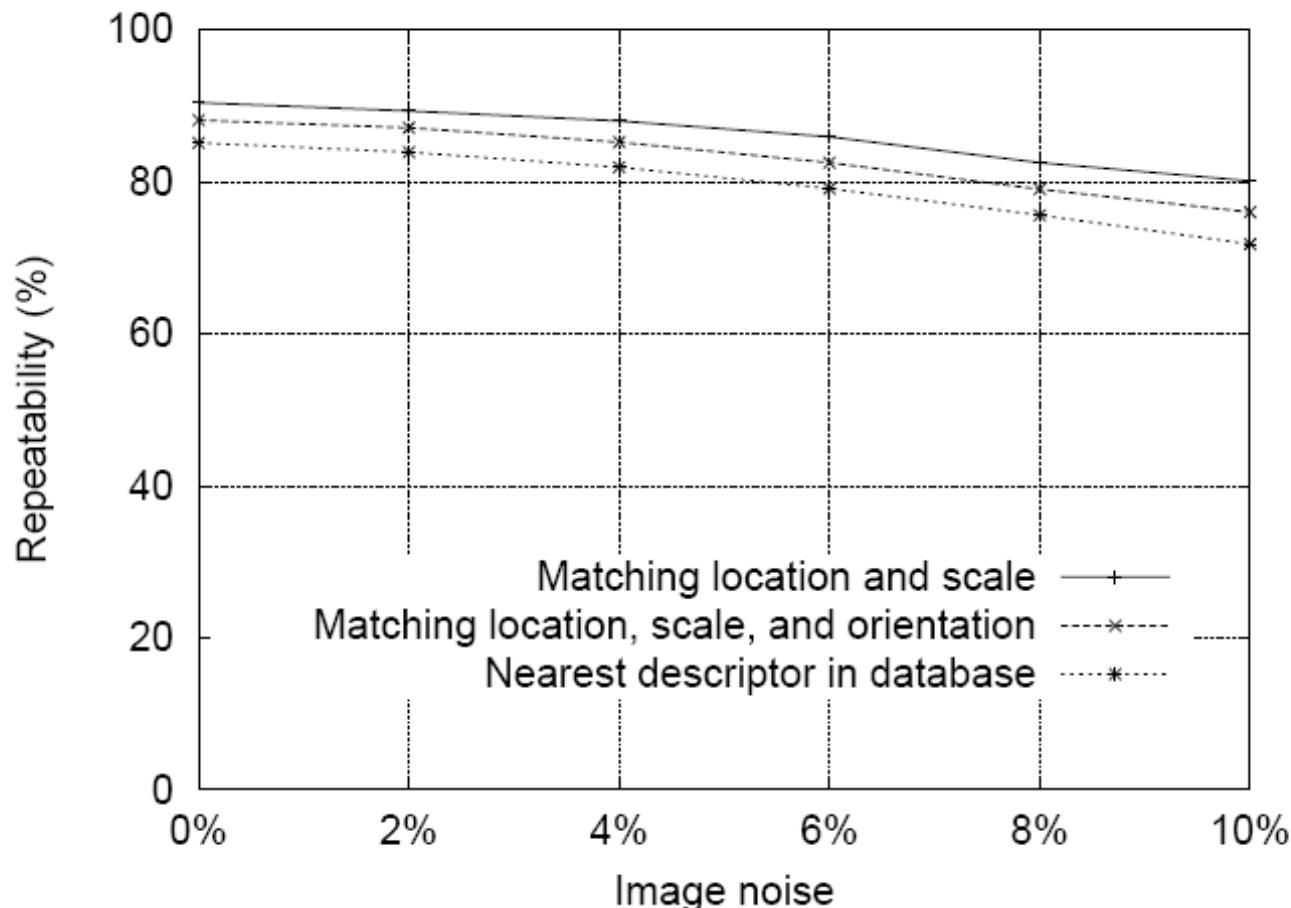


Reduce effect of illumination

- 128-dim vector normalized to 1
- Optionally, threshold gradient magnitudes to avoid excessive influence of high gradients
 - after normalization, clamp gradients >0.2
 - renormalize



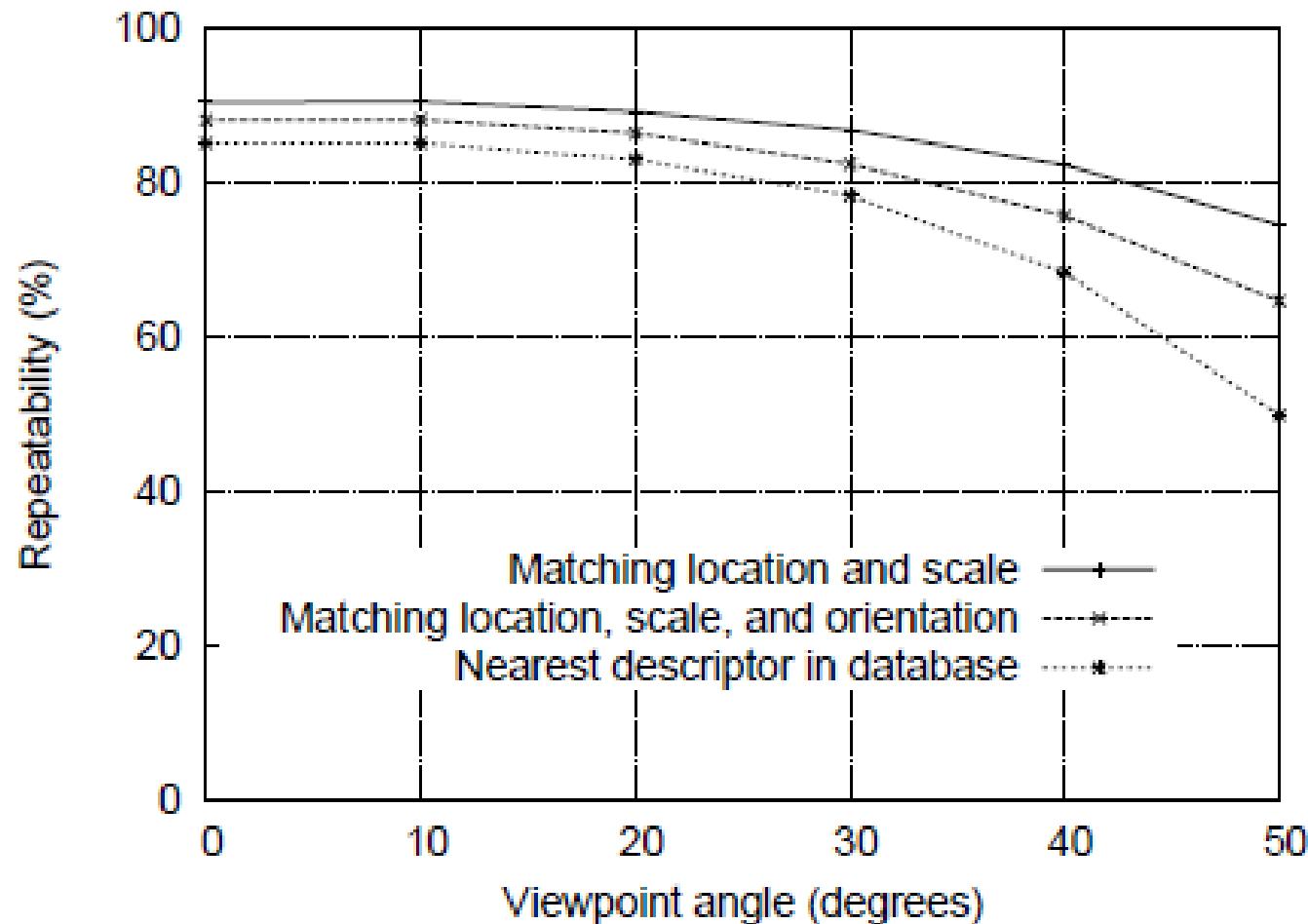
SIFT Repeatability



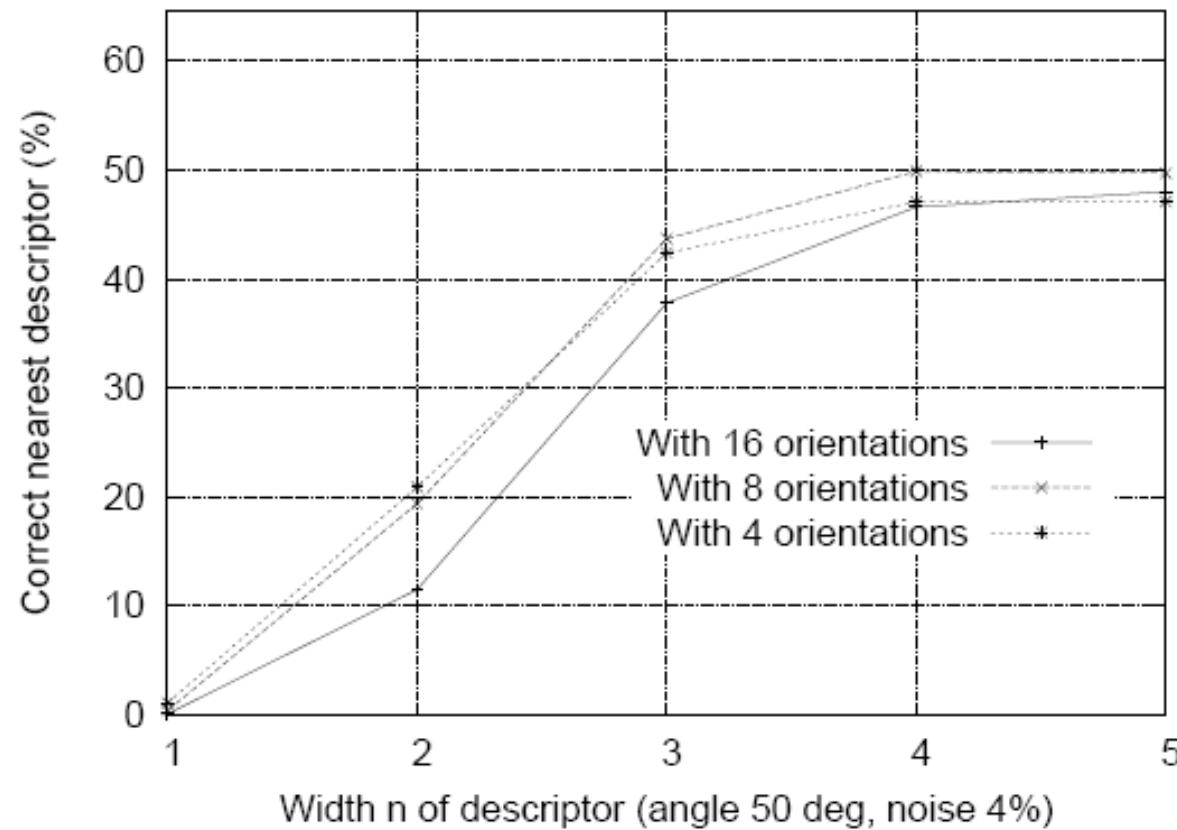
6.4 Matching to large databases

An important remaining issue for measuring the distinctiveness of features is how the reliability of matching varies as a function of the number of features in the database being matched. Most of the examples in this paper are generated using a database of 32 images with about 40,000 keypoints. Figure 10 shows how the matching reliability varies as a func-

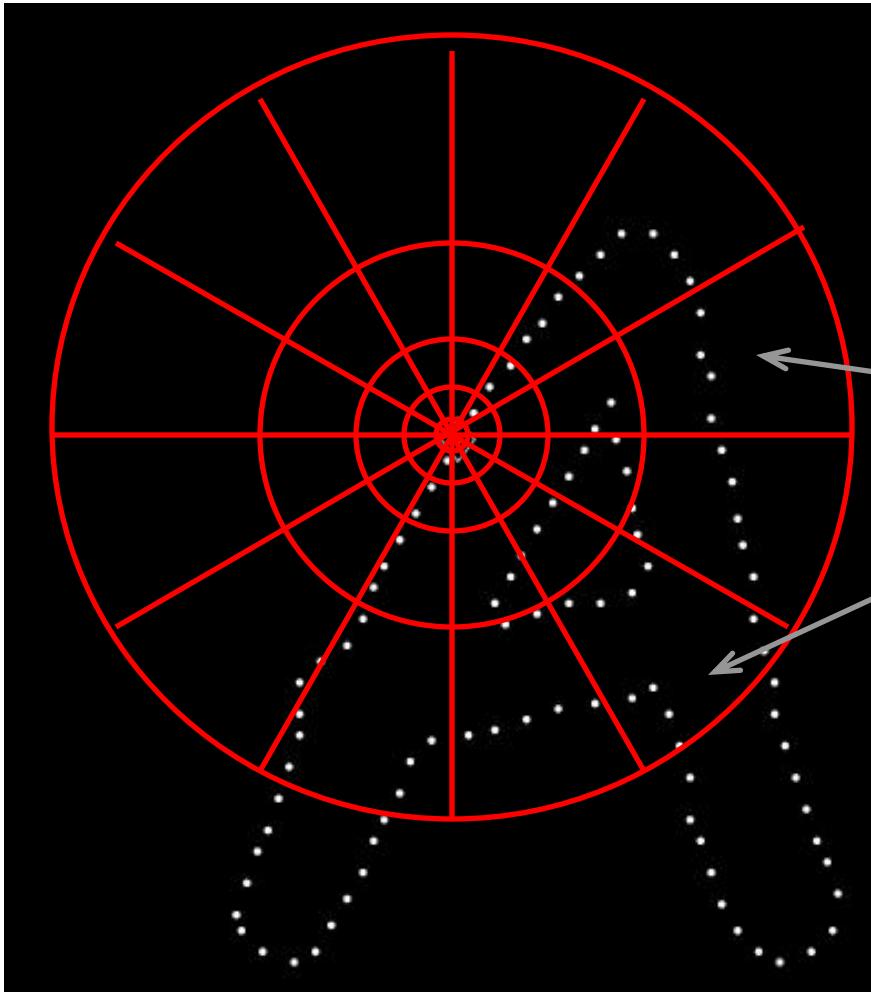
SIFT Repeatability



SIFT Repeatability



Local Descriptors: Shape Context



Count the number of points inside each bin, e.g.:

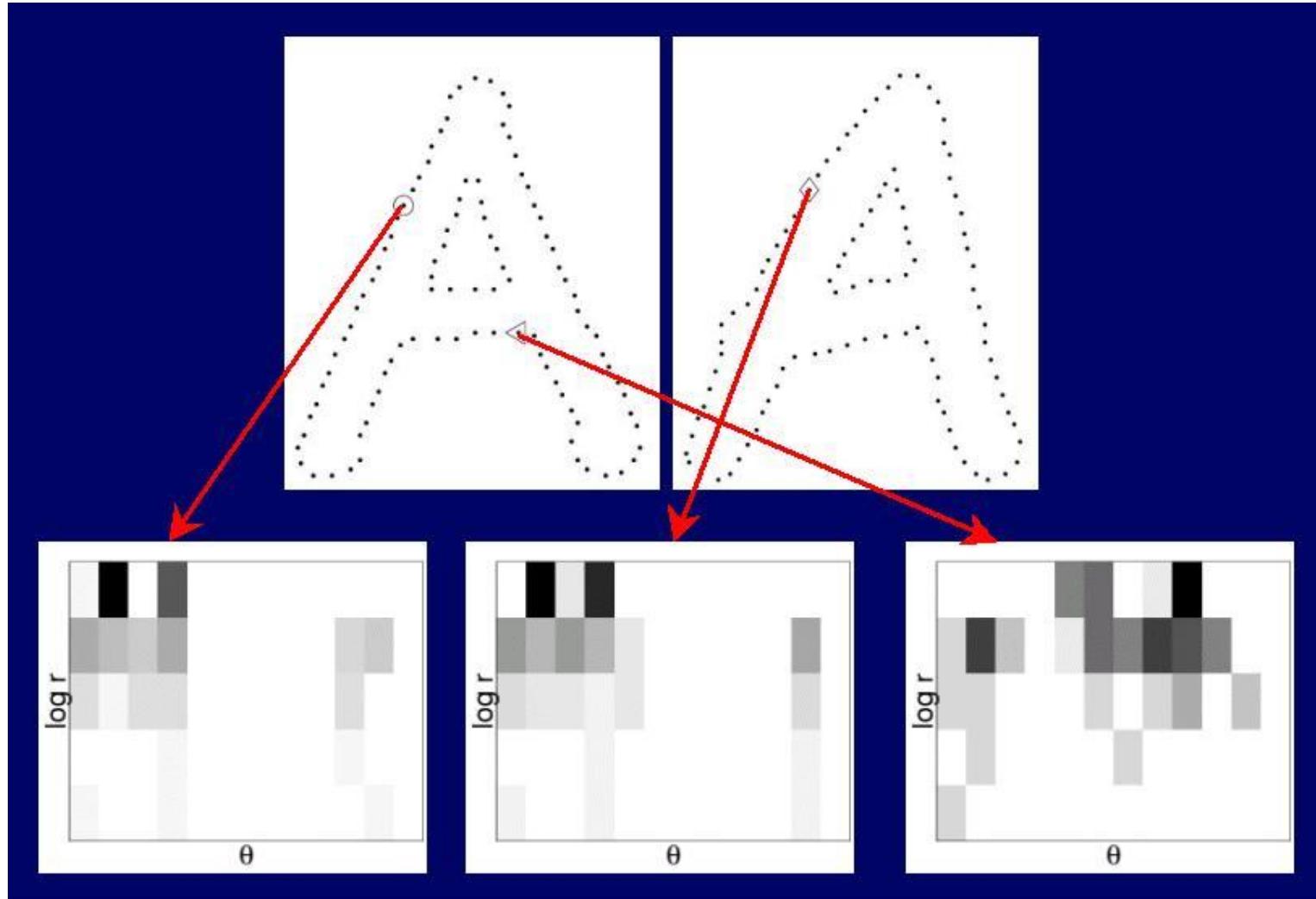
Count = 4

⋮

Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Shape Context Descriptor

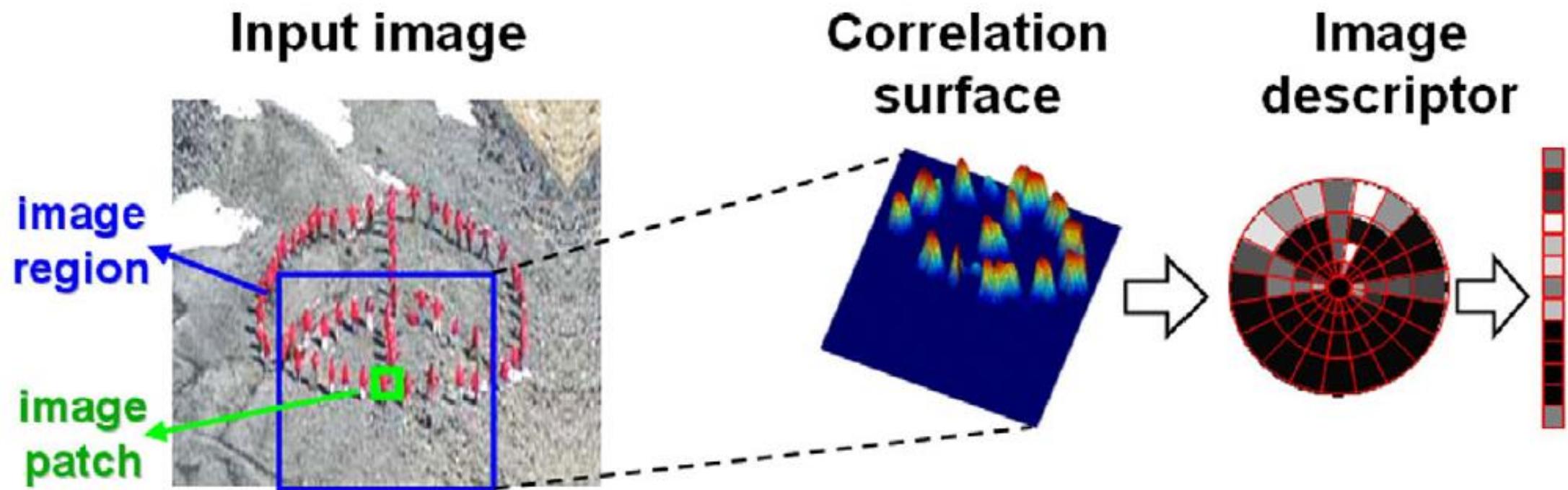


Self-similarity Descriptor

Figure 1. *These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.*

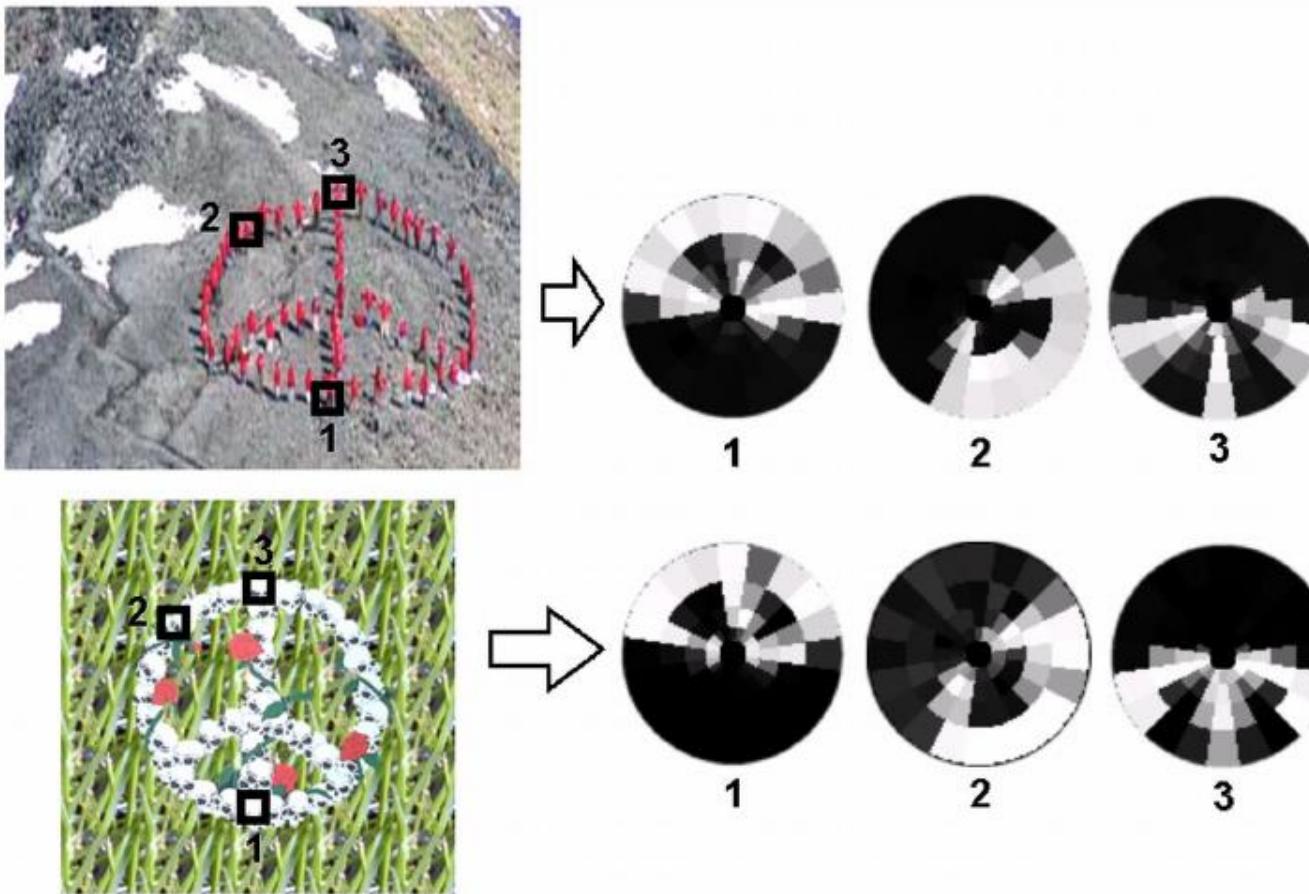
Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



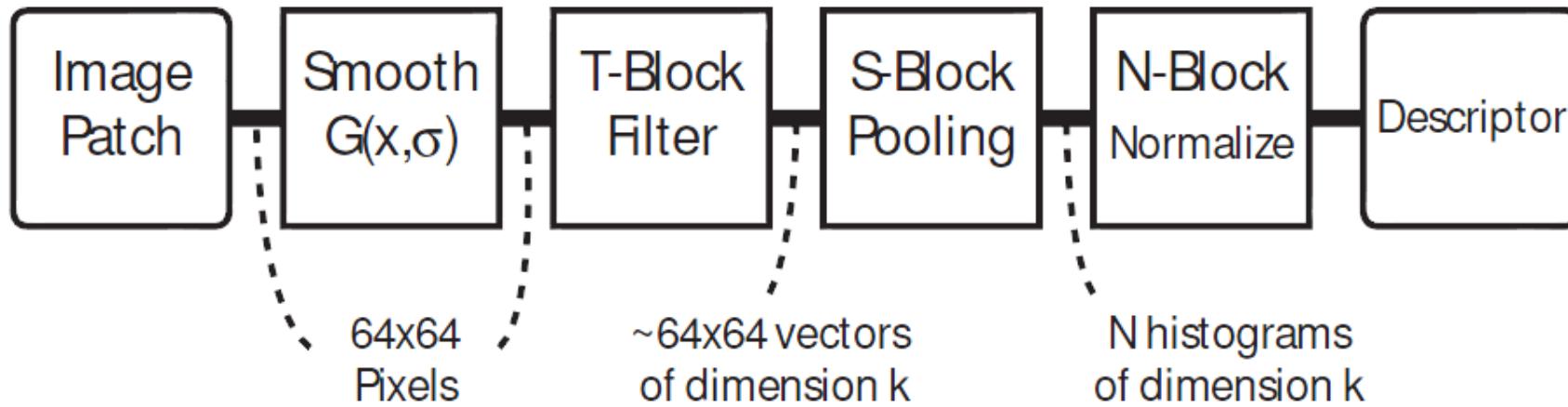
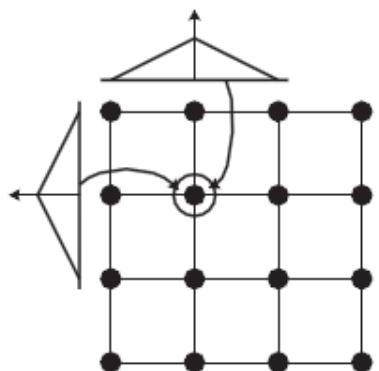
Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



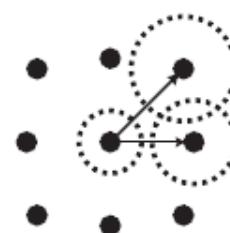
Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, CVPR 2007

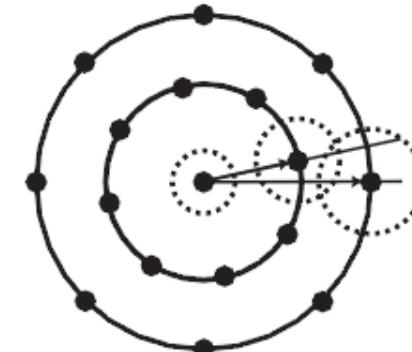


S1: SIFT grid with bilinear weights

S2: GLOH polar grid with bilinear radial and angular weights



S3: 3x3 grid with Gaussian weights



S4: 17 polar samples with Gaussian weights

Learning Local Image Descriptors, Winder and Brown, CVPR 2007

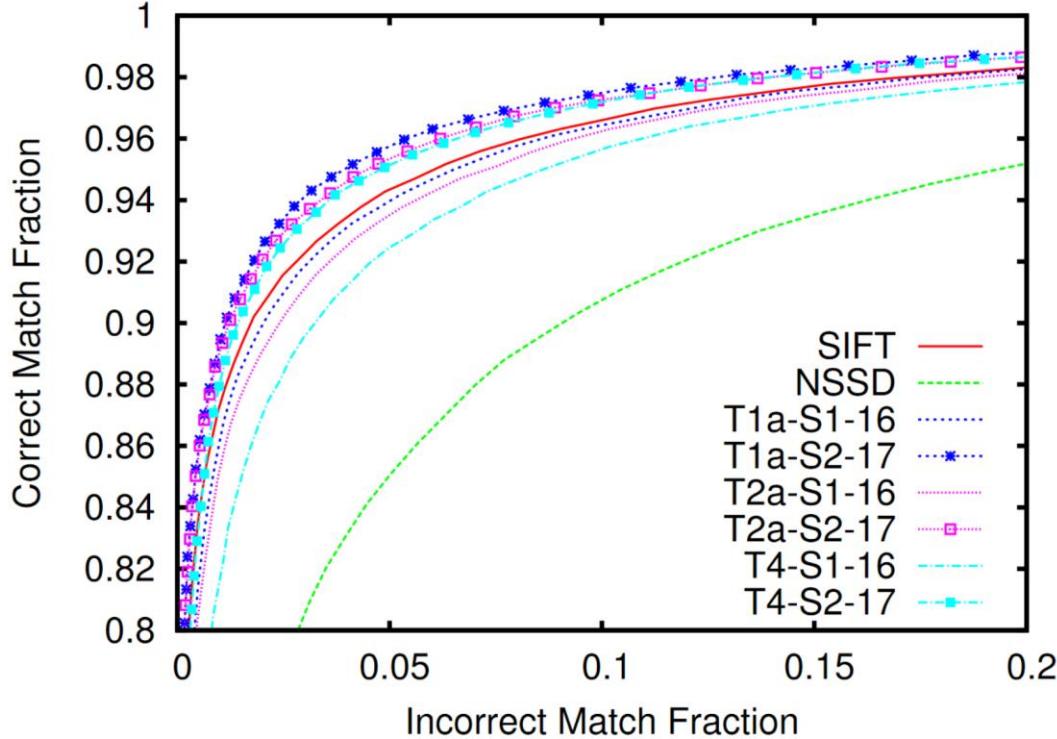


Figure 5. Selected ROC curves for the trained descriptors with four dimensional T-blocks ($k = 4$). Those that perform better than SIFT all make use of the S2 log-polar summation stage. See Table 4 for details.

We obtained a mixed training set consisting of tourist photographs of the Trevi Fountain and of Yosemite Valley (920 images), and a test set consisting of images of Notre Dame (500 images). We extracted interest points and matched them between all of the images within a set using the SIFT detector and descriptor [9]. We culled candidate matches using a symmetry criterion and used RANSAC [5] to estimate initial fundamental matrices between image pairs. This stage was followed by bundle adjustment to reconstruct 3D points and to obtain accurate camera matrices for each source image. A similar technique has been described by [17].

Local Descriptors

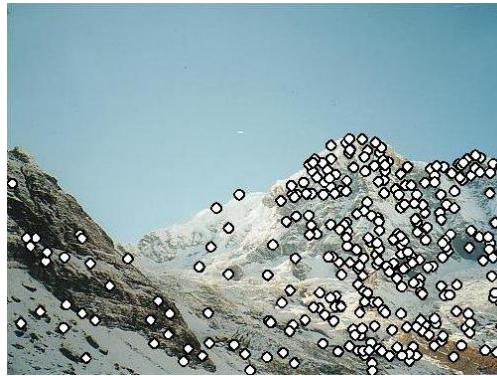
- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust
 - Distinctive
 - Compact
 - Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used

Choosing a descriptor

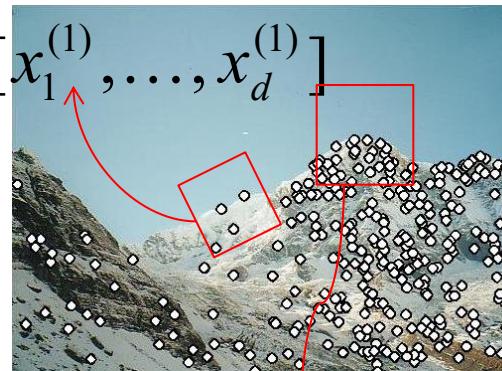
- Again, need not stick to one
- For object instance recognition or stitching, SIFT or variant is a good choice
- Learning-based methods are taking over this space, although not as quickly as one might expect.

Local features: main components

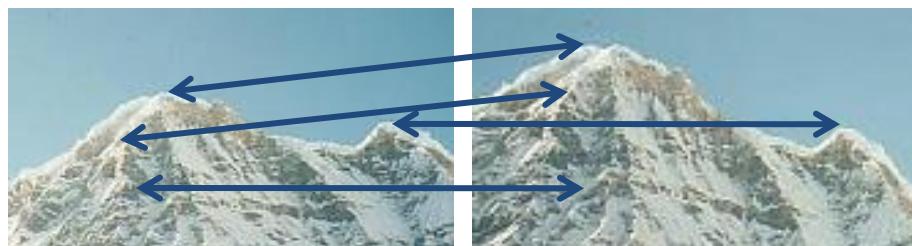
1) Detection: Identify the interest points



2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

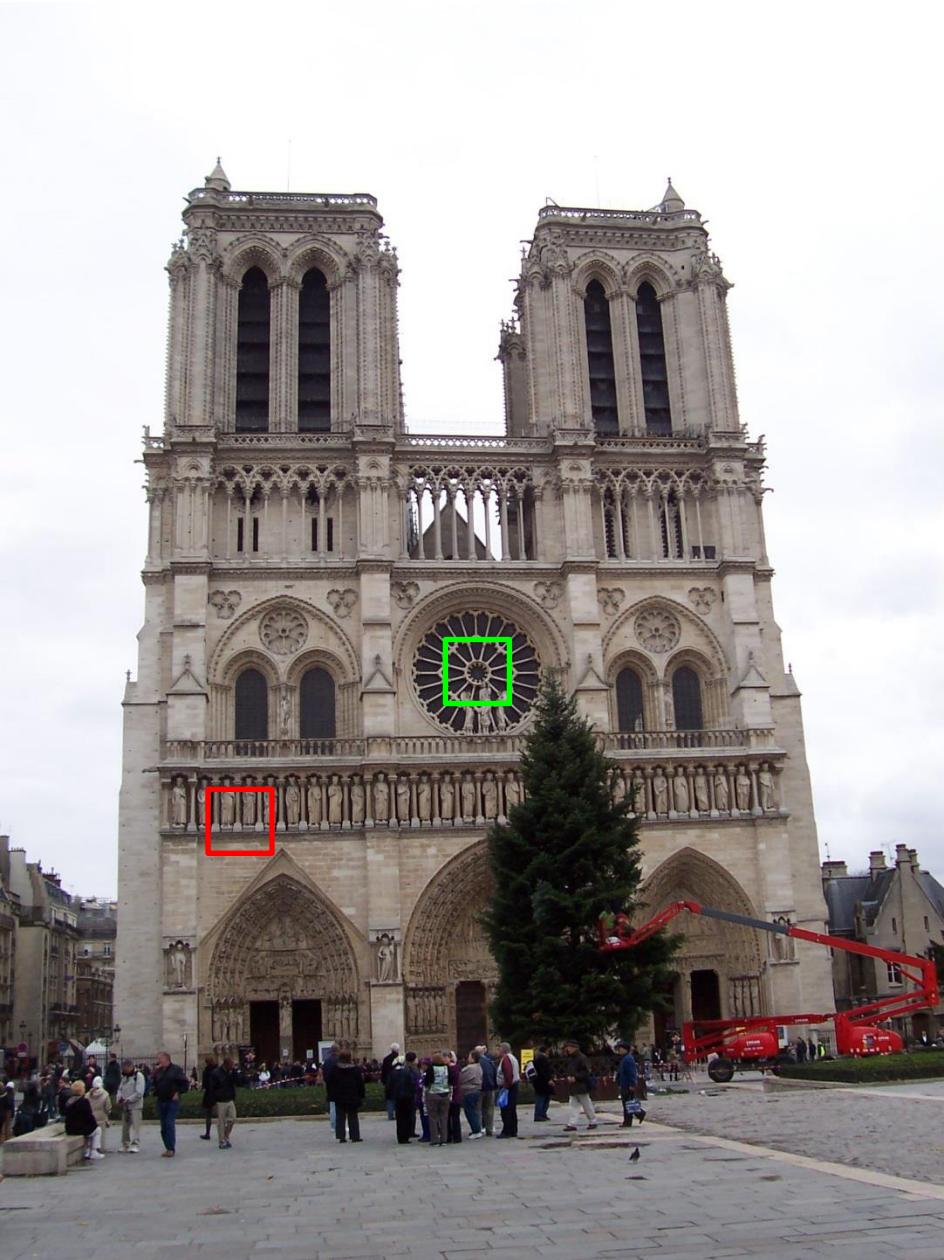


3) Matching: Determine correspondence between descriptors in two views

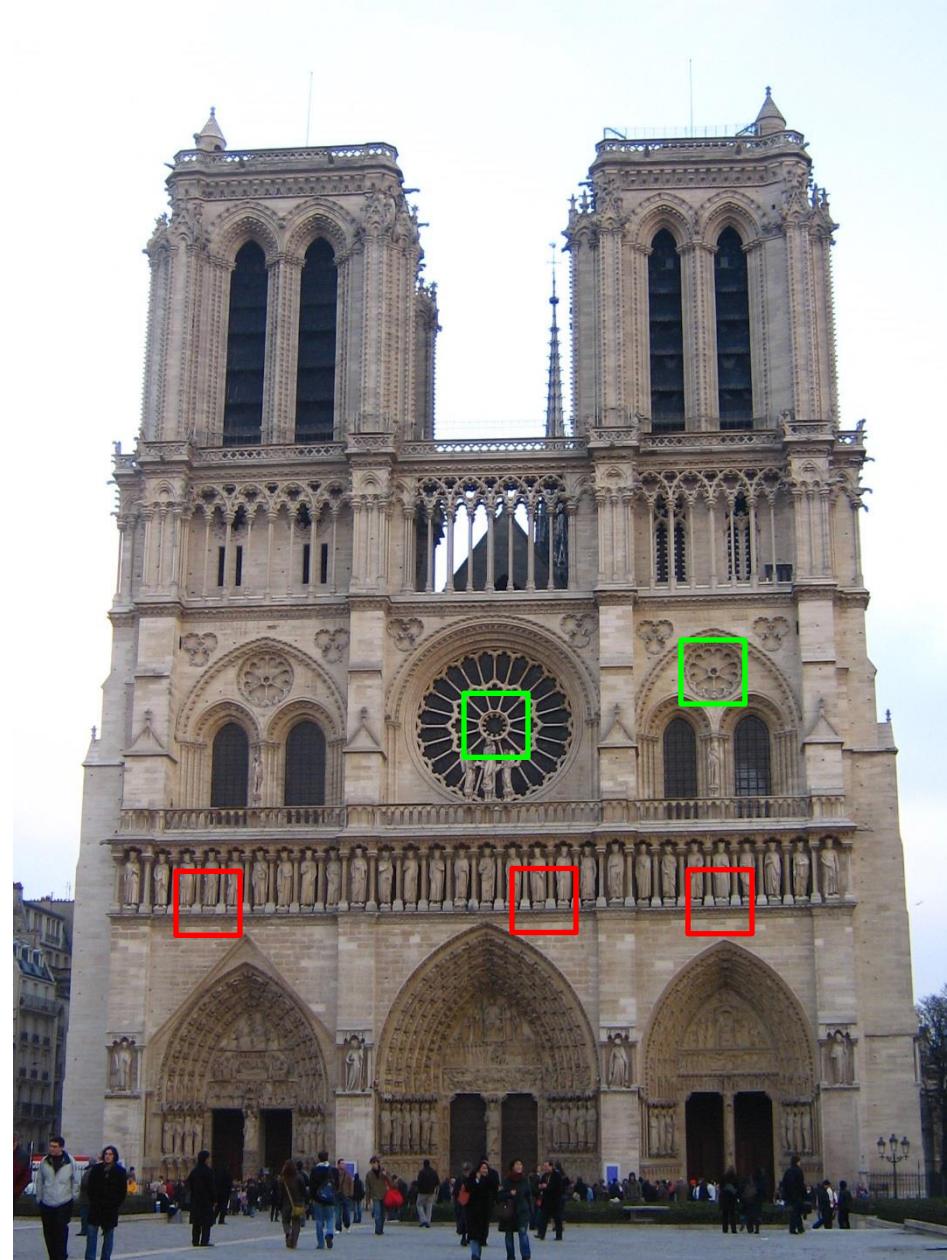


Matching

- Simplest approach: Pick the nearest neighbor. Threshold on absolute distance
- Problem: Lots of self similarity in many photos



Distance: 0.34, 0.30, 0.40



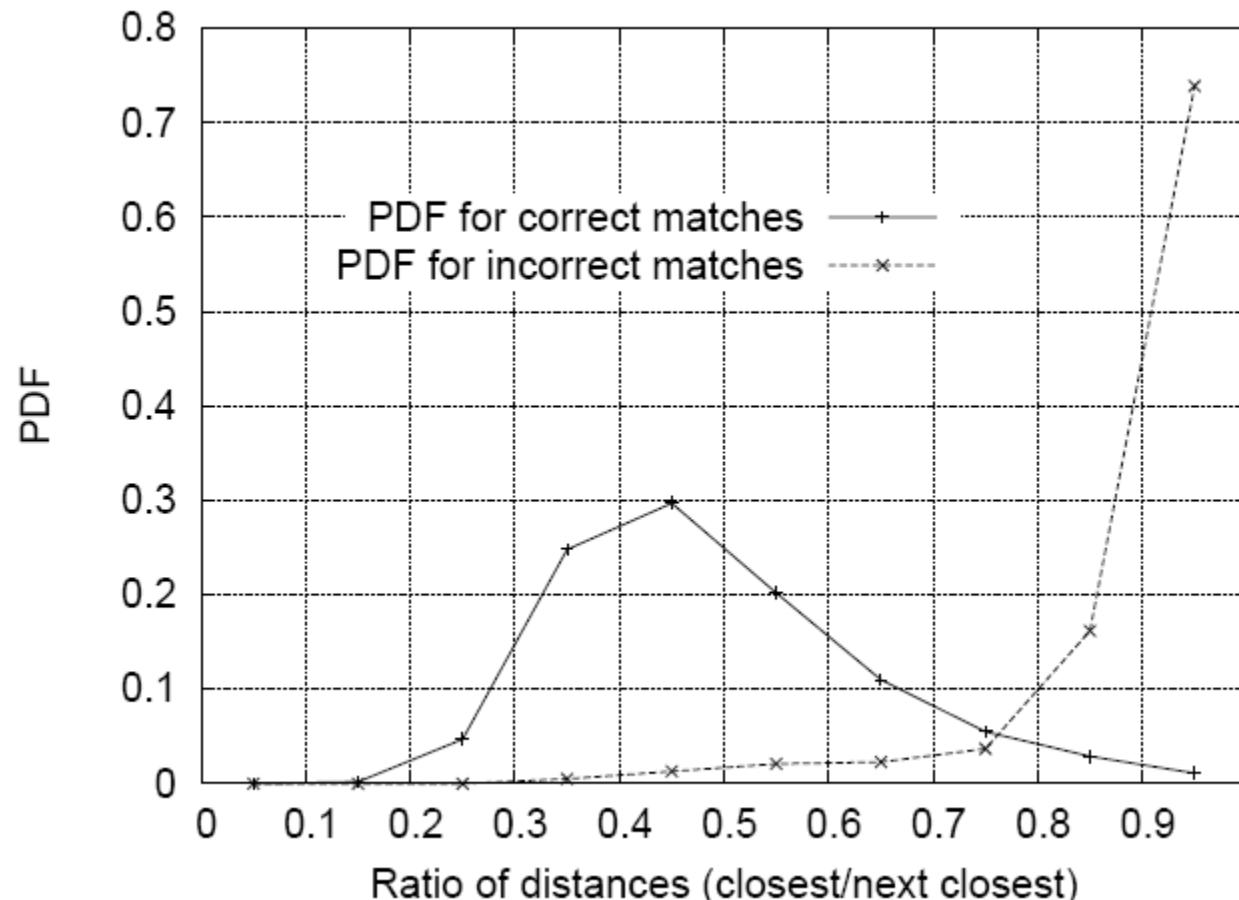
Distance: 0.61
Distance: 1.22

Nearest Neighbor Distance Ratio

- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio (into ascending order) puts matches in order of confidence (in descending order of confidence).

Matching Local Features

- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor



Things to remember

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG
- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT

