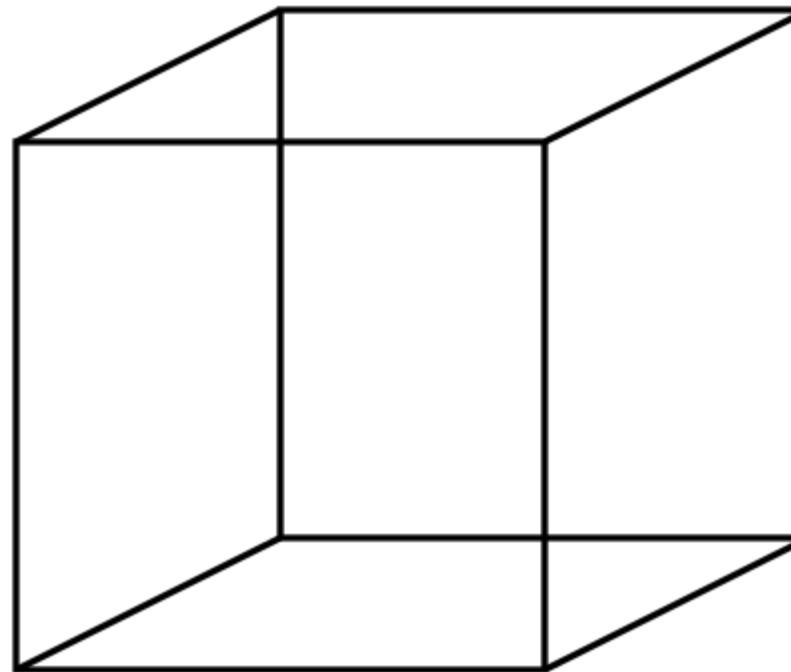
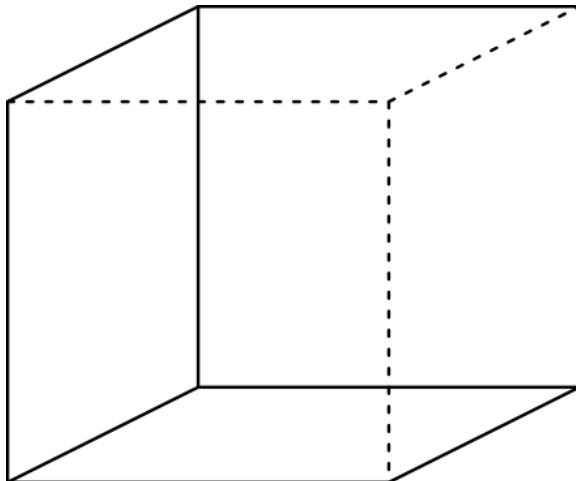
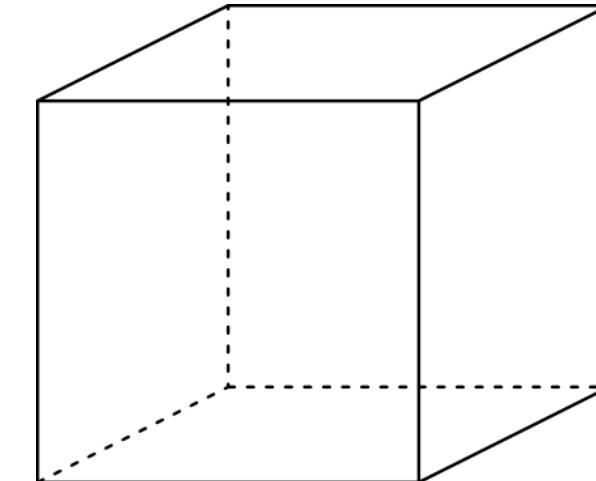
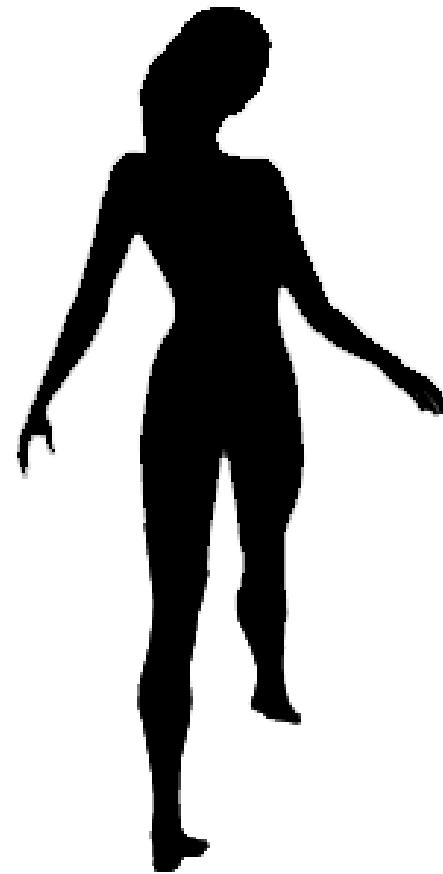


Multi-stable Perception

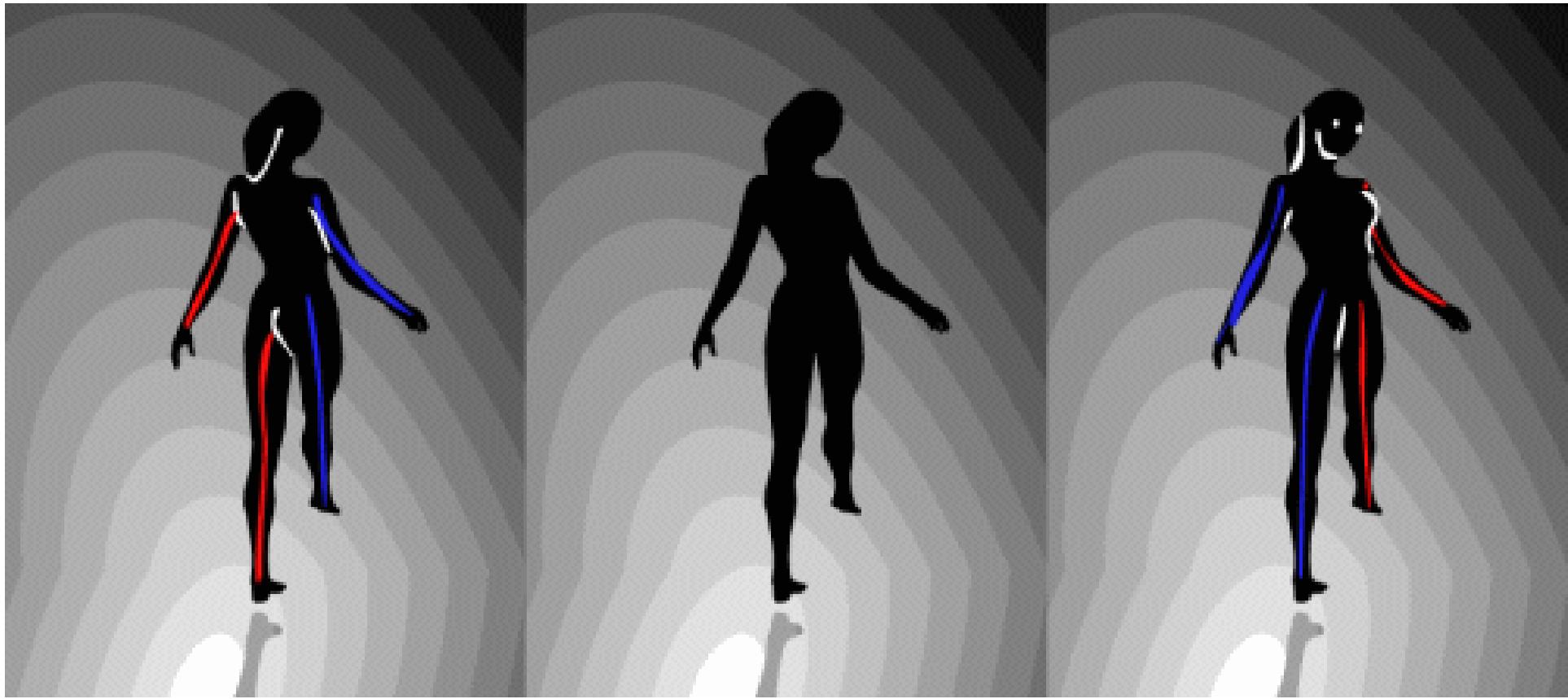


Necker Cube





Spinning dancer illusion, Nobuyuki Kayahara



Feature Matching and Robust Fitting

Read Szeliski 7.4.2 and 2.1

Computer Vision

James Hays

Project 2

Project 2: SIFT Local Feature Matching and Camera Calibration

Brief

- Due: Check [Canvas](#) for up to date information
- Project materials including report template: zip file on [Canvas](#)
- Hand-in: through [Gradescope](#)
- Required files: <your_gt_username>.zip, <your_gt_username>_proj2.pdf

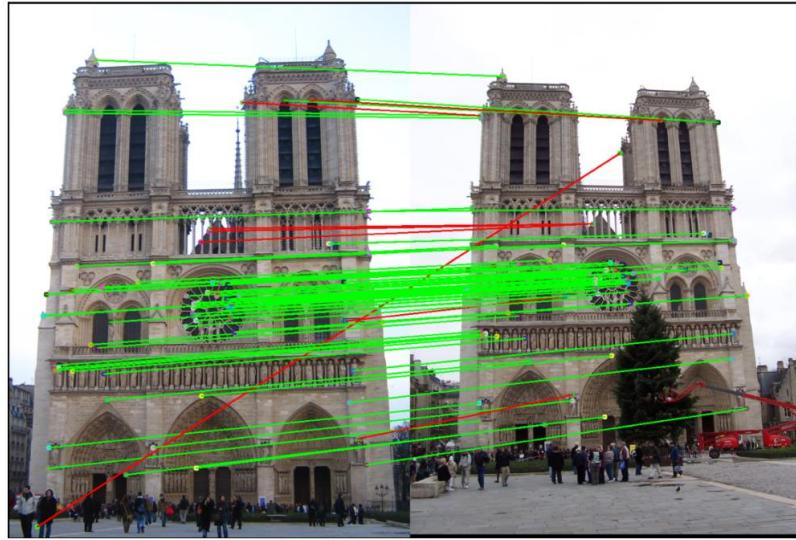


Figure 1: The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 89 were correct (lines shown in green), and 11 were incorrect (lines shown in red).

Overview

The goal of this assignment is to create a local feature matching algorithm using techniques described in Szeliski chapter 7.1. The pipeline we suggest is a simplified version of the famous [SIFT](#) pipeline. The matching – multiple views of the same physical

for environment installation.

[part2.ipynb](#)

anity checks are passing by running [pytest](#) tests

submission once you've finished the project using [username>](#)

ps of a local feature matching algorithm (detecting matching feature vectors). We'll implement two generalized as follows:

(see Szeliski 7.1.1)

patch feature in [part2_patch_descriptor.py](#) (see

Szeliski 7.1.3)

[part4_sift_descriptor.py](#) (see Szeliski 7.1.2)

[is_corner.py](#)

ed in the lecture materials and Szeliski 7.1.1.

tion 7.8 of book, p. 424)

$$w * \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x & I_y \end{bmatrix} \quad (1)$$

discrete convolutions with the weighting kernel w

ation matrix A as:

$$\text{trace}(A)^2 \quad (2)$$

Algorithm 1: Harris Corner Detector

Compute the horizontal and vertical derivatives I_x and I_y of the image by convolving the original image with a Sobel filter;

Compute the three images corresponding to the outer products of these gradients. (The matrix A is symmetric, so only three entries are needed.);

- `projection()`: Projects homogeneous world coordinates $[X, Y, Z, 1]$ to non-homogeneous image coordinates (u, v) . Given projection matrix M , the equations that accomplish this are (4) and (5).

- `calculate_projection_matrix()`: Solves for the camera projection matrix using a system of equations involving 2D and 3D points.

- `center()`: Computes the camera center location in world coordinates.

Fundamental matrix

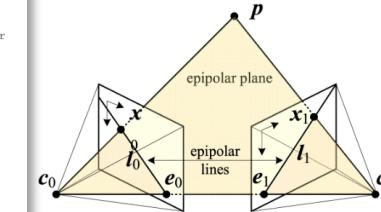


Figure 2: Two-camera setup. Reference: Szeliski, p. 682.

project is estimating the mapping of points in one image to lines in another by matrix. This will require you to use similar methods to those in part 4. We will be using point locations listed in `pts2d-pic_a.txt` and `pts2d-pic_b.txt`. Recall that fundamental matrix is:

$$\begin{pmatrix} u' & v' & 1 \end{pmatrix} \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{pmatrix} \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = 0 \quad (9)$$

age A, and a point $(u', v', 1)$ in image B. See Appendix A for the full derivation. matrix is sometimes defined as the transpose of the above matrix with the left and right. Both are valid fundamental matrices, but the visualization functions in the use the above form.

This matrix equations is:

$$\begin{pmatrix} u' & v' & 1 \end{pmatrix} \begin{pmatrix} f_{11}u + f_{12}v + f_{13} \\ f_{21}u + f_{22}v + f_{23} \\ f_{31}u + f_{32}v + f_{33} \end{pmatrix} = 0 \quad (10)$$

$$f_{12}vu' + f_{13}u' + f_{21}uv' + f_{22}vv' + f_{23}v' + f_{31}u + f_{32}v + f_{33} = 0 \quad (11)$$

sion equations? Given corresponding points you get one equation per point pair. I can solve this (why?). Similar to part 4, there's an issue here where the matrix and the degenerate zero solution solves these equations. So you need to solve you used in part 4 of first fixing the scale and then solving the regression.

case of F is full rank; however, a proper fundamental matrix is a rank 2. As such we order to do this, we can decompose F using singular value decomposition into the

port using the template slides provided as, this will affect the grading process you will describe your algorithm and any you will show and discuss the results of you should include in your report. A good from the experiments. You must convert each PDF page to the relevant question

in the template deck to describe your fit for your extra credit implementations

arter code includes file handling, visual- der versions of the three functions listed

in the starter code as well. `evaluate_` based on hand-provided matches . The the image pairs (Mount Rushmore and the appropriate lines in `project-2.ipynb`.

our performance according to `evaluate_` `overfit` to the initial Notre Dame image here and in the starter code will give you

`fliplr()`, `np.flipud()`, `np.histogram()`, `ape()`, `np.sort()`.

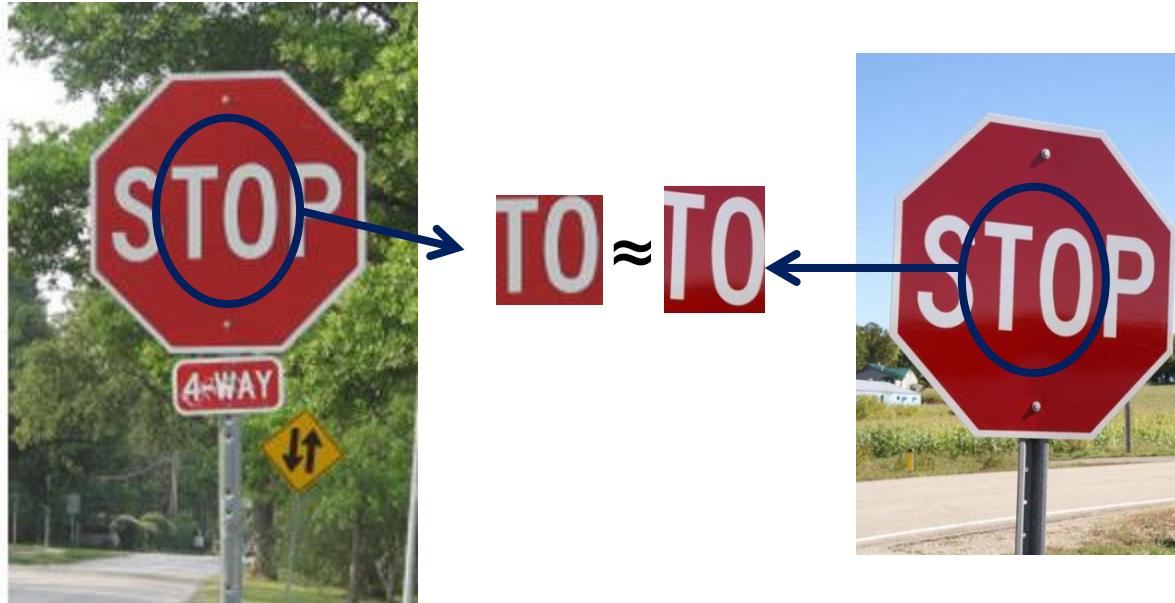
`0., torch.median(), torch.nn.functional.rasterizer(), torch.stack()`.

might find `torch.meshgrid`, `torch.norm`,

`torch.nn.Conv2d` OR `torch.nn.functional.libraries (e.g., cv.filter2D(), scipy.`

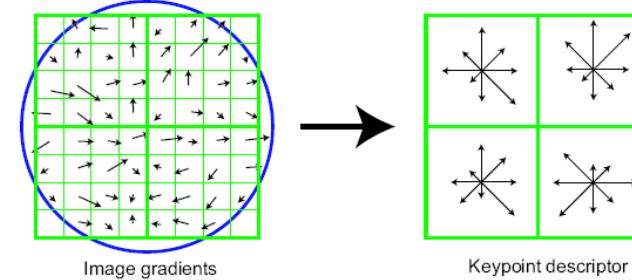
This section: correspondence and alignment

- Correspondence: matching points, patches, edges, or regions across images



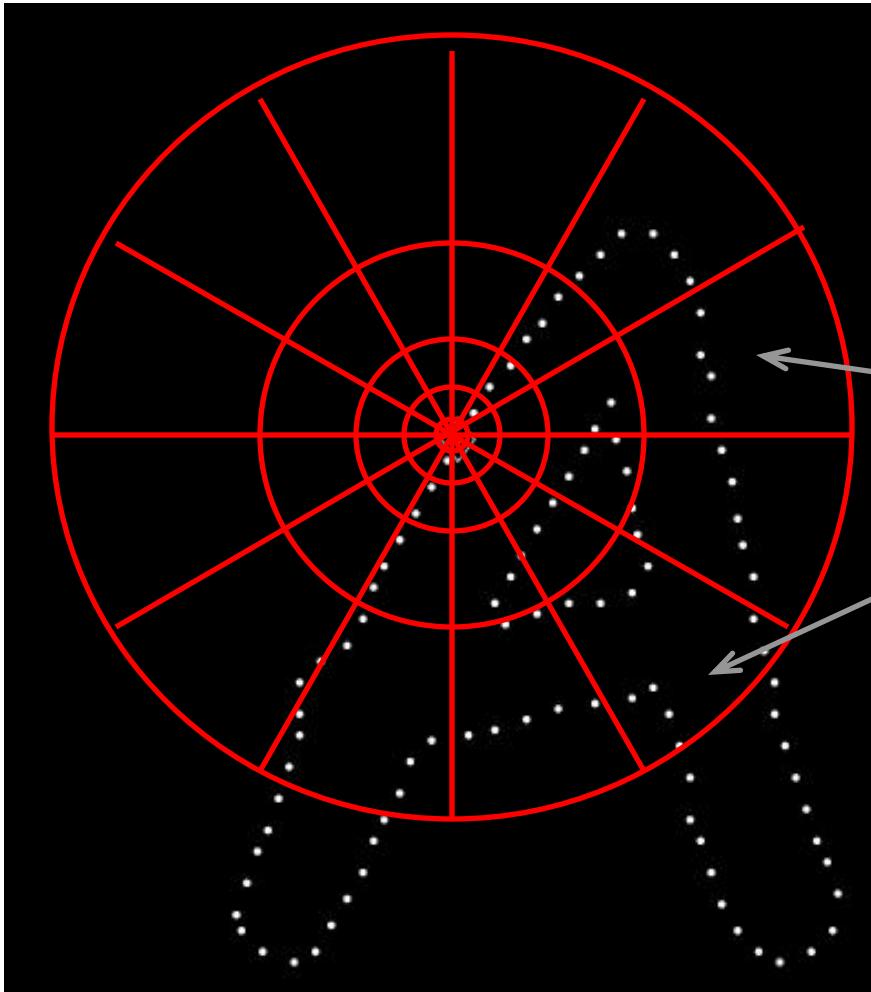
Review: Local Descriptors

- Most features can be thought of as templates, histograms (counts), or combinations
- The ideal descriptor should be
 - Robust and Distinctive
 - Compact and Efficient
- Most available descriptors focus on edge/gradient information
 - Capture texture information
 - Color rarely used



Are there alternatives to SIFT?

Local Descriptors: Shape Context



Count the number of points inside each bin, e.g.:

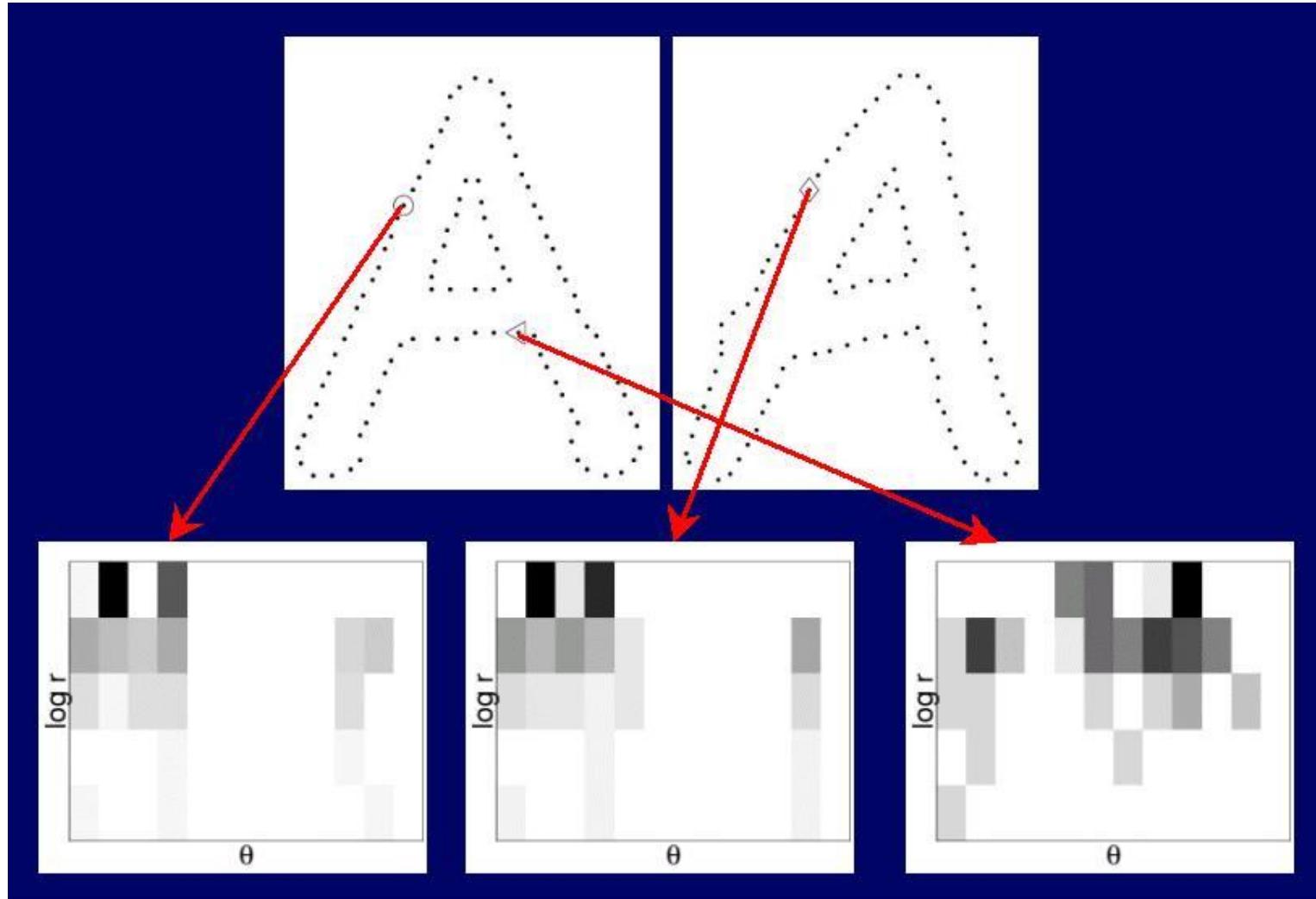
Count = 4

⋮

Count = 10

Log-polar binning: more precision for nearby points, more flexibility for farther points.

Shape Context Descriptor

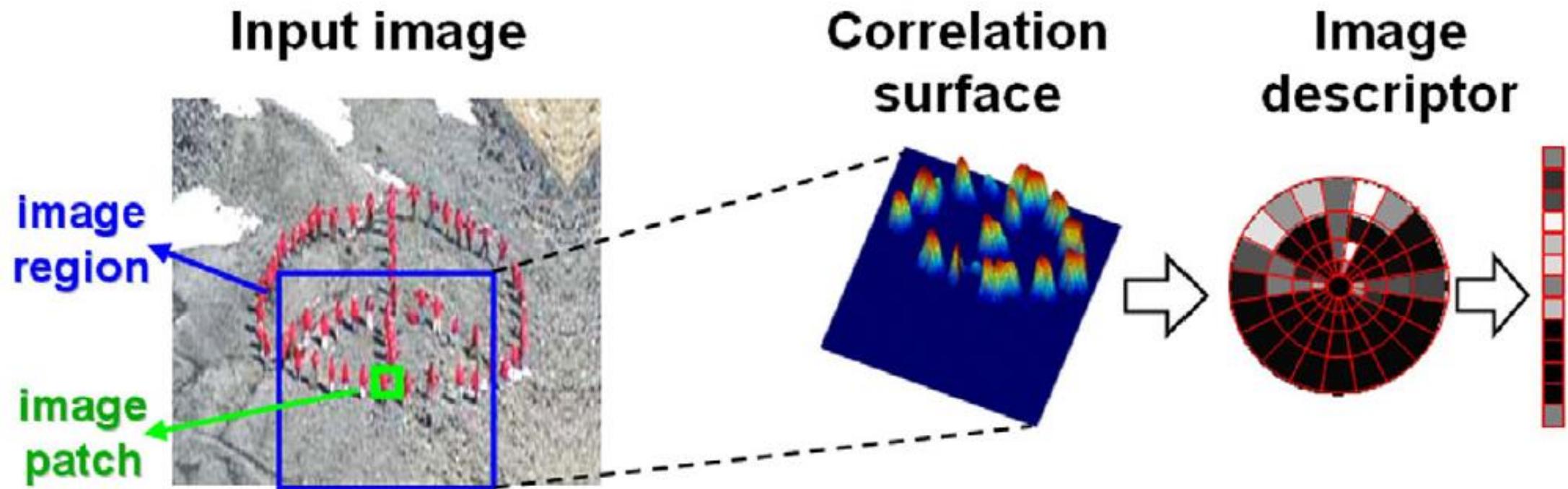


Self-similarity Descriptor

Figure 1. *These images of the same object (a heart) do NOT share common image properties (colors, textures, edges), but DO share a similar geometric layout of local internal self-similarities.*

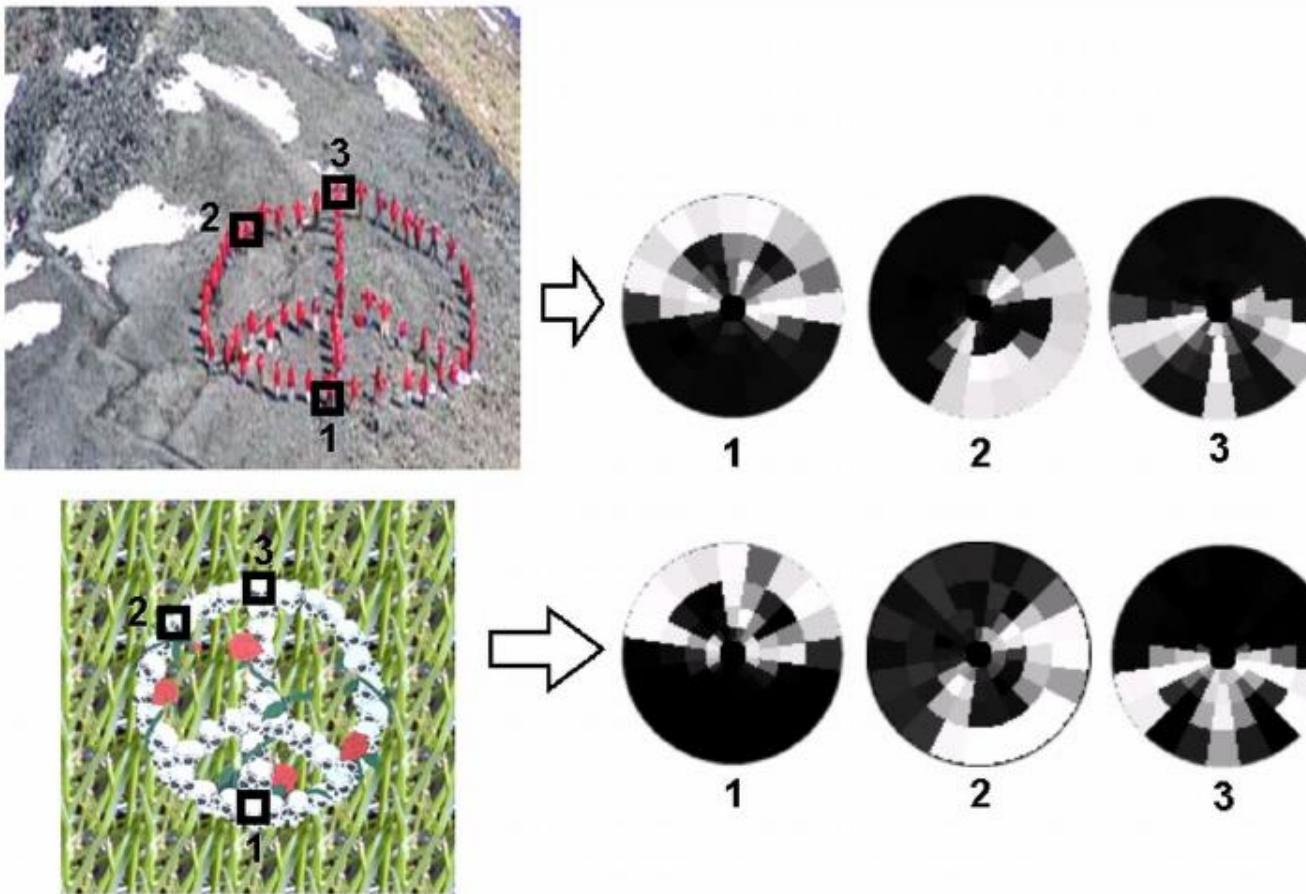
Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



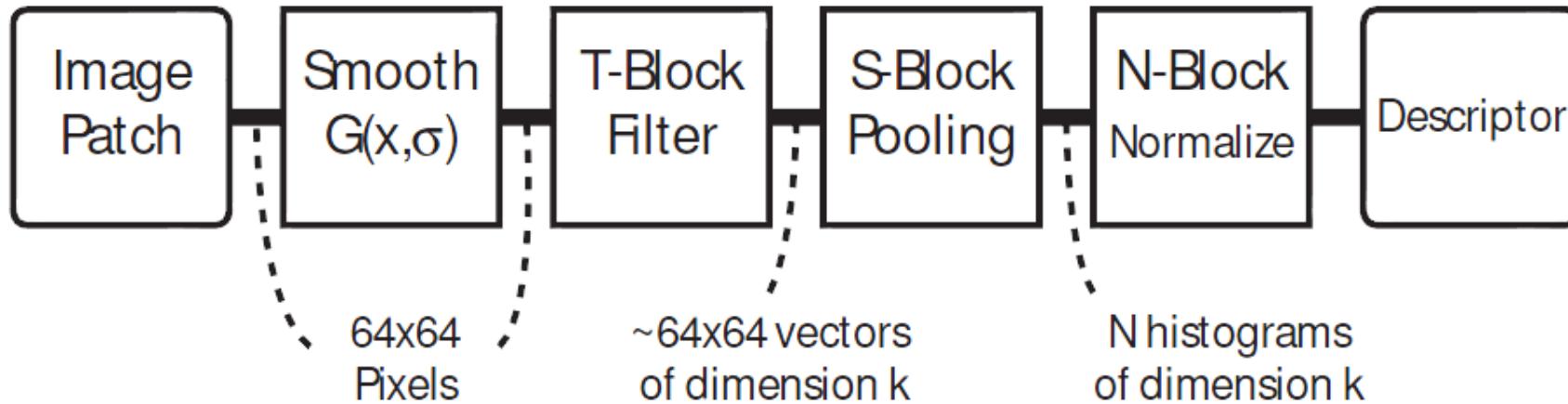
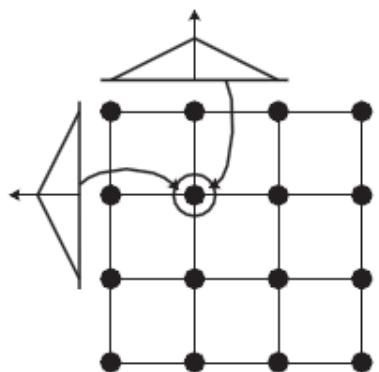
Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007

Self-similarity Descriptor



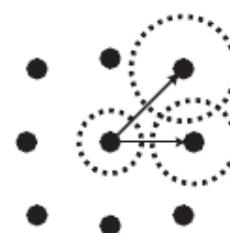
Matching Local Self-Similarities across Images
and Videos, Shechtman and Irani, 2007

Learning Local Image Descriptors, Winder and Brown, CVPR 2007

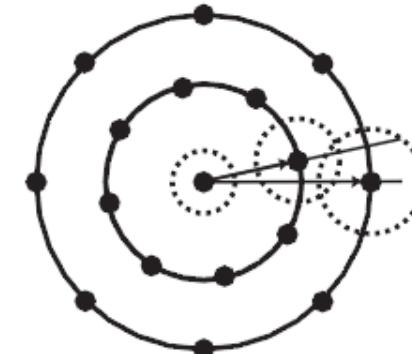


S1: SIFT grid with bilinear weights

S2: GLOH polar grid with bilinear radial and angular weights



S3: 3x3 grid with Gaussian weights



S4: 17 polar samples with Gaussian weights

Learning Local Image Descriptors, Winder and Brown, CVPR 2007

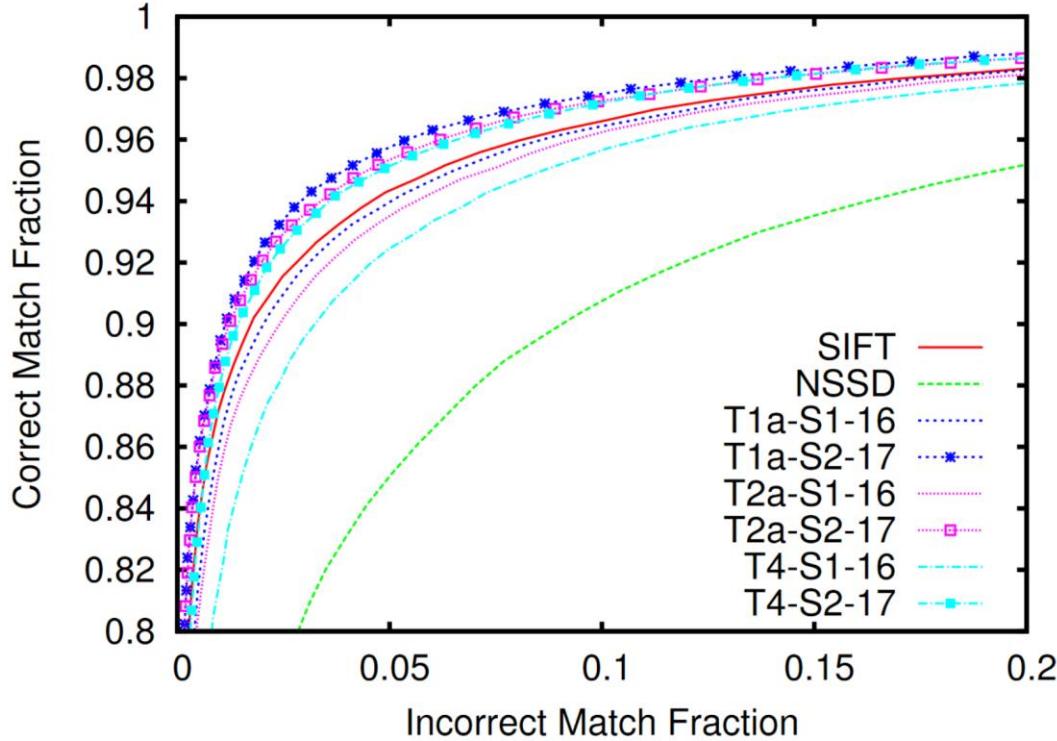
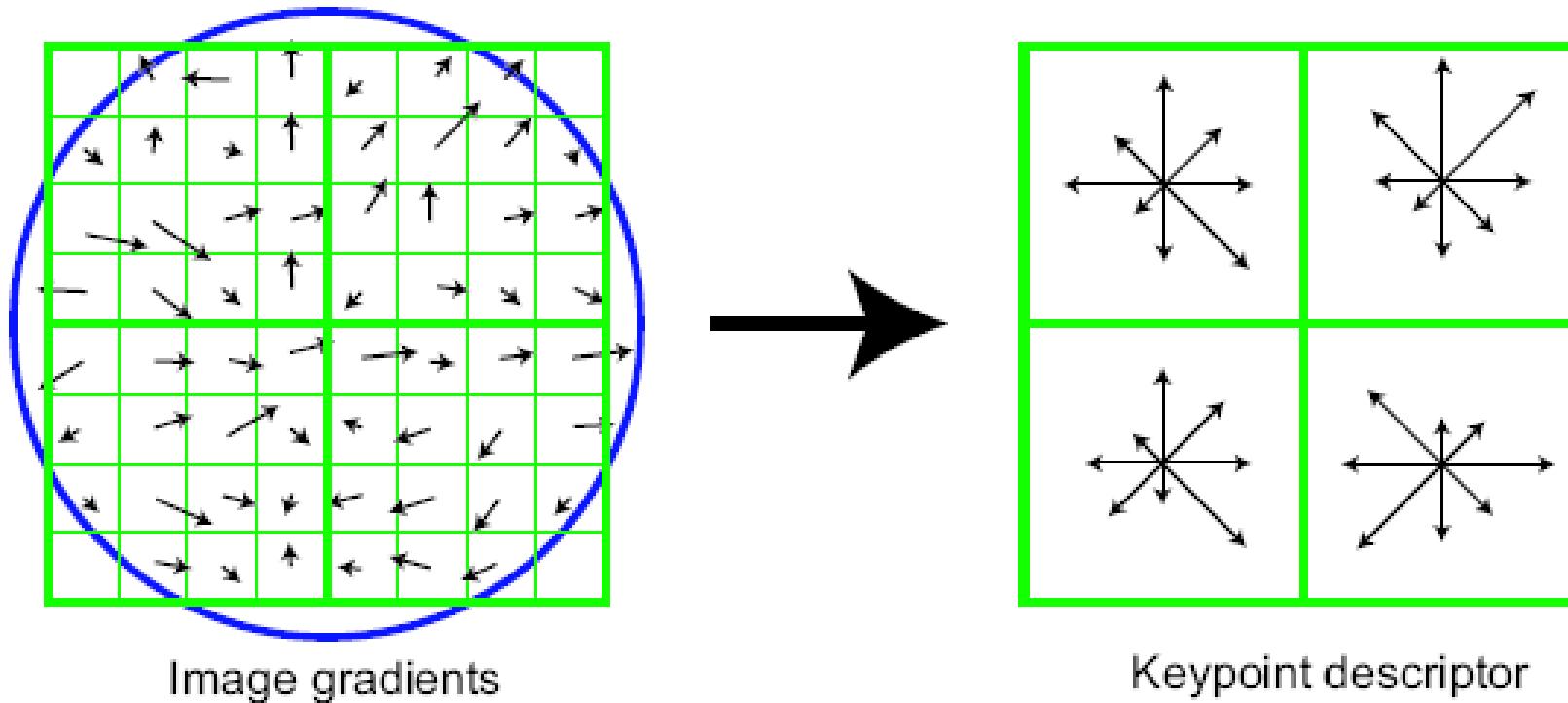


Figure 5. Selected ROC curves for the trained descriptors with four dimensional T-blocks ($k = 4$). Those that perform better than SIFT all make use of the S2 log-polar summation stage. See Table 4 for details.

We obtained a mixed training set consisting of tourist photographs of the Trevi Fountain and of Yosemite Valley (920 images), and a test set consisting of images of Notre Dame (500 images). We extracted interest points and matched them between all of the images within a set using the SIFT detector and descriptor [9]. We culled candidate matches using a symmetry criterion and used RANSAC [5] to estimate initial fundamental matrices between image pairs. This stage was followed by bundle adjustment to reconstruct 3D points and to obtain accurate camera matrices for each source image. A similar technique has been described by [17].

How lossy is this? Can we invert SIFT descriptors?



Can we invert SIFT descriptors?

Privacy-Preserving Image Features via Adversarial Affine Subspace Embeddings

Mihai Dusmanu¹ Johannes L. Schönberger² Sudipta N. Sinha² Marc Pollefeys^{1,2}

¹ Department of Computer Science, ETH Zürich ² Microsoft

Abstract

Many computer vision systems require users to upload image features to the cloud for processing and storage. These features can be exploited to recover sensitive information about the scene or subjects, e.g., by reconstructing the appearance of the original image. To address this privacy concern, we propose a new privacy-preserving feature representation. The core idea of our work is to drop constraints from each feature descriptor by embedding it within an affine subspace containing the original feature as well as adversarial feature samples. Feature matching on the privacy-preserving representation is enabled based on the notion of subspace-to-subspace distance. We experimentally demonstrate the effectiveness of our method and its high practical relevance for the applications of visual localization and mapping as well as face authentication. Compared to the original features, our approach makes it significantly more difficult for an adversary to recover private information.

1. Introduction

6.06634v3 [cs.CV] 30 Mar 2021

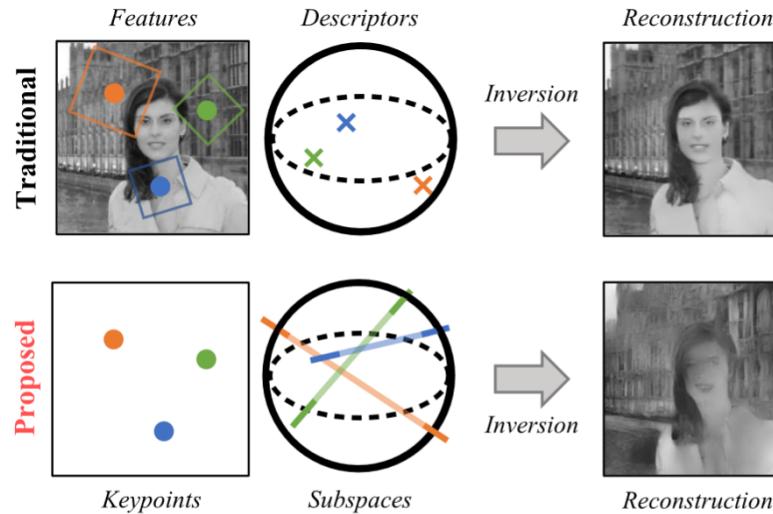
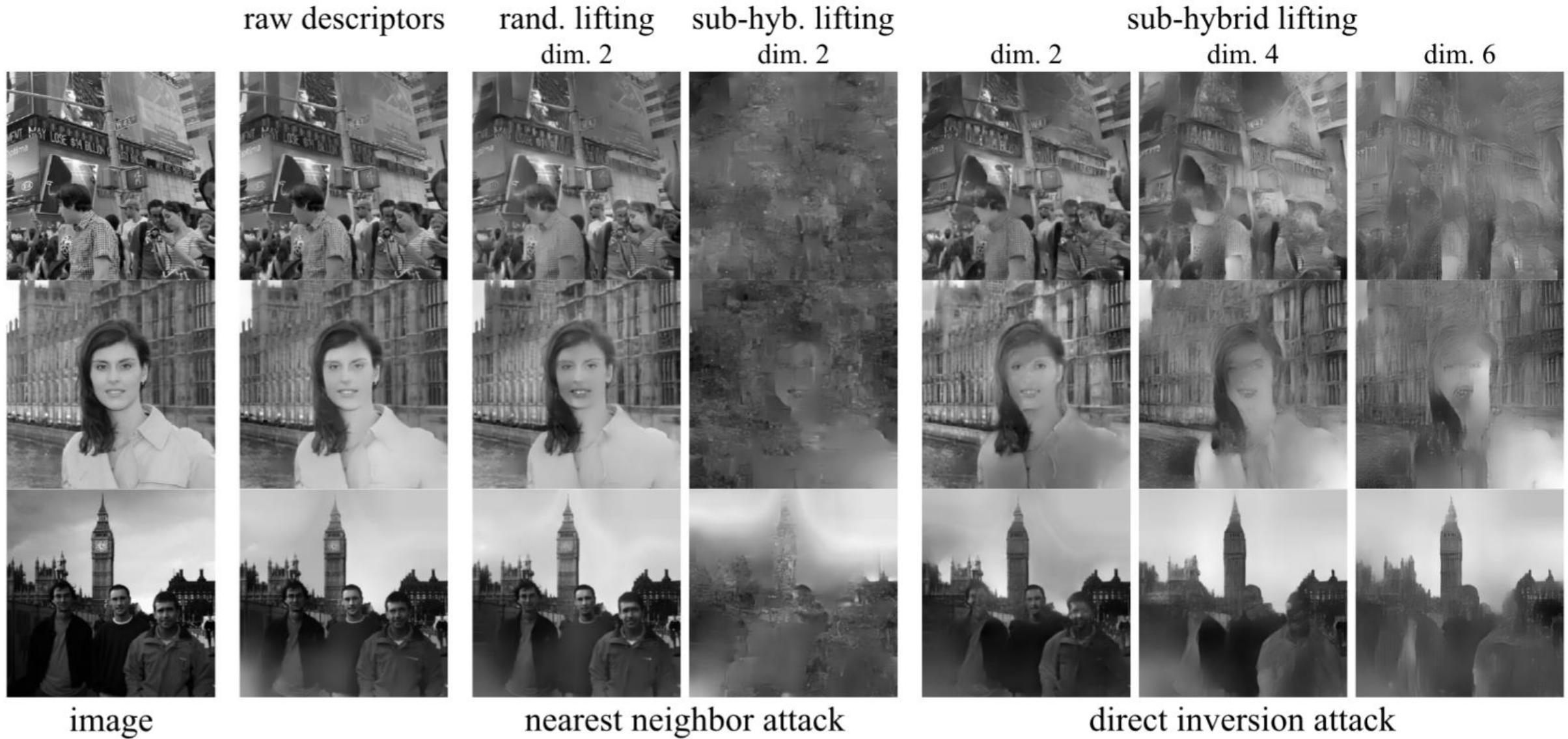


Figure 1: **Privacy-Preserving Image Features.** Inversion of traditional local image features is a privacy concern in many applications. Our proposed approach obfuscates the appearance of the original image by lifting the descriptors to affine subspaces. Distance between the privacy-preserving subspaces enables efficient matching of features. The same concept can be applied to other domains such as face features for biometric authentication. Image credit: *laylamoran4battersea* (Layla Moran).

Can we invert SIFT descriptors?



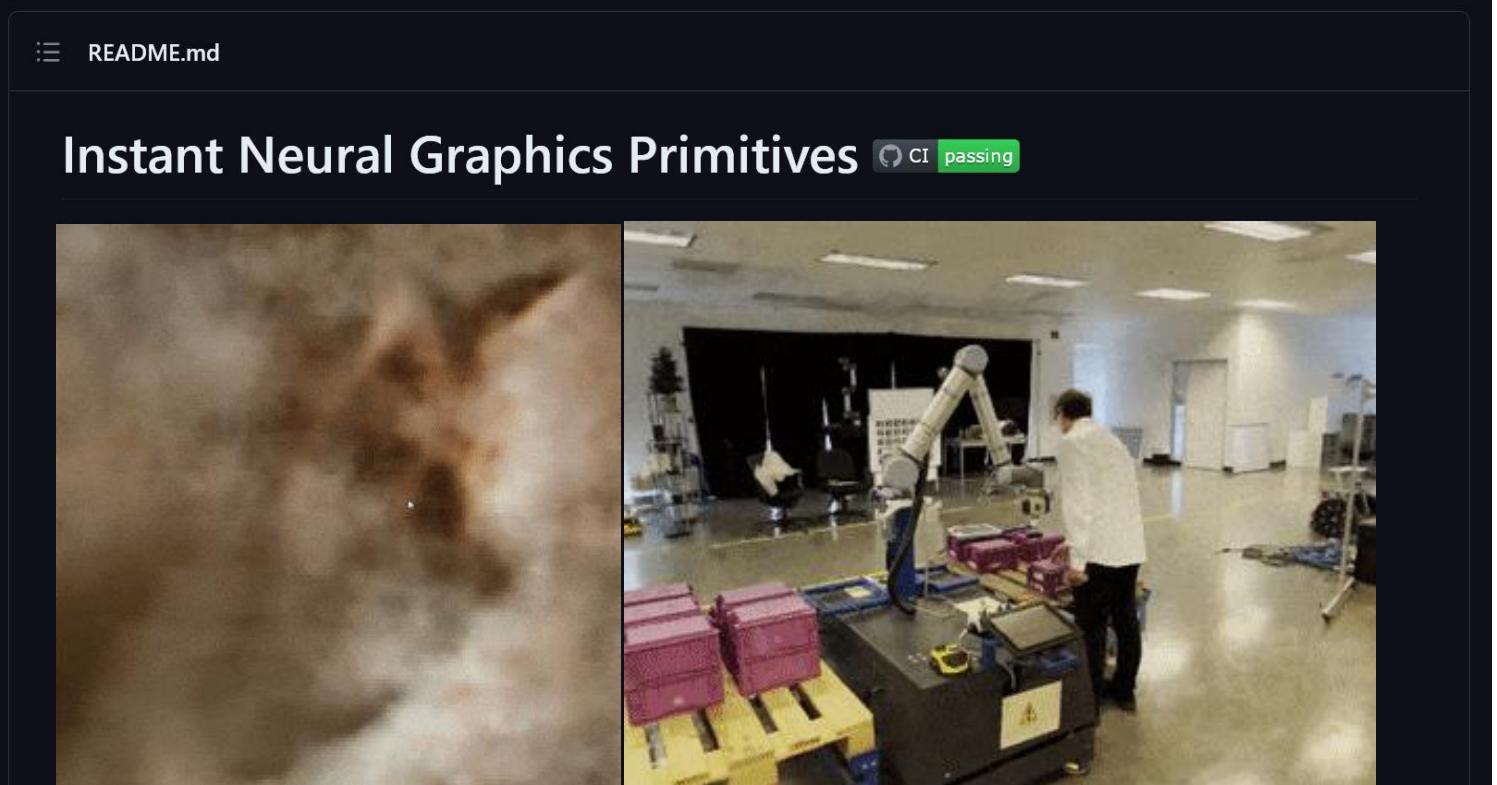
SIFT is 20+ years old. Is it still useful?

SIFT is 20+ years old. Is it still useful?

- Let's look at some trendy research on Neural Radiance Fields (NeRF)

README.md

Instant Neural Graphics Primitives



Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a factory robot? Of course you have!

Here you will find an implementation of four **neural graphics primitives**, being neural radiance fields (NeRF), signed distance functions (SDFs), neural images, and neural volumes. In each case, we train and render a MLP with multiresolution hash input encoding using the [tiny-cuda-nn](#) framework.

Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Thomas Müller, Alex Evans, Christoph Schied, Alexander Keller
ACM Transactions on Graphics (SIGGRAPH), July 2022
[Project page](#) / [Paper](#) / [Video](#) / [Presentation](#) / [Real-Time Live](#) / [BibTeX](#)

NeRFs optimized with InstantNGP

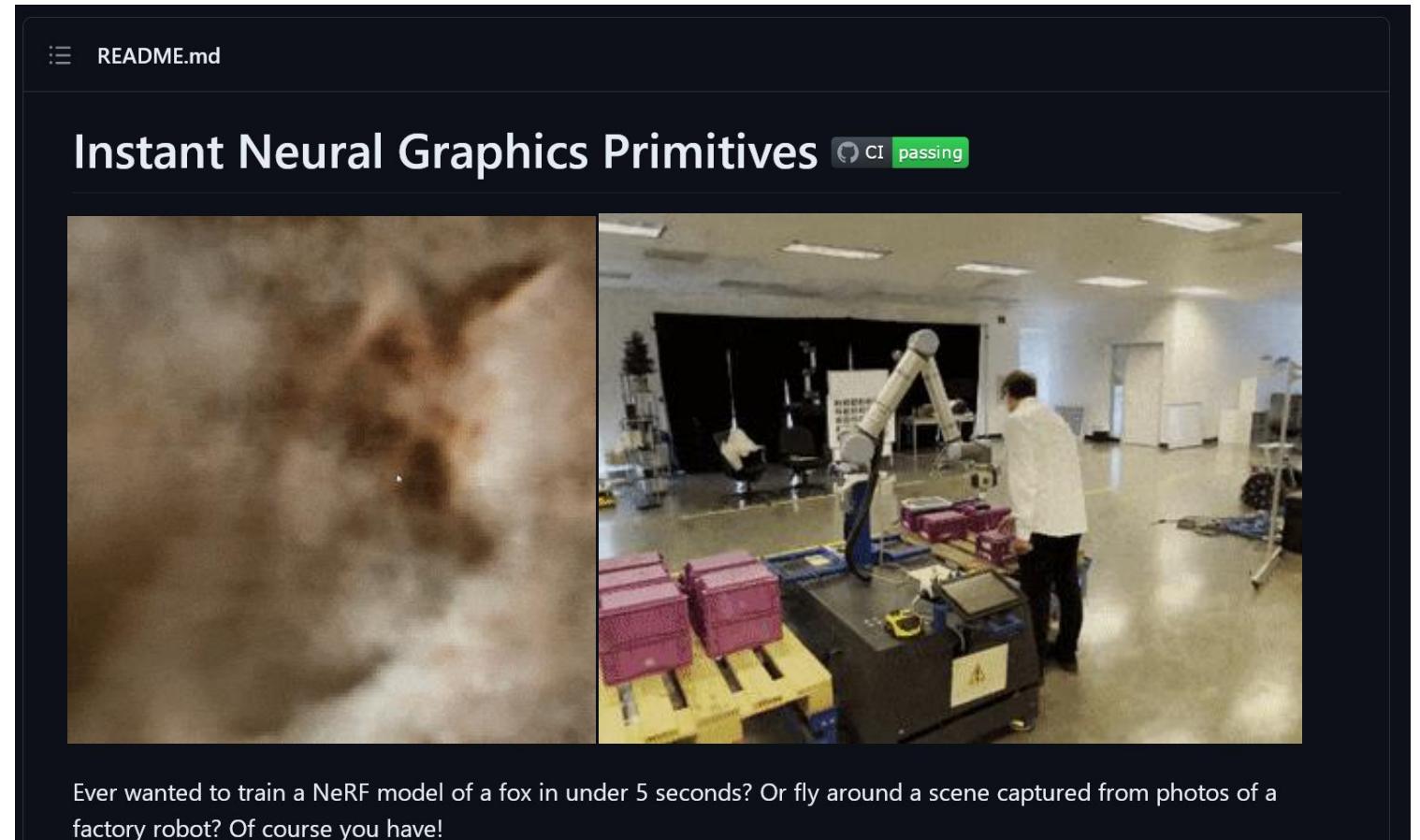
Fly-throughs of trained real-world NeRFs. Large, natural 360 scenes (left) as well as complex scenes with many disocclusions and specular surfaces (right) are well supported. Both models can be rendered in real time and were trained in under 5 minutes from casually captured data: the left one from an iPhone video and the right one from 34 photographs.

SIFT is 20+ years old. Is it still useful?

- Let's look at some trendy research on Neural Radiance Fields (NeRF)
- Let's look under the hood

README.md

Instant Neural Graphics Primitives



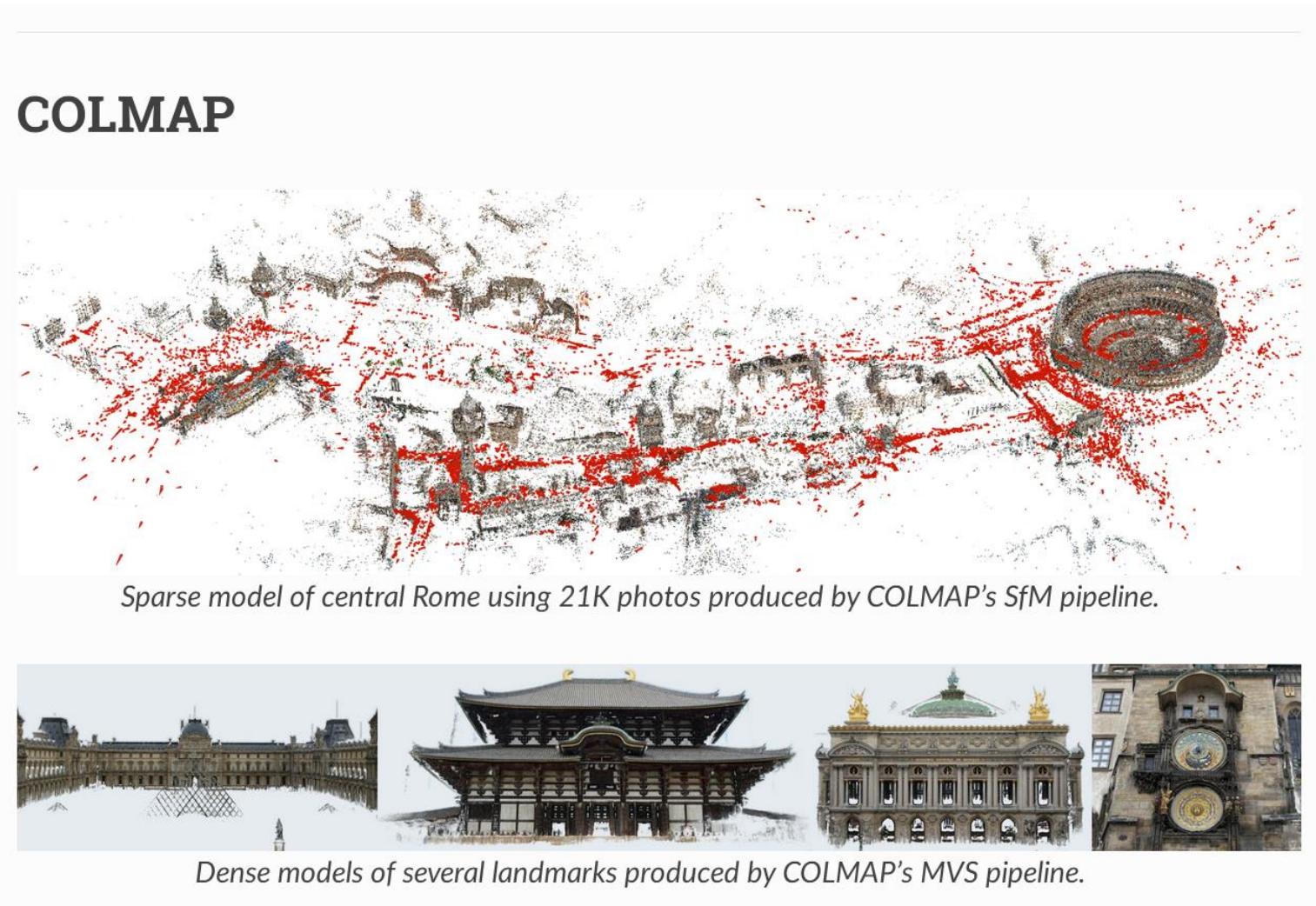
Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a factory robot? Of course you have!

Tips for training NeRF models with Instant Neural Graphics Primitives

Our NeRF implementation expects initial camera parameters to be provided in a `transforms.json` file in a format compatible with [the original NeRF codebase](#). We provide a script as a convenience, `scripts/colmap2nerf.py`, that can be used to process a video file or sequence of images, using the open source [COLMAP](#) structure from motion software to extract the necessary camera data.

SIFT is 20+ years old. Is it still useful?

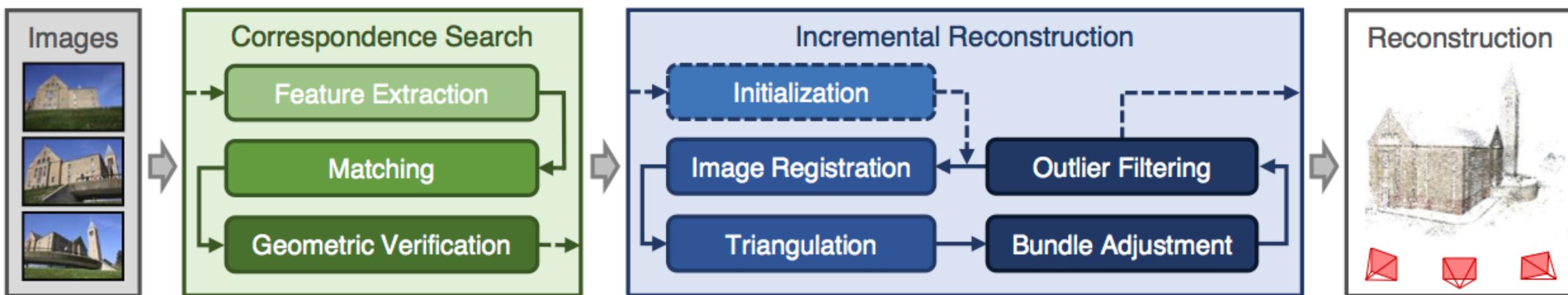
- COLMAP is the “standard” way to do structure from motion these days



“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

SIFT is 20+ years old. Is it still useful?

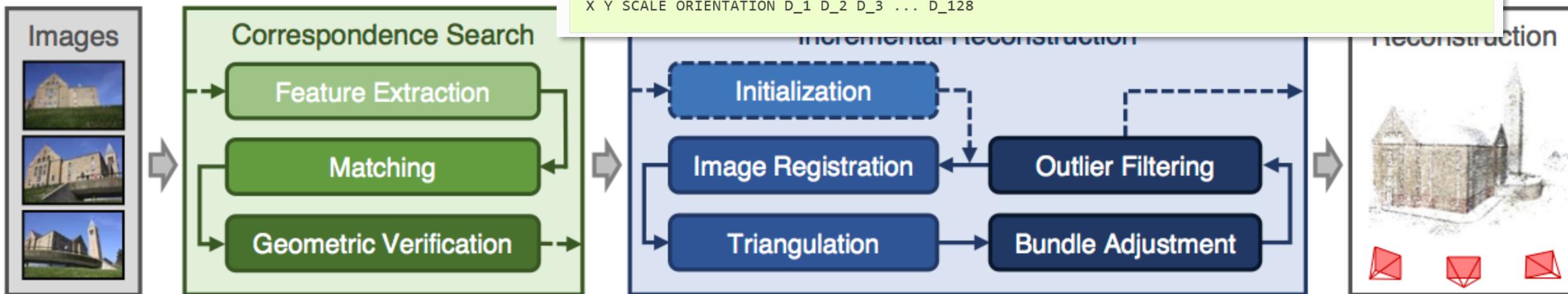
- COLMAP is the “standard” way to do structure from motion these days



“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

SIFT is 20+ years old. Is it still useful?

- COLMAP is the “standard” way to do structure from motion these days



“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

Distributed Global Structure-from-Motion with a Deep Front-End

Ayush Baid ^{*†}John Lambert^{*†}Travis Driver^{*}Akshay Krishnan^{*}

Hayk Stepanyan

Frank Dellaert

Georgia Tech

Abstract

While initial approaches to Structure-from-Motion (SfM) revolved around both global and incremental methods, most recent applications rely on incremental systems to estimate camera poses due to their superior robustness. Though there has been tremendous progress in SfM ‘front-ends’ powered by deep models learned from data, the state-of-the-art (incremental) SfM pipelines still rely on classical SIFT features, developed in 2004. In this work, we investigate whether leveraging the developments in feature extraction and matching helps global SfM perform on par with the SOTA incremental SfM approach (COLMAP). To do so, we design a modular SfM framework that allows us to easily combine developments in different stages of the SfM pipeline. Our experiments show that while developments in deep-learning based two-view correspondence estimation do translate to improvements in point density for scenes reconstructed with global SfM, none of them outperform SIFT when comparing with incremental SfM results on a range of datasets. Our SfM system is designed from the ground up to leverage distributed computation, enabling us to parallelize computation on multiple machines and scale to large scenes. Our code is publicly available at github.com/borglab/gtsfm.

Figure 1. A sparse reconstruction of the UNC South Building using GTSfM with a deep LoFTR-based [64] front-end, with an example image input. Multi-view stereo is not used.

[53, 57], Gaussian Splatting [32], accurate monocular depth predictions for humans [39], and more.

Incremental SfM is the dominant paradigm, as global SfM suffers from a lack of accuracy, largely due to difficulty in reasoning about outliers globally in a single pass. However, to our knowledge, almost all global SfM systems

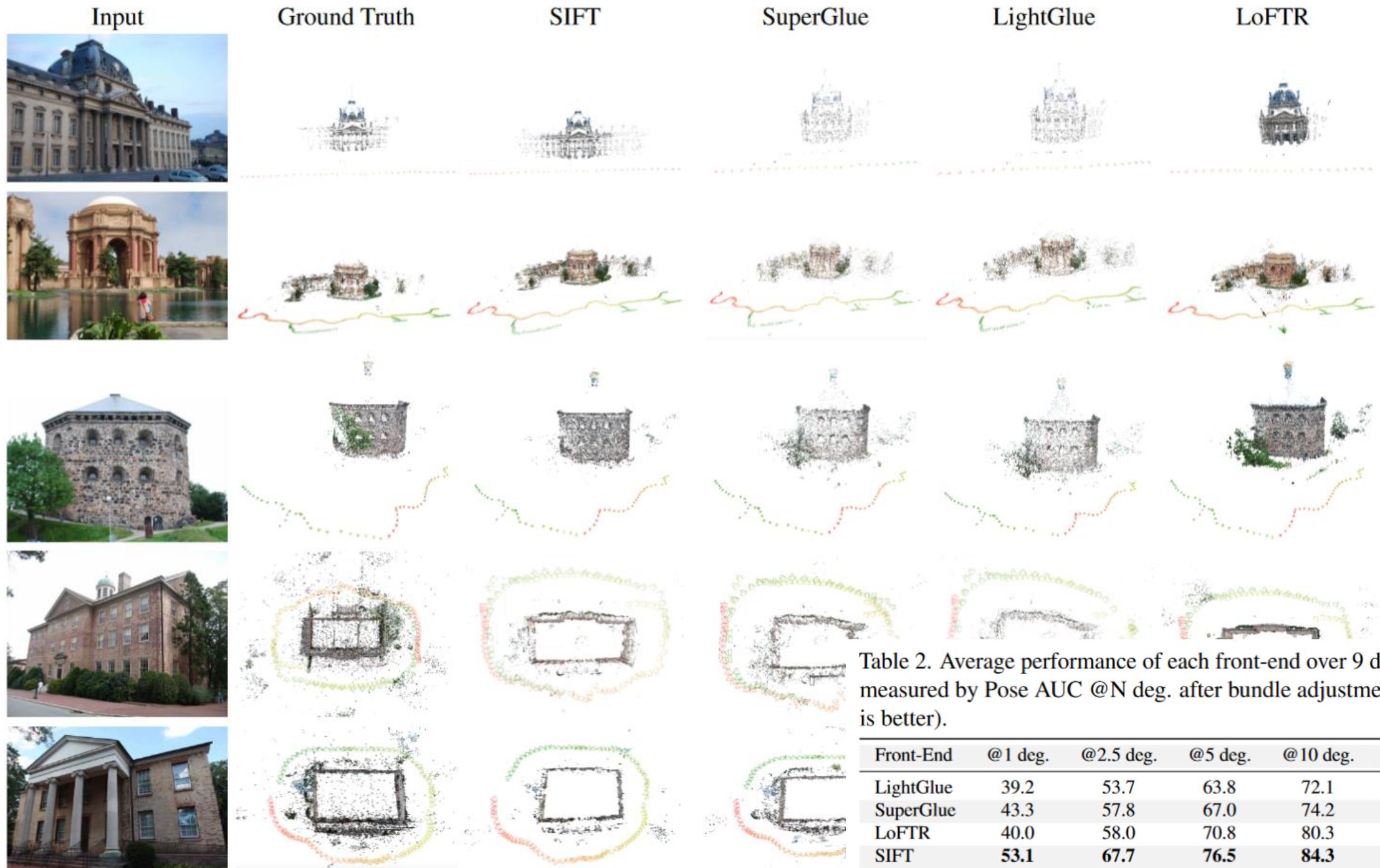
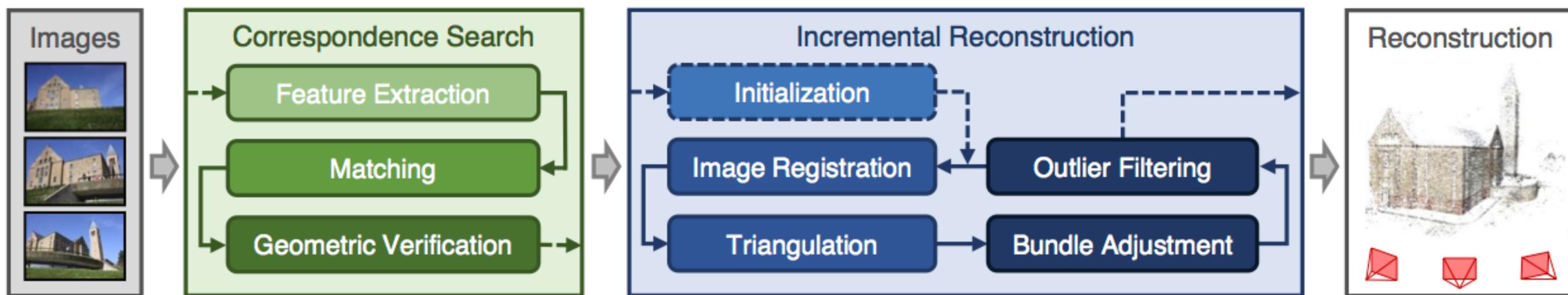


Table 2. Average performance of each front-end over 9 datasets, as measured by Pose AUC @N deg. after bundle adjustment (higher is better).

Front-End	@1 deg.	@2.5 deg.	@5 deg.	@10 deg.	@20 deg.
LightGlue	39.2	53.7	63.8	72.1	77.9
SuperGlue	43.3	57.8	67.0	74.2	79.0
LoFTR	40.0	58.0	70.8	80.3	86.2
SIFT	53.1	67.7	76.5	84.3	90.3

What is “Geometric Verification”?

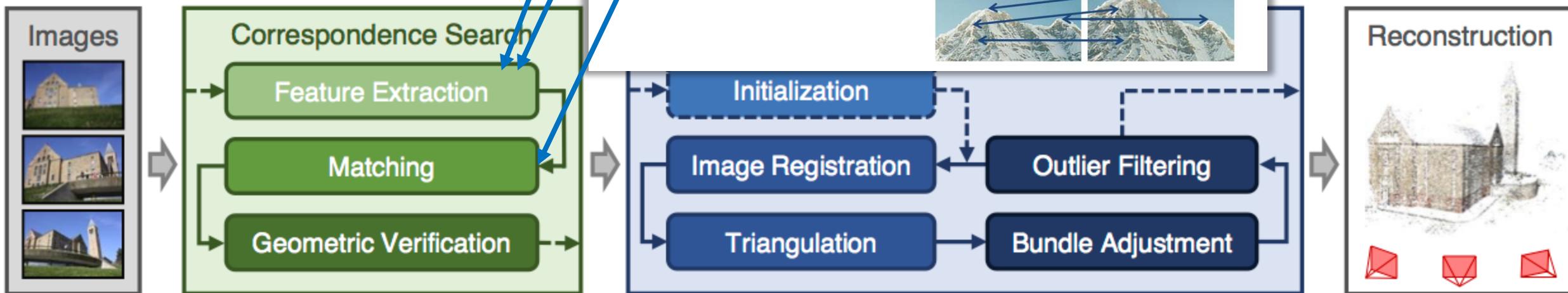
- COLMAP is the standard way to do structure from motion these days



“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

What is “Geometric Verification”?

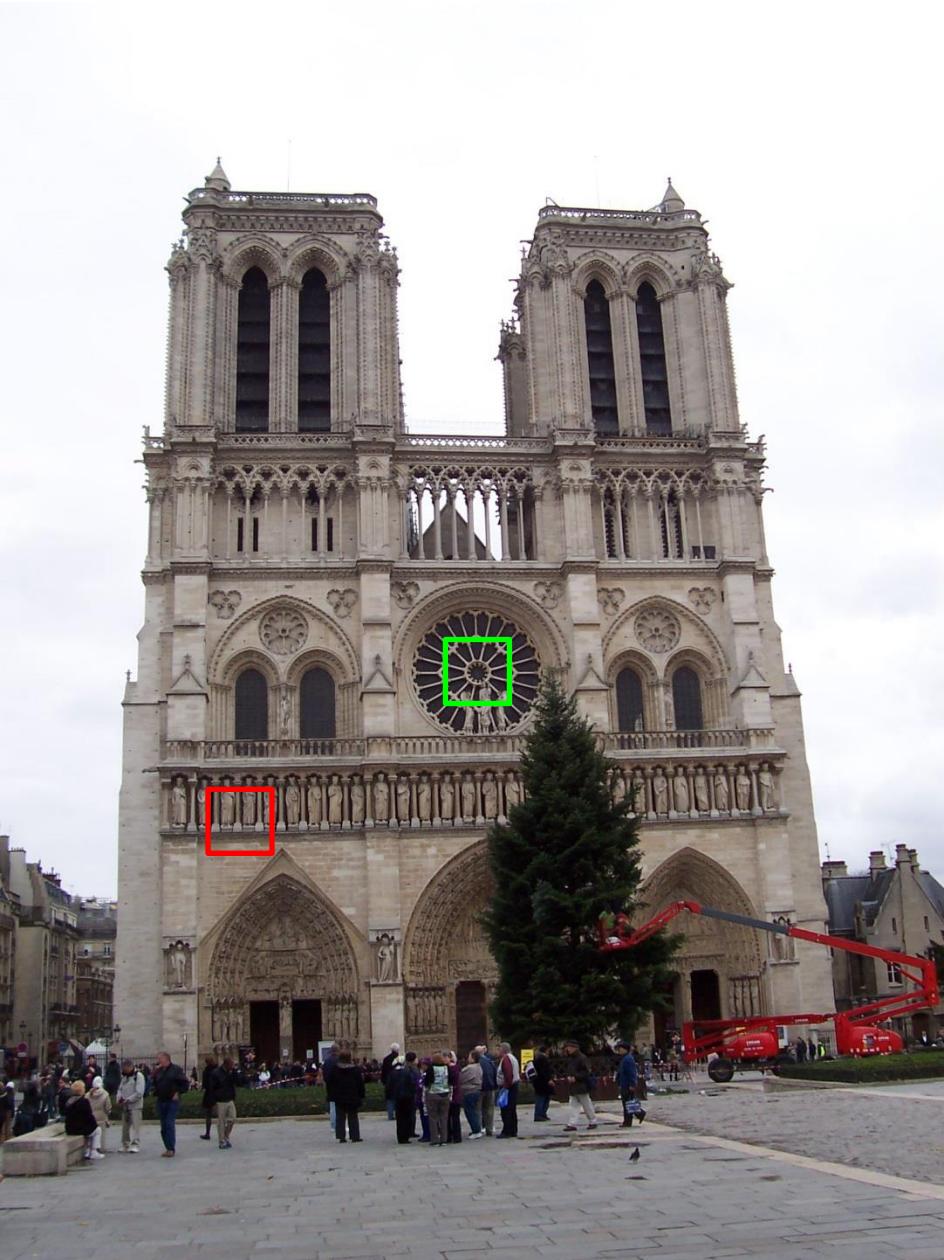
- COLMAP is the standard way to do structure from motion these days



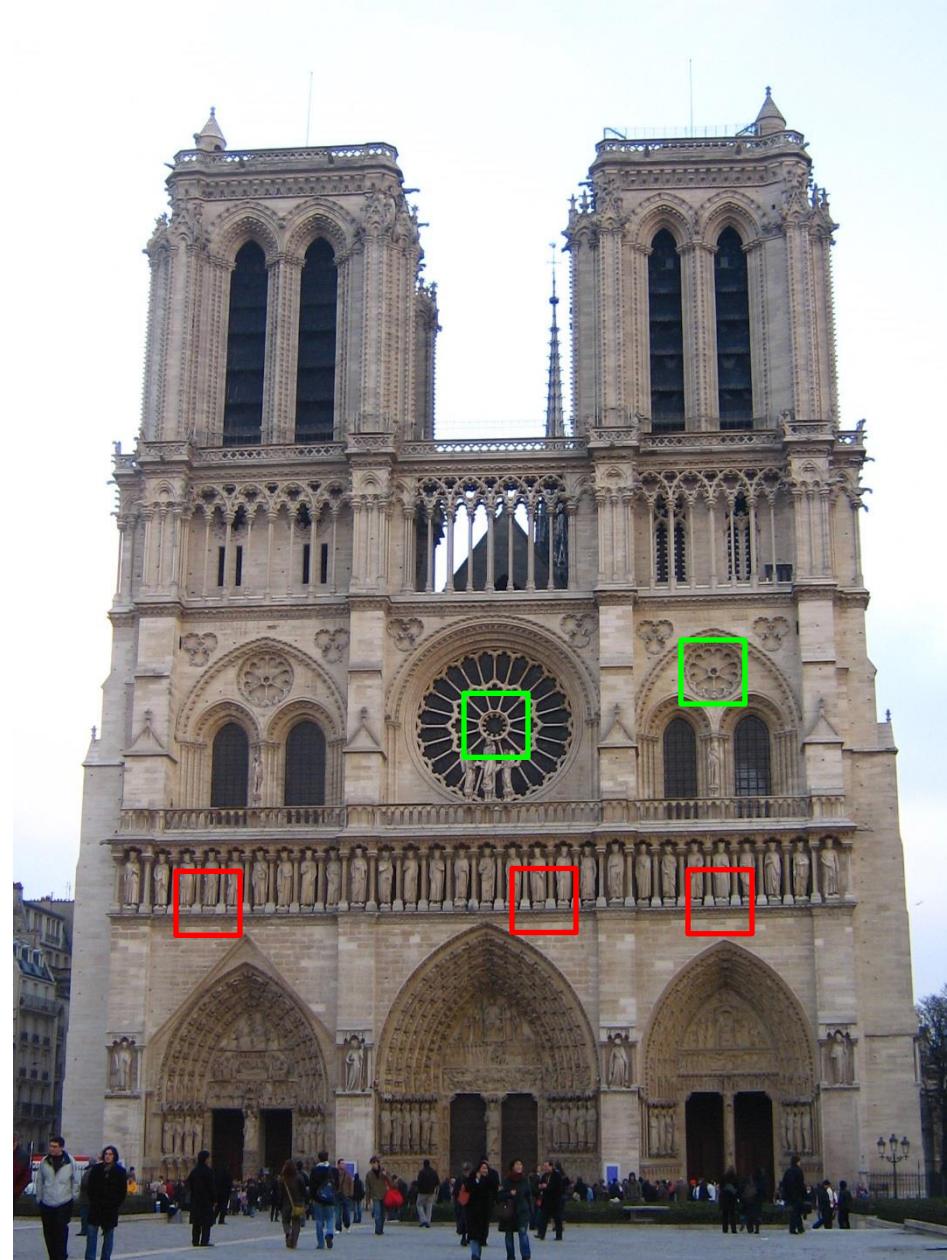
“Structure-From-Motion Revisited”. Johannes L. Schonberger, Jan-Michael Frahm; CVPR 2016
5k+ citations

Matching

- Simplest approach: Pick the nearest neighbor. Threshold on absolute distance
- Problem: Lots of self similarity in many photos



Distance: 0.34, 0.30, 0.40



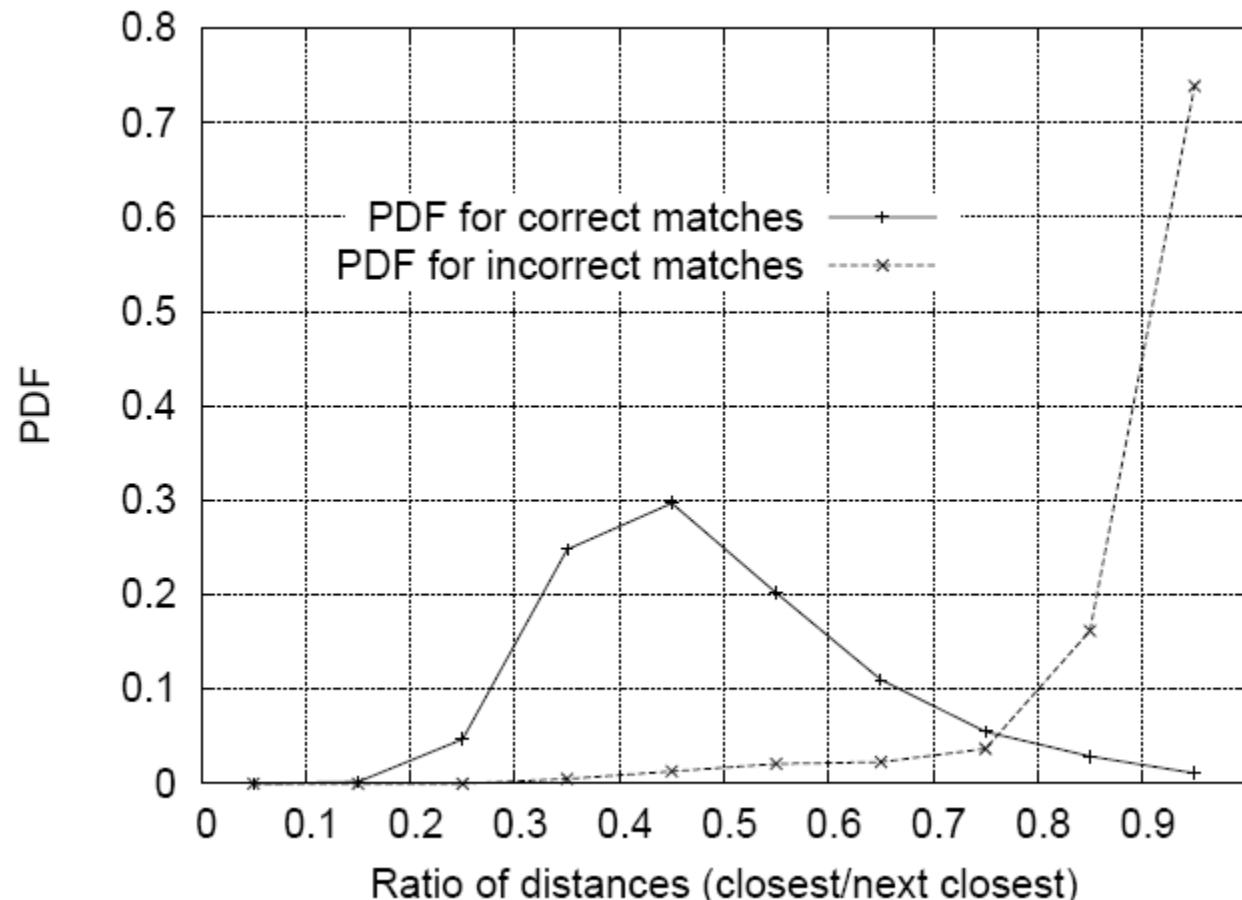
Distance: 0.61
Distance: 1.22

Nearest Neighbor Distance Ratio

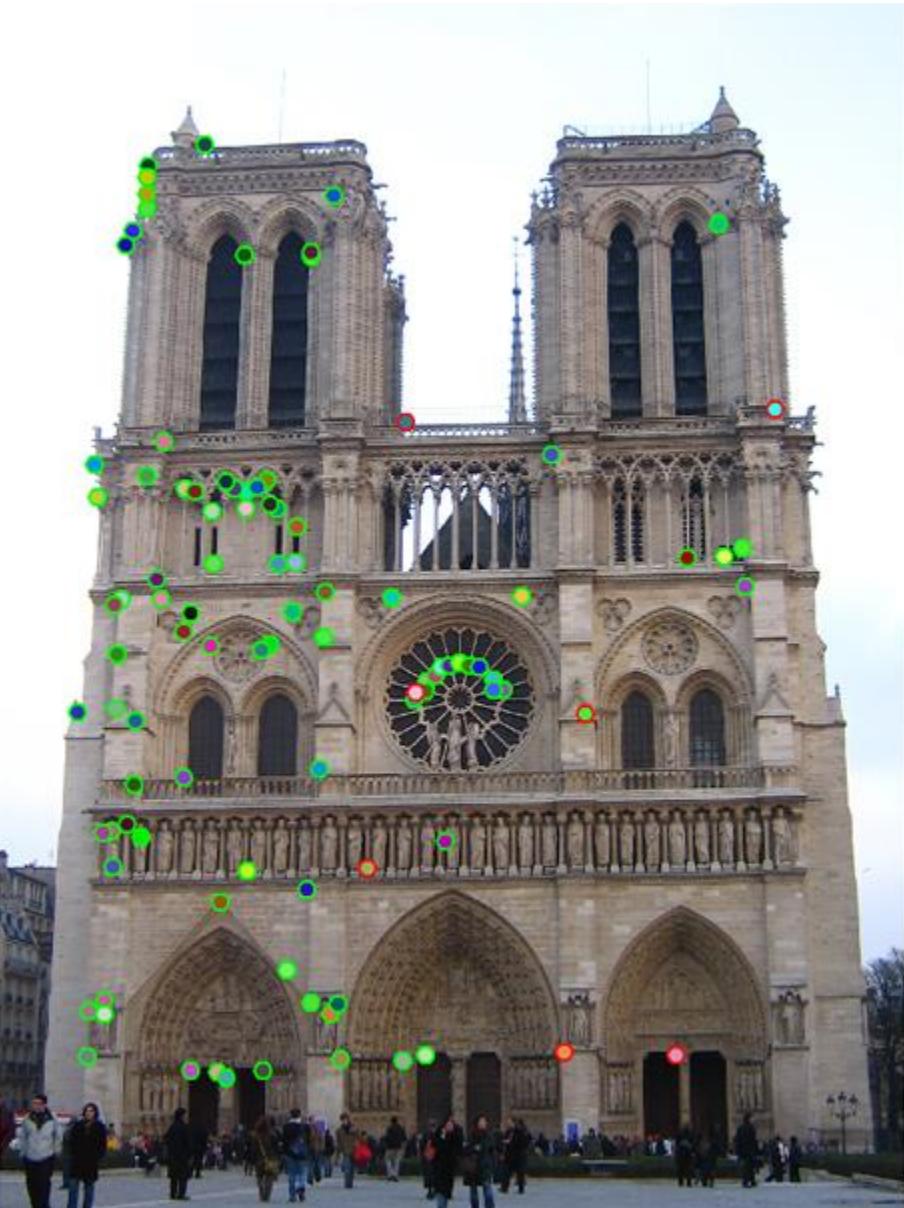
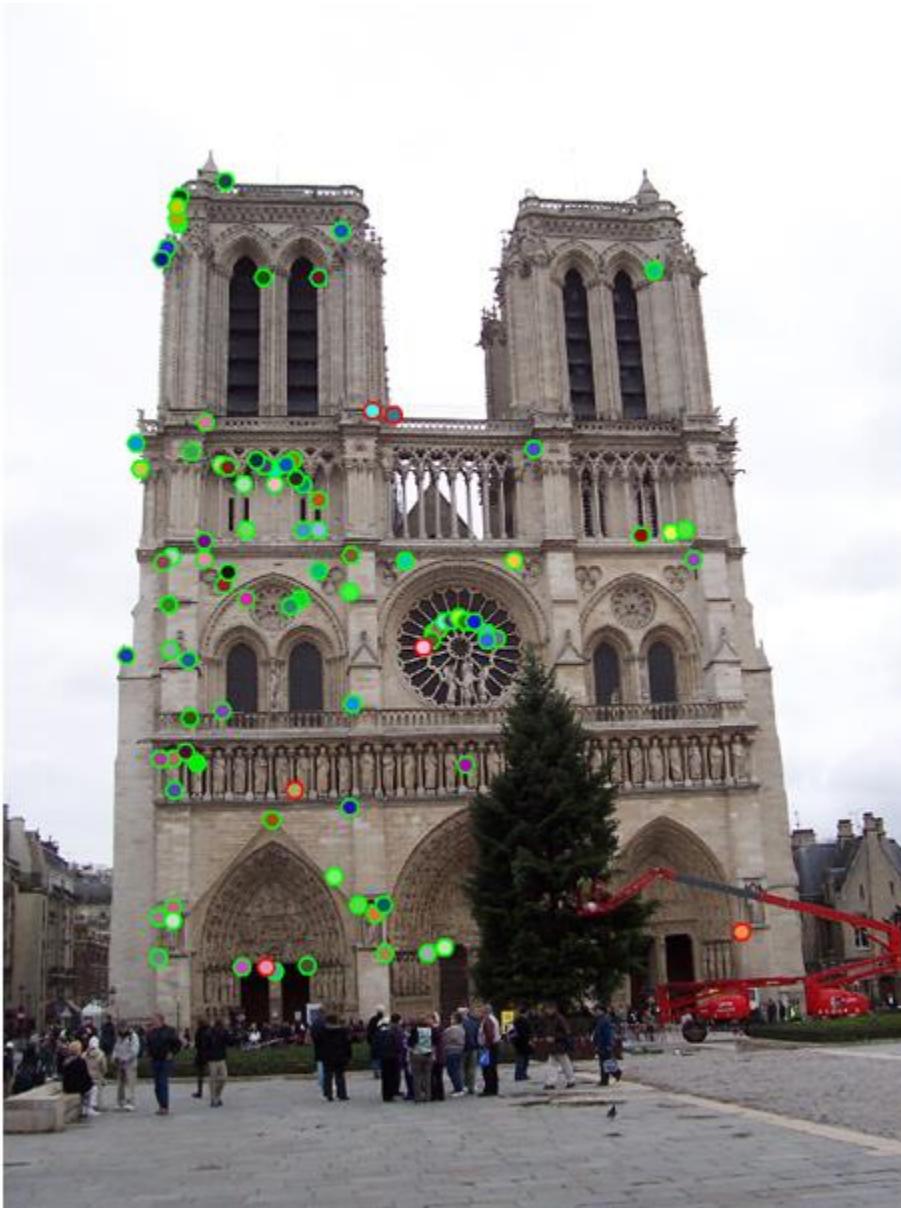
- $\frac{NN1}{NN2}$ where NN1 is the distance to the first nearest neighbor and NN2 is the distance to the second nearest neighbor.
- Sorting by this ratio (into ascending order) puts matches in order of confidence (in descending order of confidence).

Matching Local Features

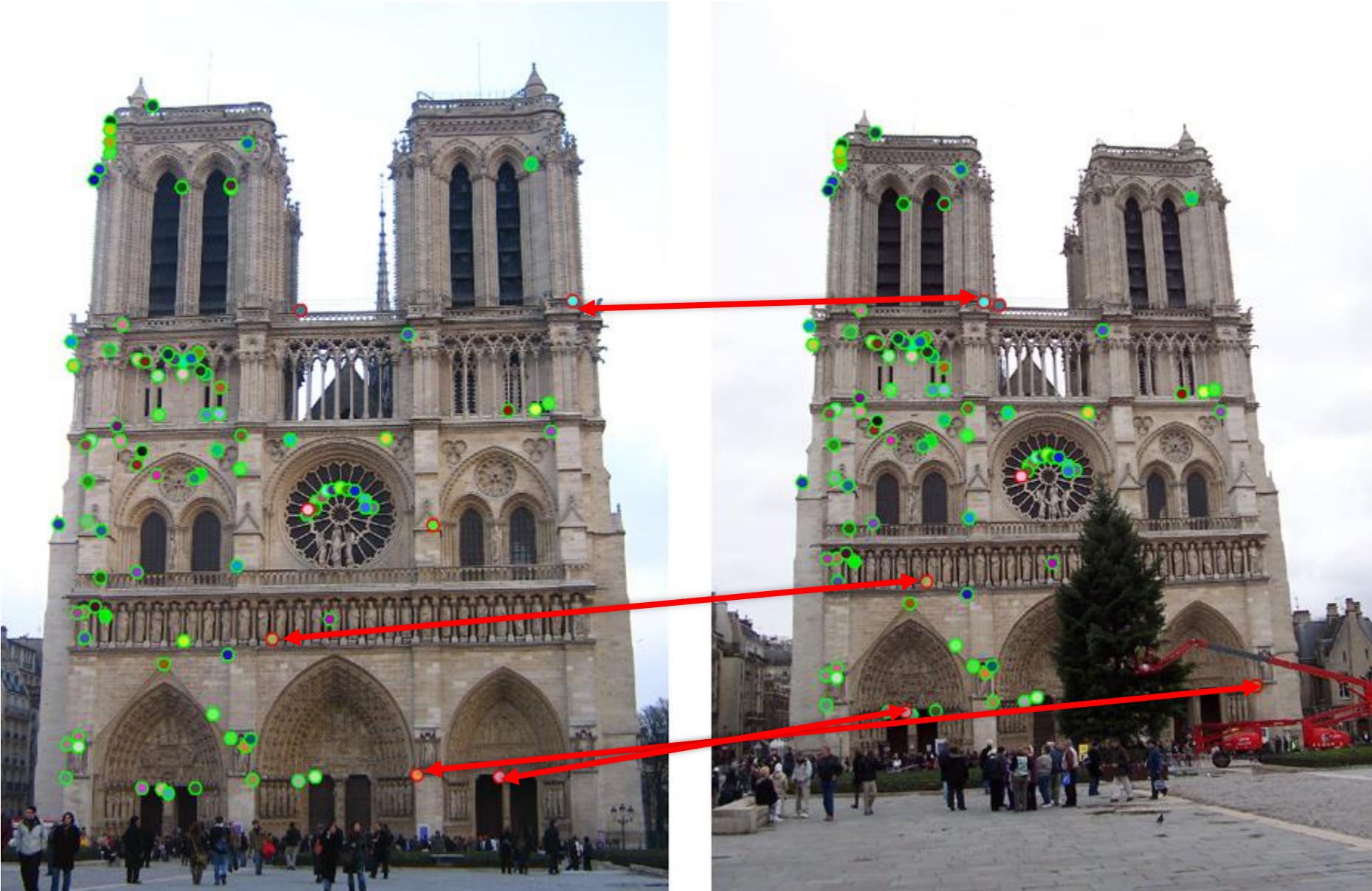
- Nearest neighbor (Euclidean distance)
- Threshold ratio of nearest to 2nd nearest descriptor



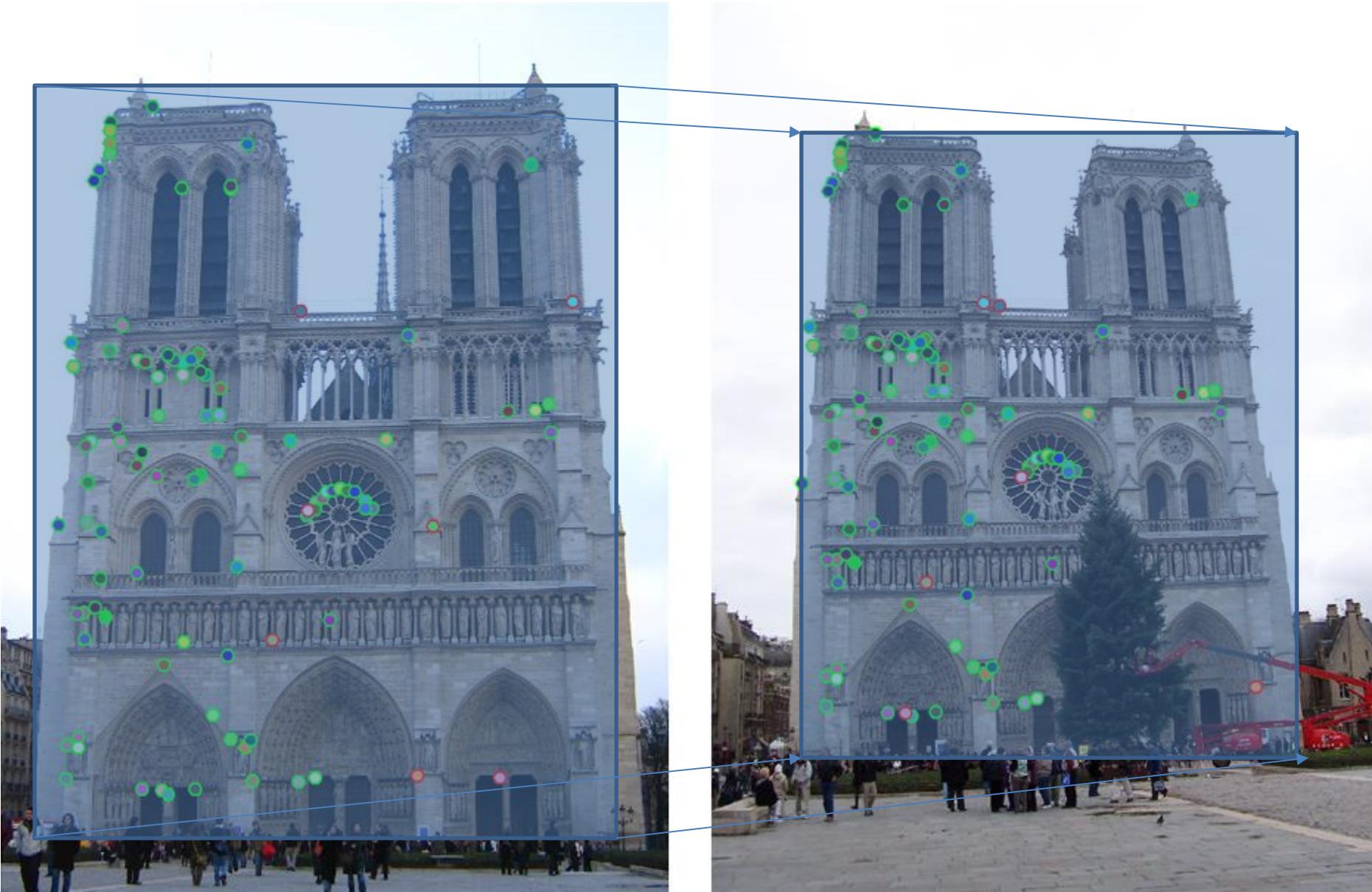
Can we refine this further?



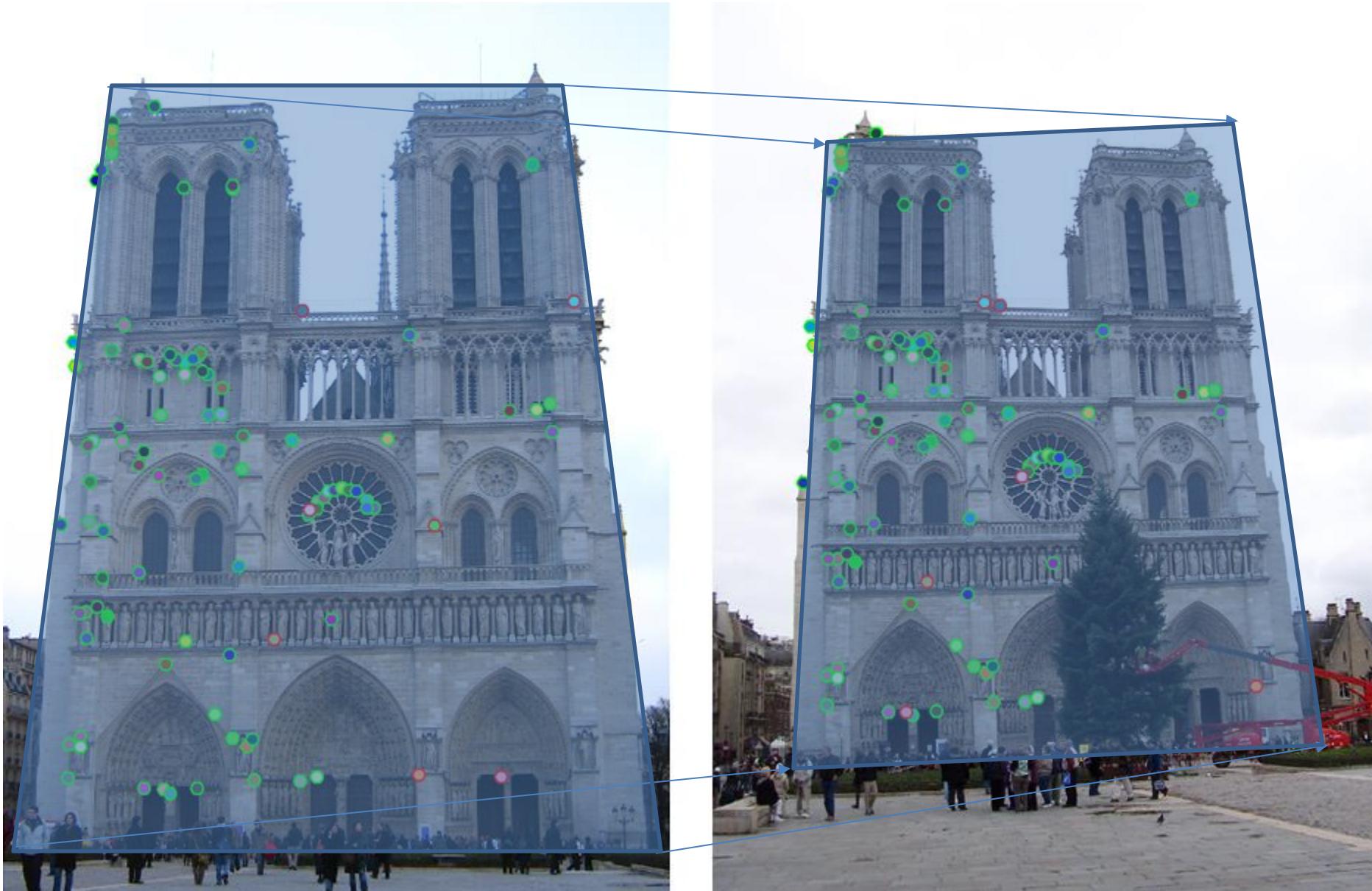
Can we refine this further?



Can we refine this further?

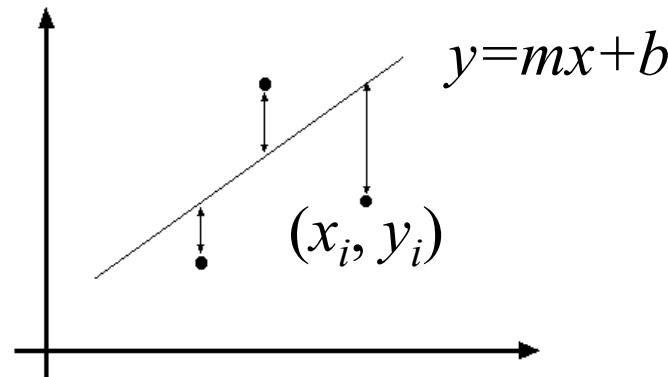


Can we refine this further?



What is the space of allowable correspondences?



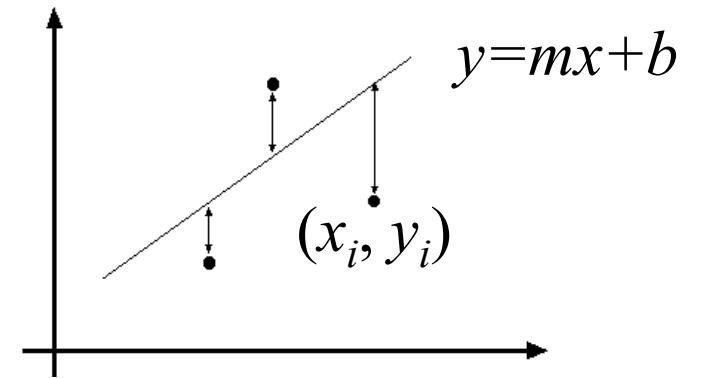


Fitting: find the parameters of a model that best fit the data

Alignment: find the parameters of the transformation that best align matched points

Fitting and Alignment

- Design challenges
 - Design a suitable **goodness of fit** measure
 - Similarity should reflect application goals
 - Encode robustness to outliers and noise
 - Design an **optimization** method
 - Avoid local optima
 - Find best parameters quickly



Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

Fitting and Alignment: Methods

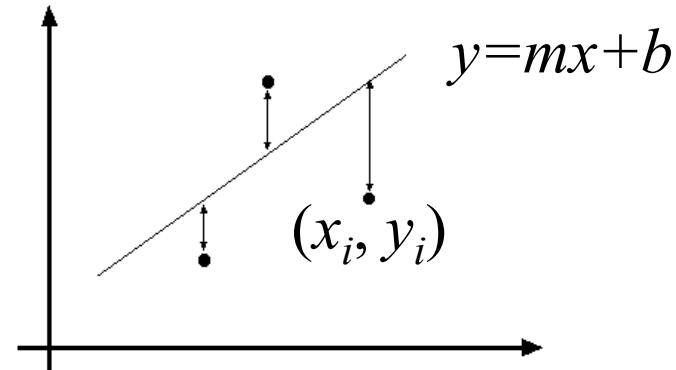
- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

Simple example: Fitting a line

Least squares line fitting

- Data: $(x_1, y_1), \dots, (x_n, y_n)$
- Line equation: $y_i = mx_i + b$
- Find (m, b) to minimize

$$E = \sum_{i=1}^n (y_i - mx_i - b)^2$$



$$E = \sum_{i=1}^n \left(\begin{bmatrix} x_i & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - y_i \right)^2 = \left\| \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} - \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \right\|^2 = \|\mathbf{Ap} - \mathbf{y}\|^2$$

$$= \mathbf{y}^T \mathbf{y} - 2(\mathbf{Ap})^T \mathbf{y} + (\mathbf{Ap})^T (\mathbf{Ap})$$

Matlab: $\mathbf{p} = \mathbf{A} \setminus \mathbf{y};$

$$\frac{dE}{dp} = 2\mathbf{A}^T \mathbf{Ap} - 2\mathbf{A}^T \mathbf{y} = 0$$

Python: $\mathbf{p} =$
`numpy.linalg.lstsq(A, y)`

$$\mathbf{A}^T \mathbf{Ap} = \mathbf{A}^T \mathbf{y} \Rightarrow \mathbf{p} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y}$$

Least squares (global) optimization

Good

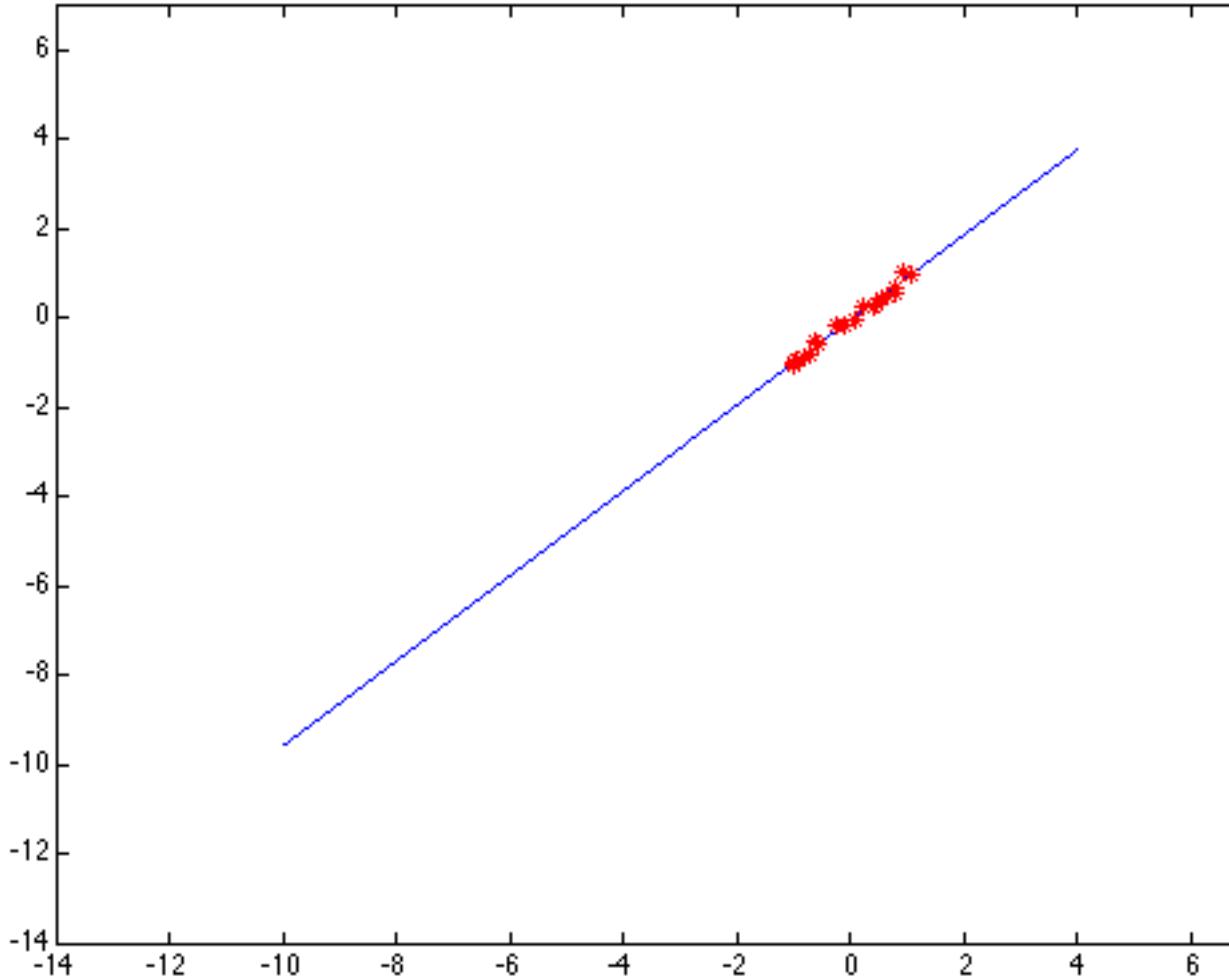
- Clearly specified objective
- Optimization is easy

Bad

- May not be what you want to optimize
- Sensitive to outliers
 - Bad matches, extra points
- Doesn't allow you to get multiple good fits
 - Detecting multiple objects, lines, etc.

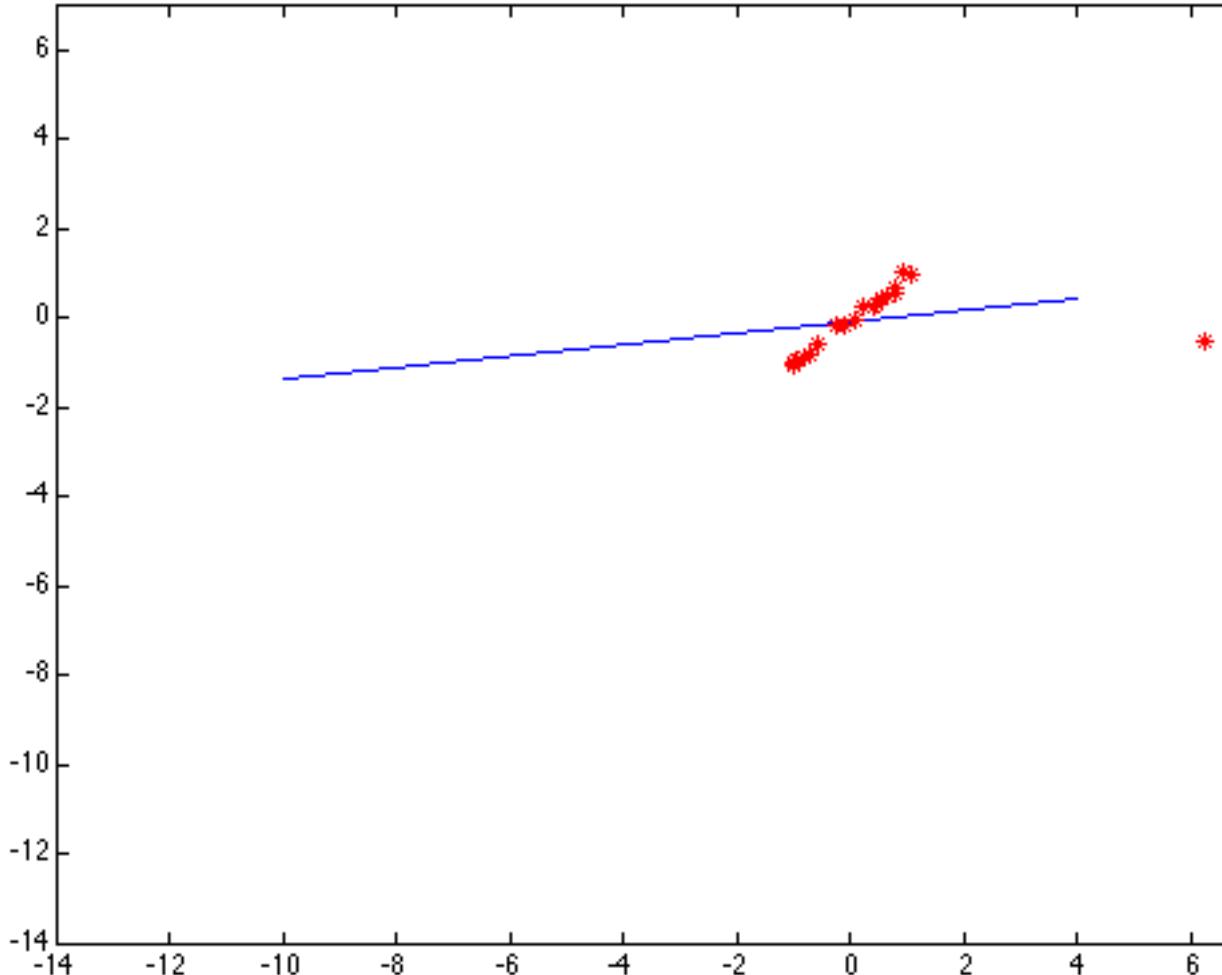
Least squares: Robustness to noise

- Least squares fit to the red points:



Least squares: Robustness to noise

- Least squares fit with an outlier:



Problem: squared error heavily penalizes outliers

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

Robust least squares (to deal with outliers)

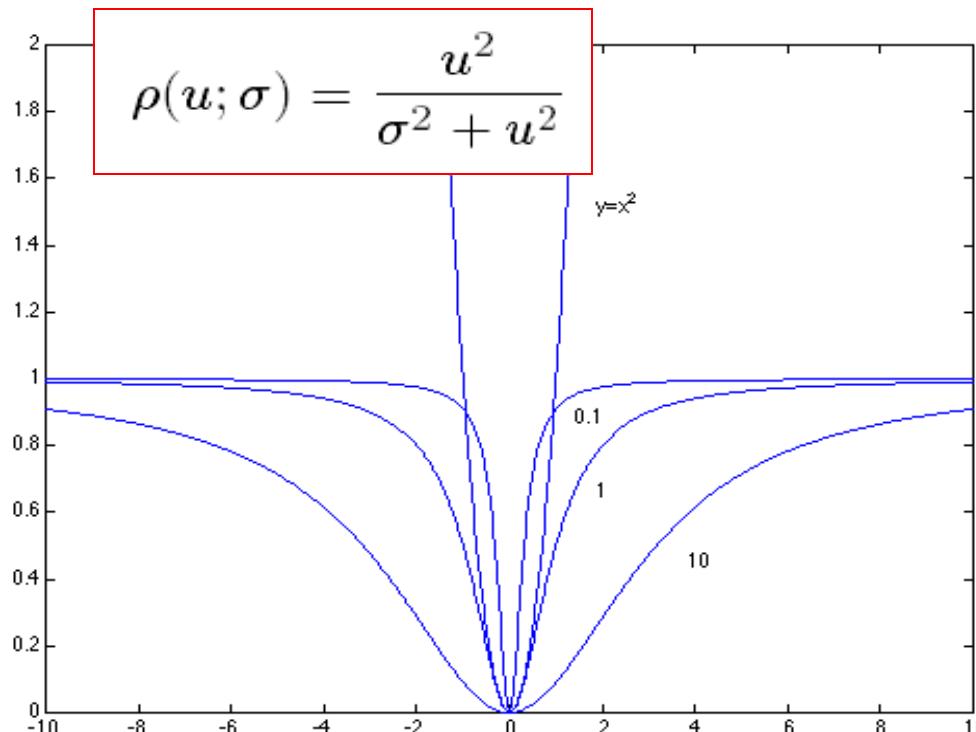
General approach:

minimize

$$\sum_i \rho(u_i(x_i, \theta); \sigma) \quad u^2 = \sum_{i=1}^n (y_i - mx_i - b)^2$$

$u_i(x_i, \theta)$ – residual of i^{th} point w.r.t. model parameters ϑ

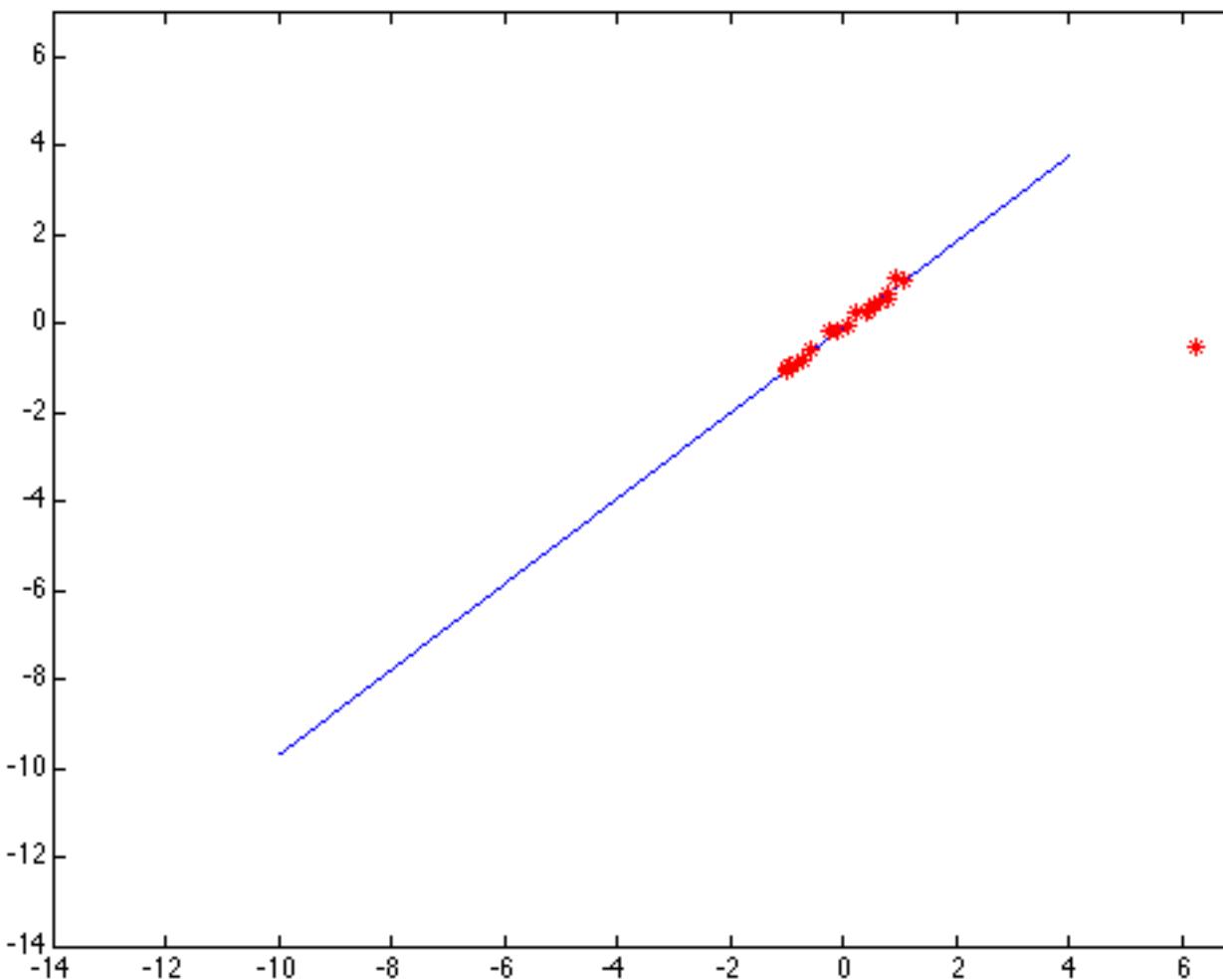
ρ – robust function with scale parameter σ



The robust function ρ

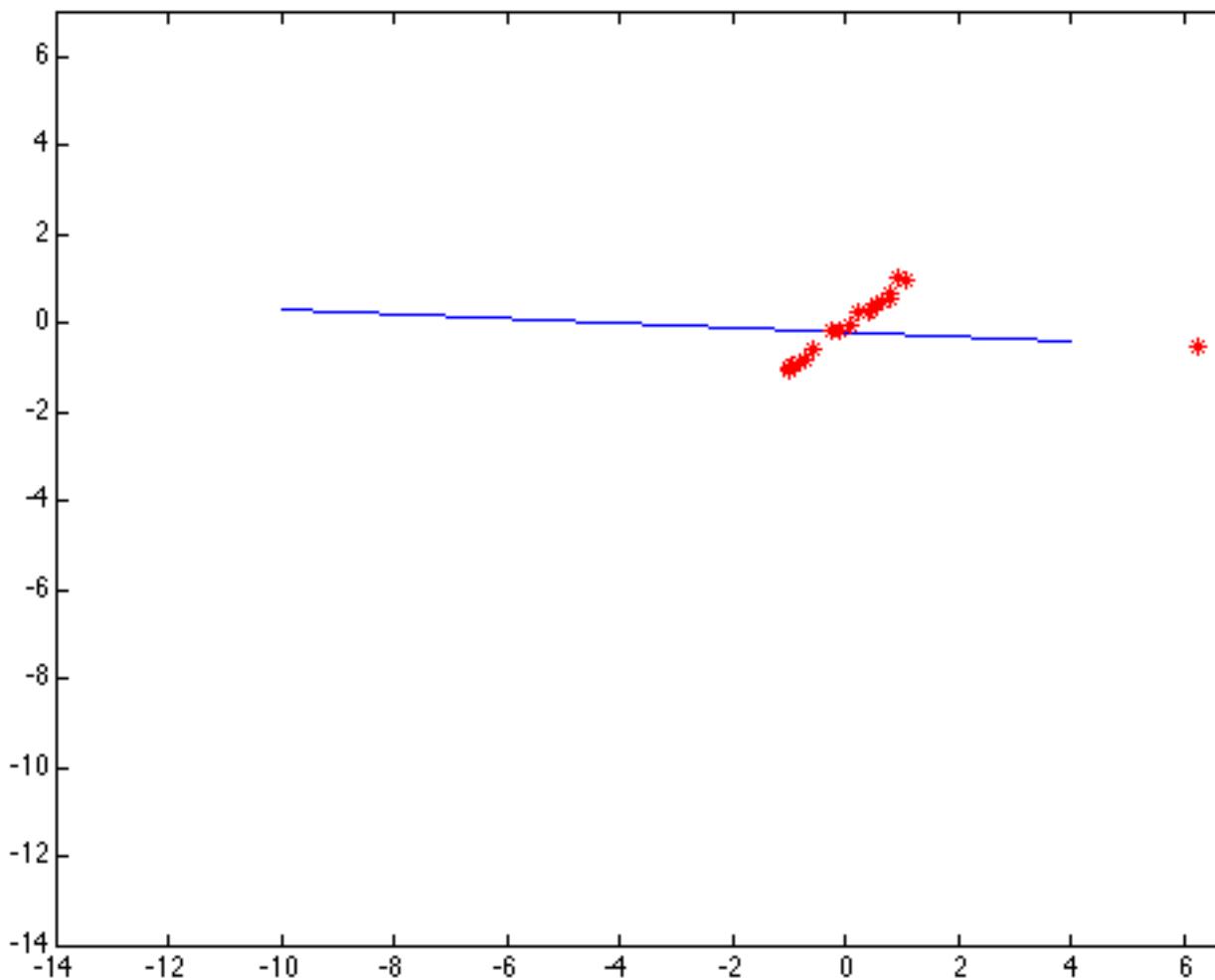
- Favors a configuration with small residuals
- Constant penalty for large residuals

Choosing the scale: Just right



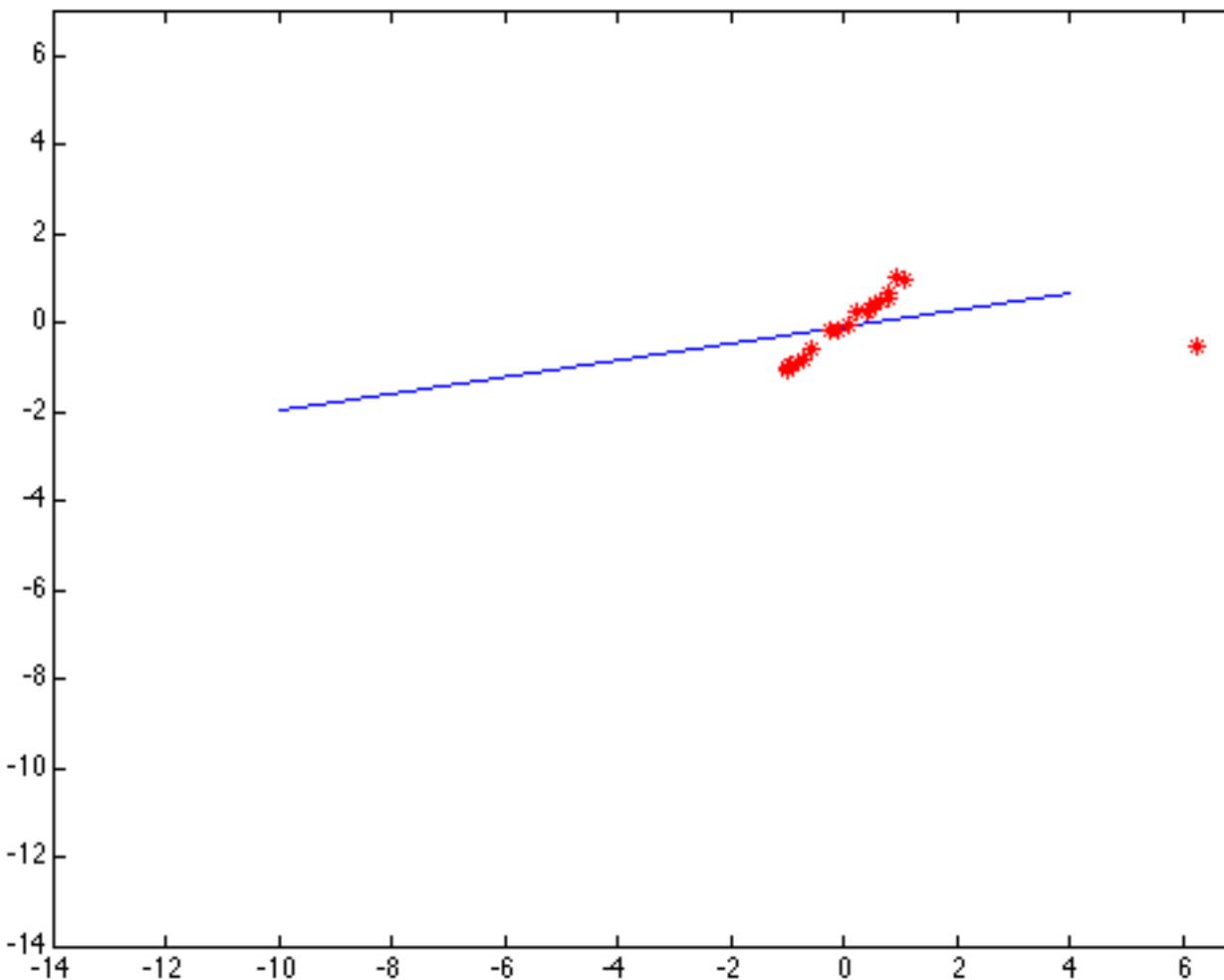
The effect of the outlier is minimized

Choosing the scale: Too small



The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large



Behaves much the same as least squares

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

Other ways to search for parameters (for when no closed form solution exists)

- Line search (see also “coordinate descent”)
 1. For each parameter, step through values and choose value that gives best fit
 2. Repeat (1) until no parameter changes
- Grid search
 1. Propose several sets of parameters, evenly sampled in the joint set
 2. Choose best (or top few) and sample joint parameters around the current best; repeat
- Gradient descent
 1. Provide initial position (e.g., random)
 2. Locally search for better parameters by following gradient

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)

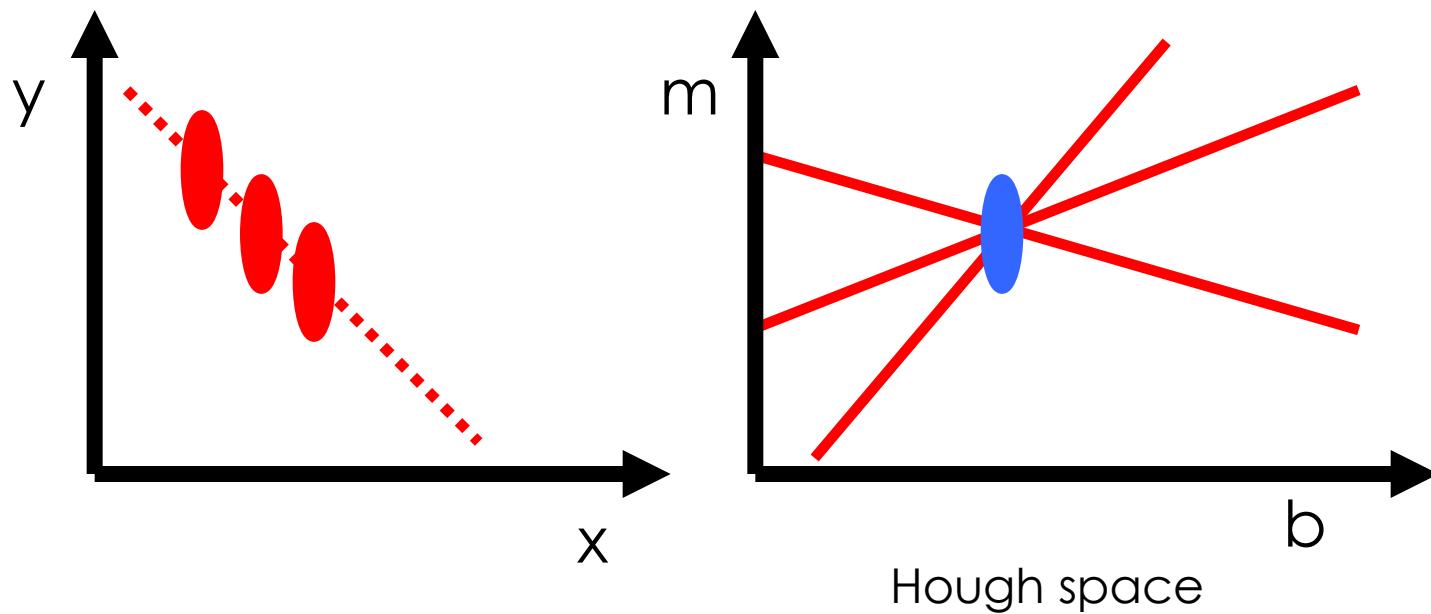
Hough Transform: Outline

1. Create a grid of parameter values
2. Each point (or observation of correspondence) votes for a set of parameters, incrementing those values in grid
3. Find maximum or local maxima in grid

Hough transform

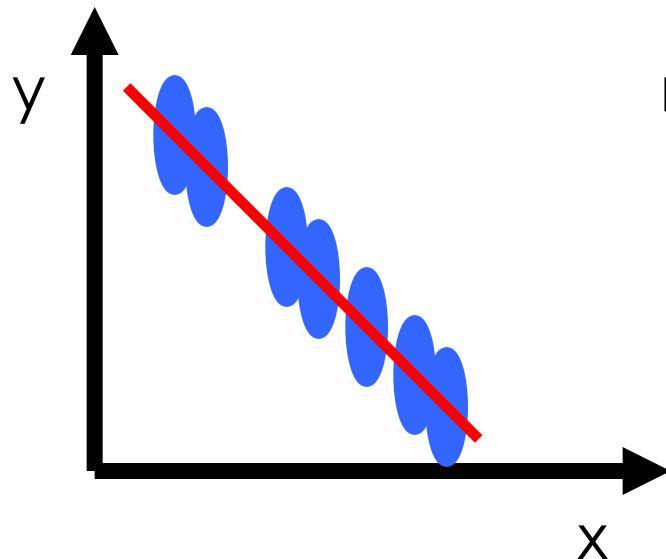
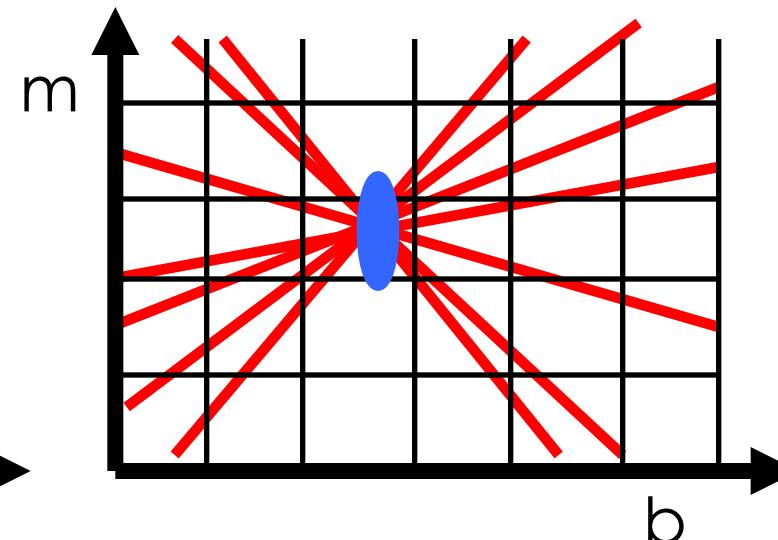
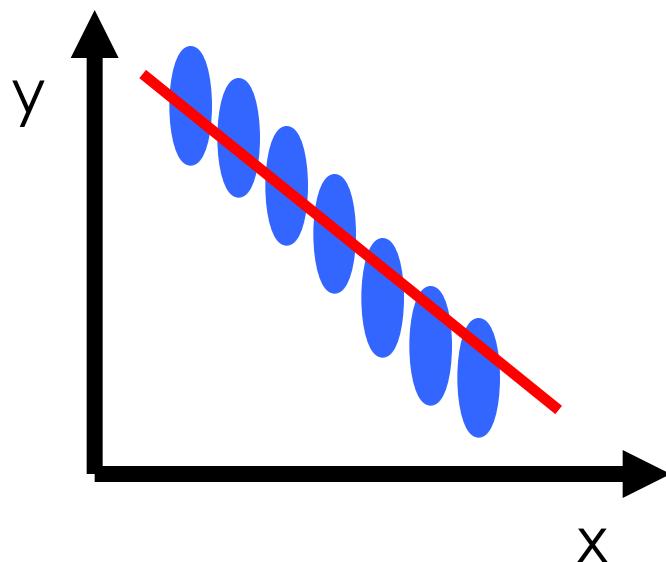
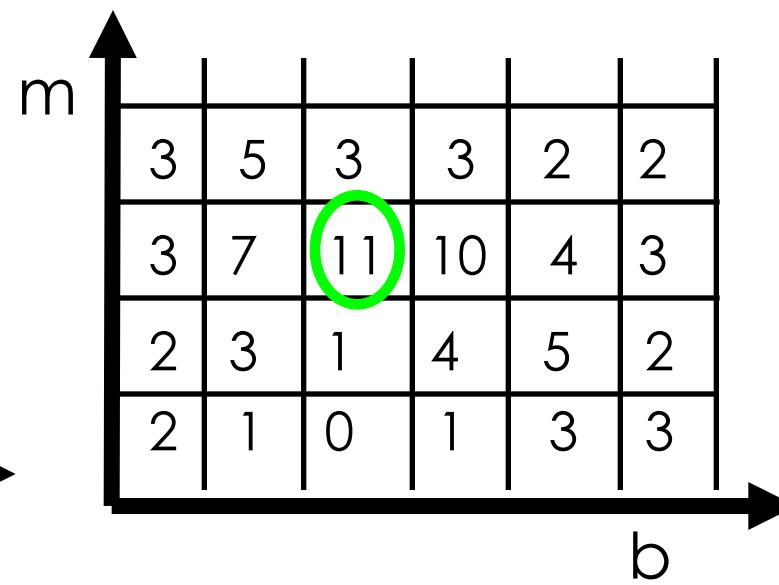
P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

Given a set of points, find the curve or line that explains the data points best



$$y = m x + b$$

Hough transform



Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

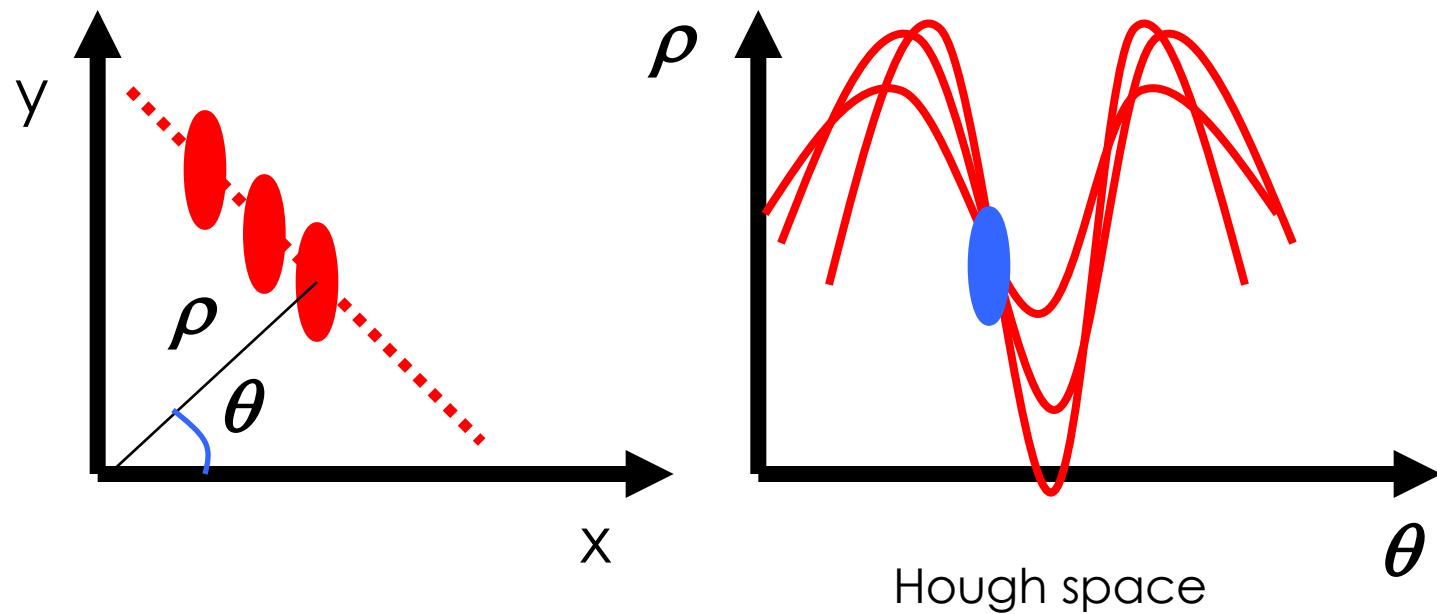
Issue : parameter space $[m,b]$ is unbounded...

Hough transform

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures*, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

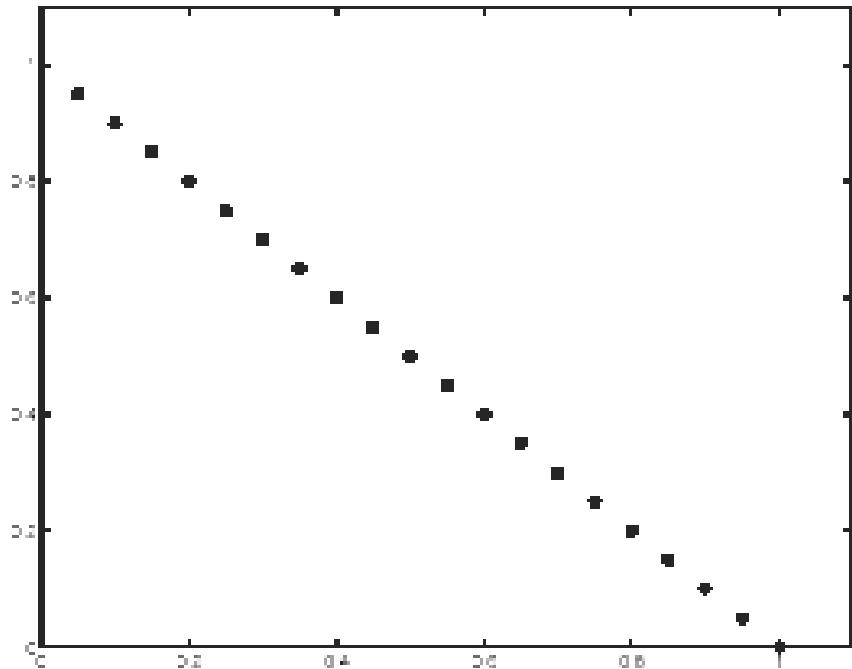
Issue : parameter space $[m,b]$ is unbounded...

Use a polar representation for the parameter space

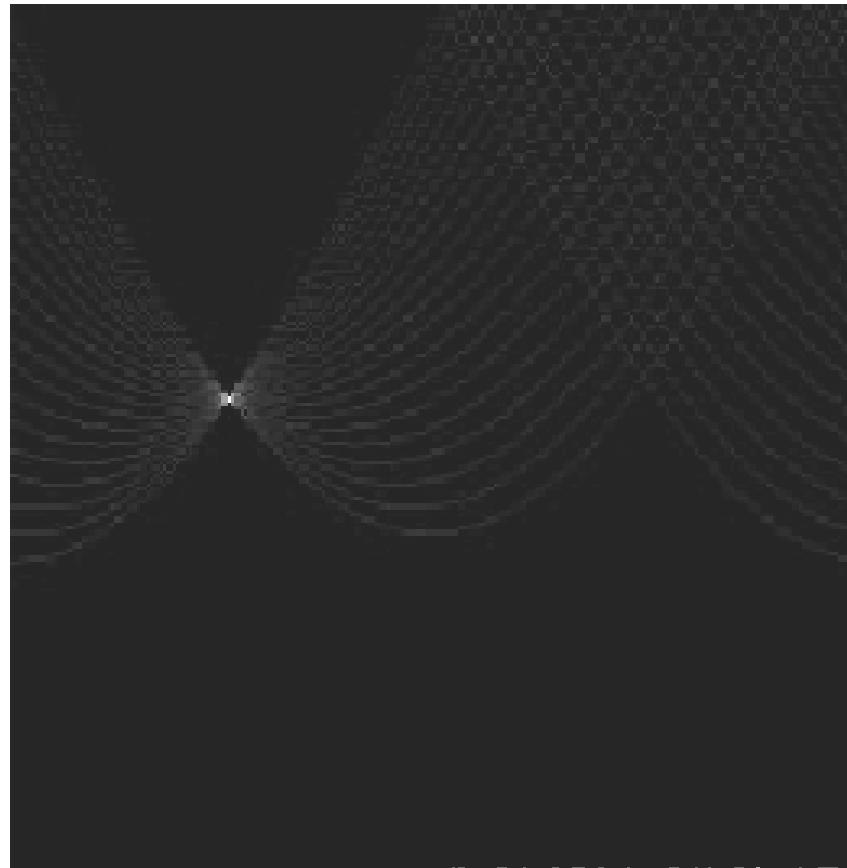


$$x \cos \theta + y \sin \theta = \rho$$

Hough transform - experiments

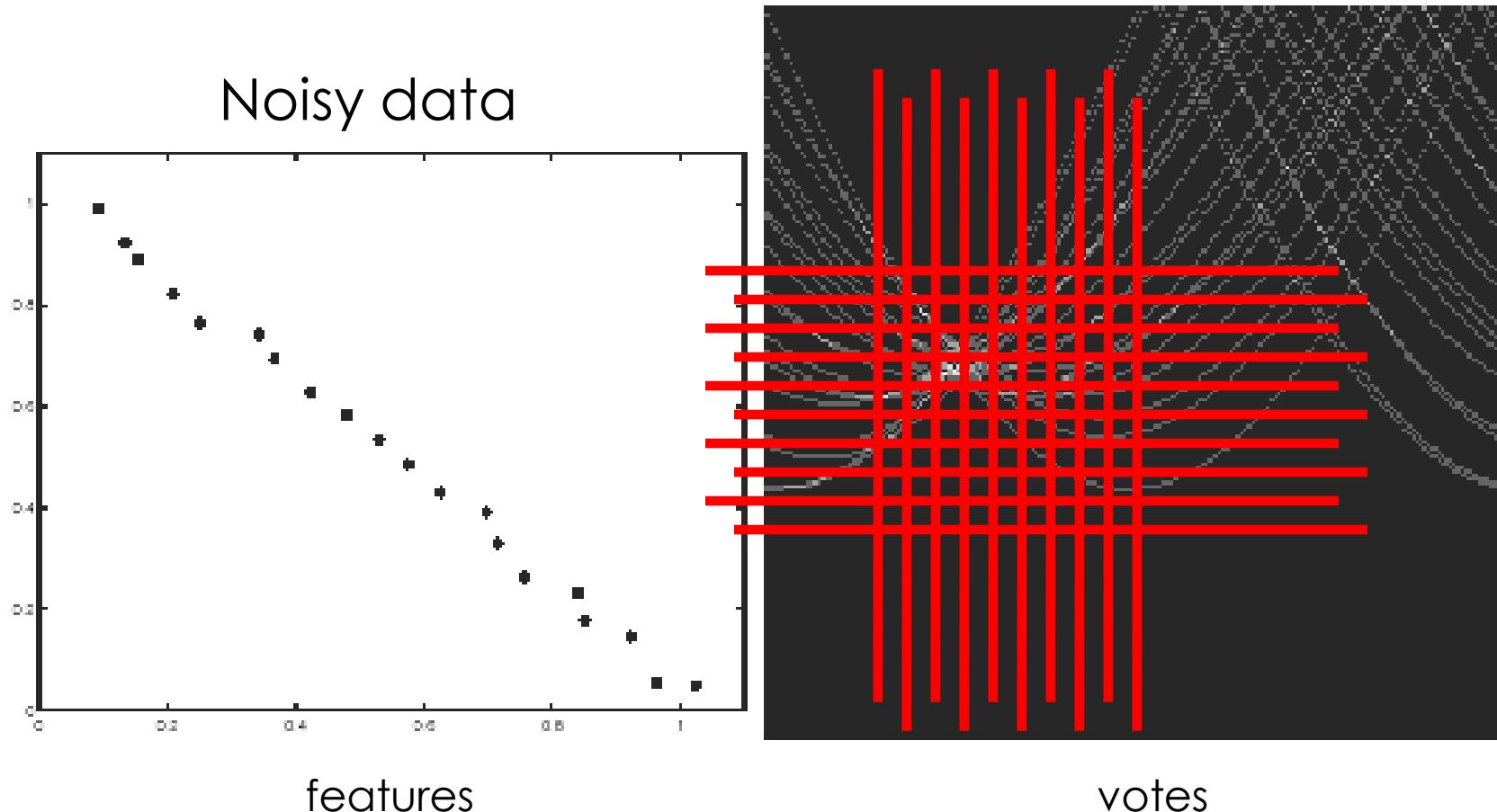


features



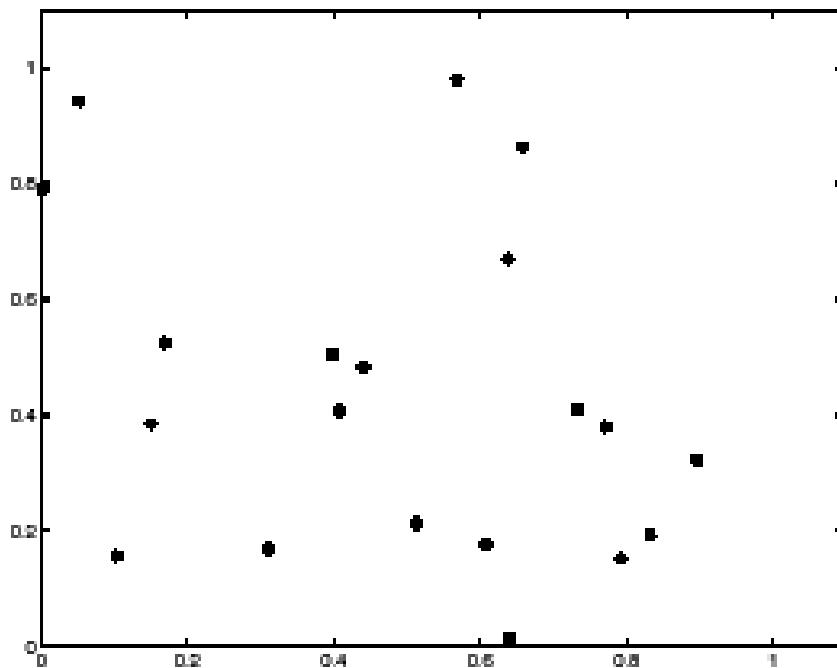
votes

Hough transform - experiments

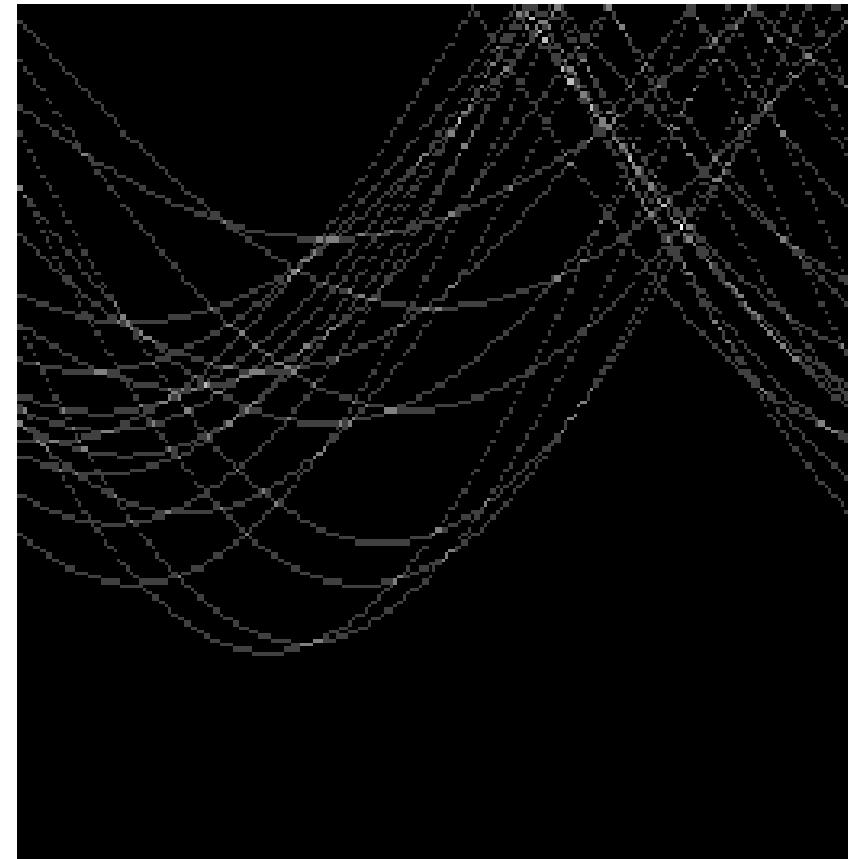


Need to adjust grid size or smooth

Hough transform - experiments



features

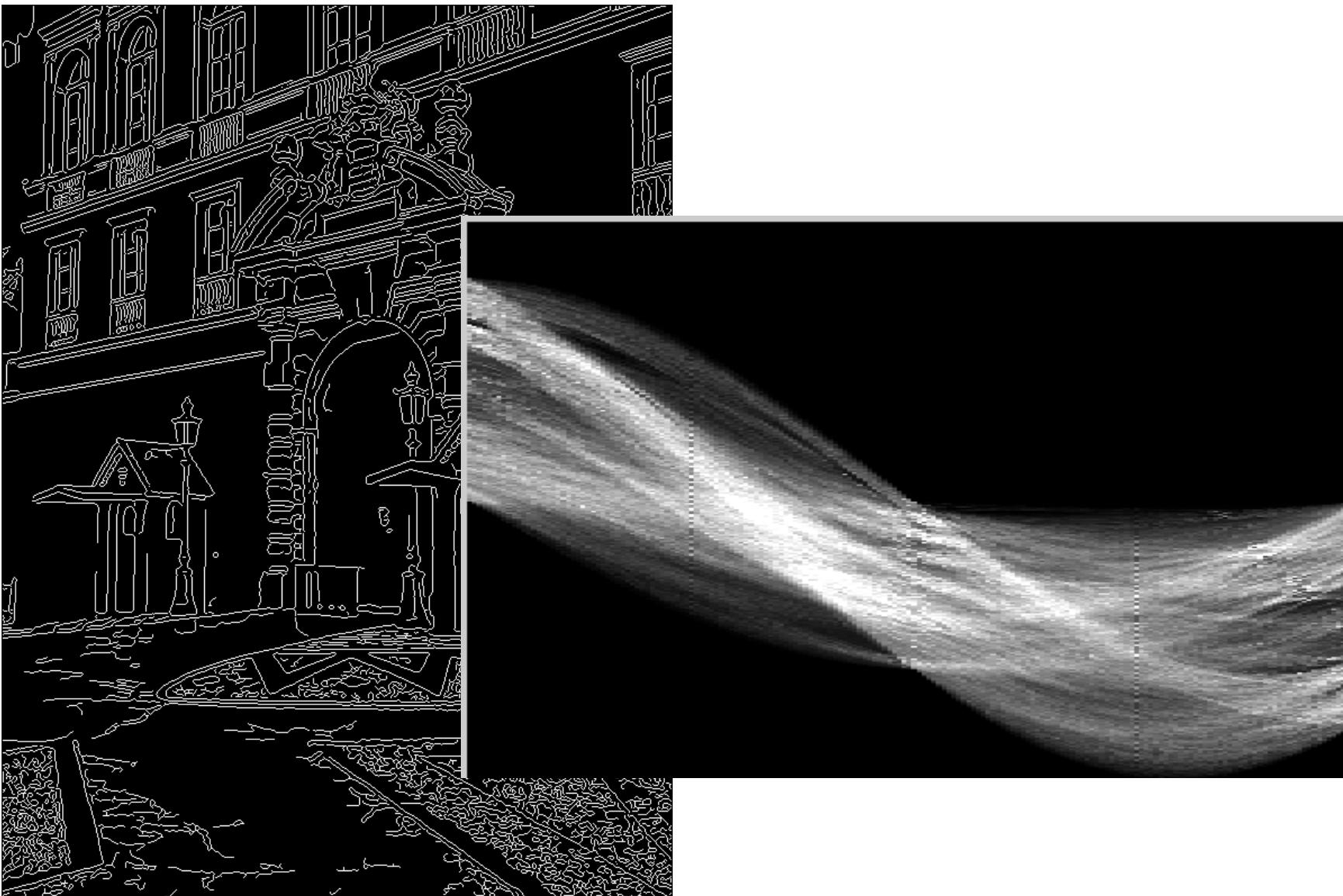


votes

Issue: spurious peaks due to uniform noise

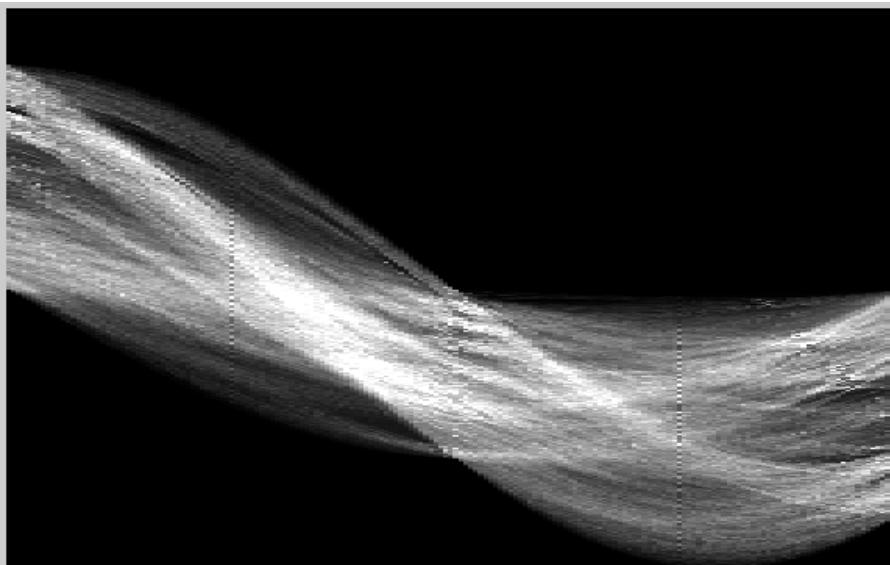
1. Image → Canny Edge Detection

2. Canny → Hough votes

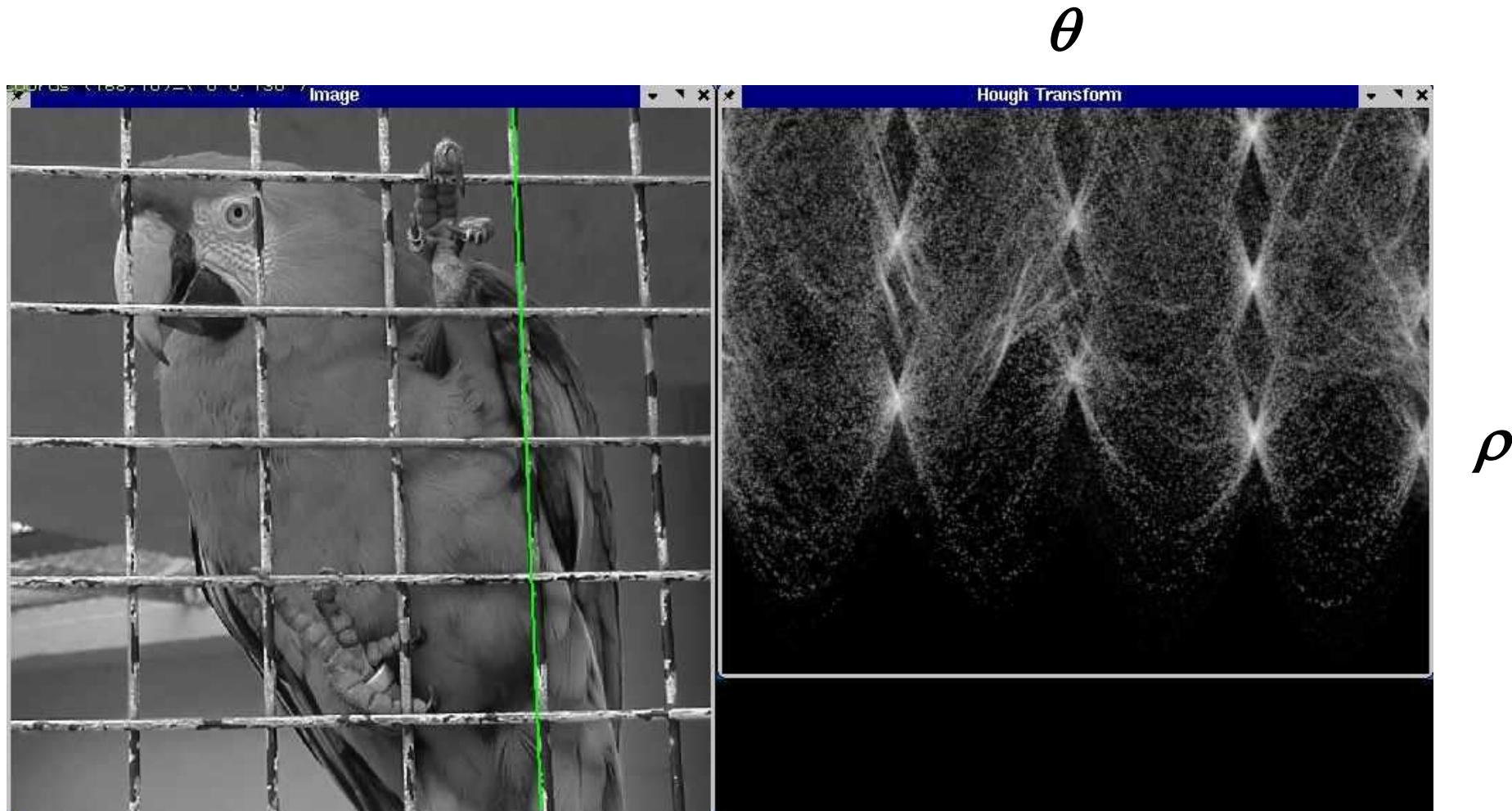


3. Hough votes → Edges

Find peaks and post-process



Hough transform example

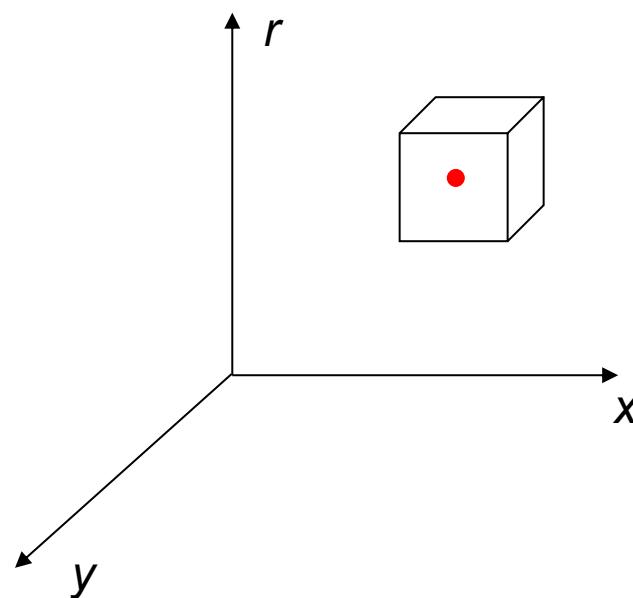
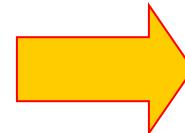
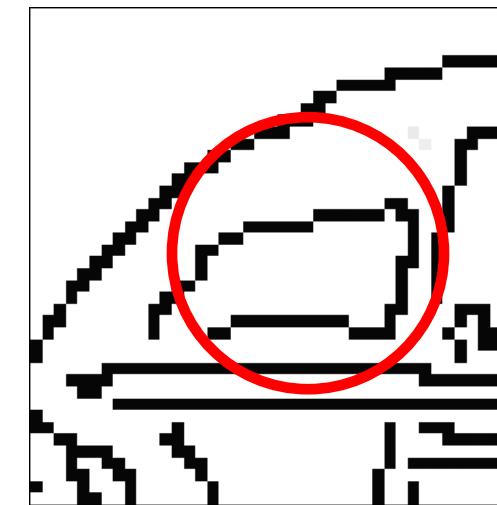


Hough Transform

- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

Hough transform for circles

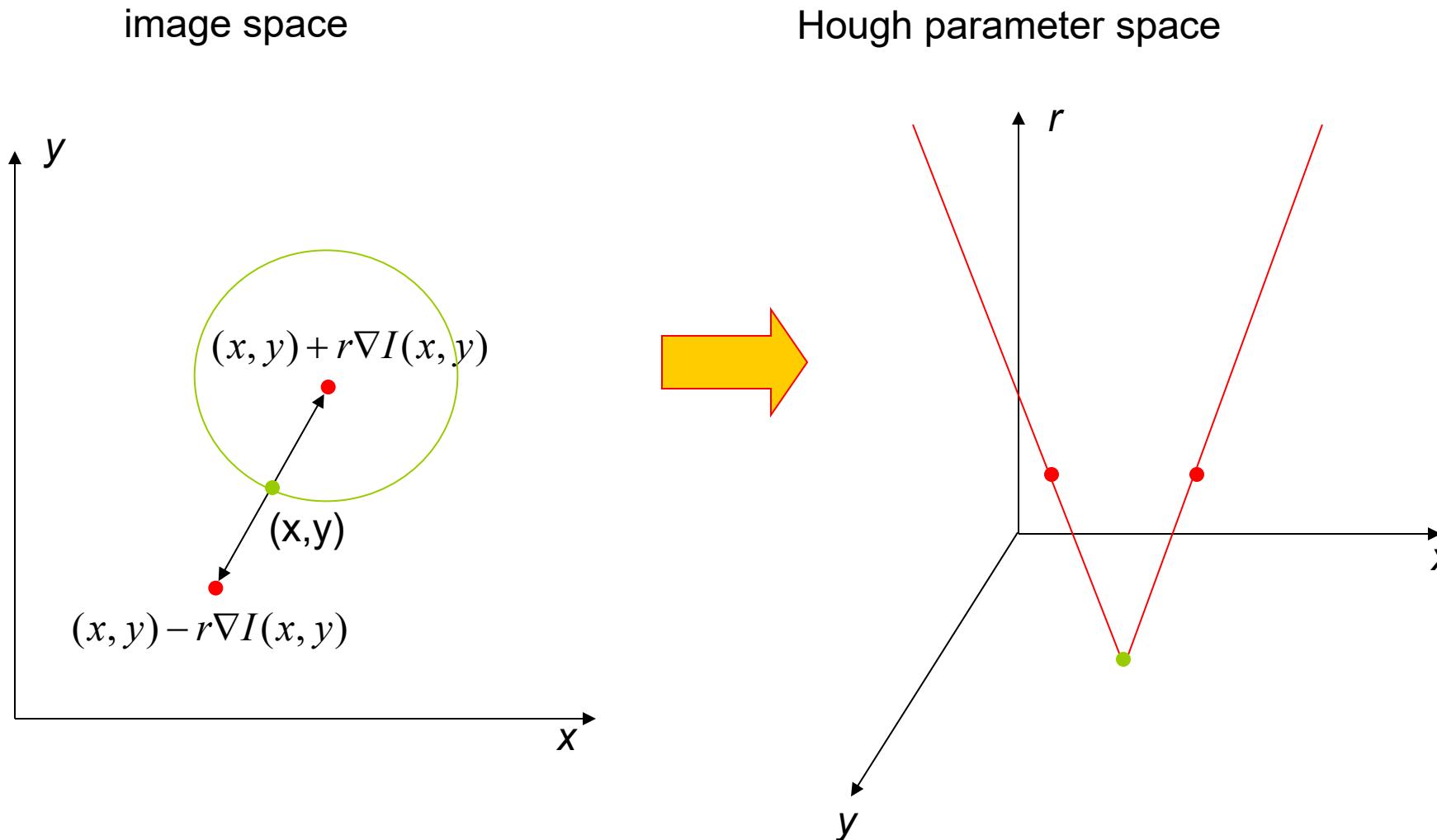
- Grid search equivalent procedure: for each (x,y,r) , draw the corresponding circle in the image and compute its “support”



Hough Transform

- How would we find circles?
 - Of fixed radius
 - Of unknown radius
 - Of unknown radius but with known edge orientation

Hough transform for circles



Hough transform conclusions

Good

- Robust to outliers: each point votes separately
- Fairly efficient (often faster than trying all sets of parameters)
- Provides multiple good fits

Bad

- Some sensitivity to noise
- Bin size trades off between noise tolerance, precision, and speed/memory
 - Can be hard to find sweet spot
- Not suitable for more than a few parameters
 - grid size grows exponentially

Common applications

- Line fitting (also circles, ellipses, etc.)
- Object instance recognition (parameters are affine transform)
- Object category recognition (parameters are position/scale)

Fitting and Alignment: Methods

- Global optimization / Search for parameters
 - Least squares fit
 - Robust least squares
 - Other parameter search methods
- Hypothesize and test
 - Generalized Hough transform
 - RANSAC
- Iterative Closest Points (ICP)