

RANSAC, ICP, Fitting and Alignment

Computer Vision

James Hays

Acknowledgment: Many slides from Derek Hoiem, Lana Lazebnik,

and Grauman&Leibe 2008 AAAI Tutorial

Szeliski 2.1

and 8.1

Project 2

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)

Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

x

y

b

m

y = m x + b

Review: Hough transform

Given a set of points, find the curve or line that

explains the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Hough space

Slide from S. Savarese

x

y

b

m

x

y m
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2

2 1 0 1 3 3

b
Slide from S. Savarese

Review: Hough transform

Hough transform for circles

For every edge pixel (x,y) :

 For each possible radius value r:

 For each possible direction θ:

 // or use estimated gradient at (x,y)

 a = x – r cos(θ) // column

 b = y + r sin(θ) // row

 H[a,b,r] += 1

 end

end

Kristen Grauman

13

Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).
14

Slide credit: Kristen Grauman

Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra

15

Slide credit: Kristen Grauman

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

6=IN

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example



RANSAC

14=IN
Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)

2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?
• Number of samples (iterations) N

– Choose N so that, with probability p, at least one random sample is free
from outliers (e.g. p=0.99) (outlier ratio: e)

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose  so that a good point with noise is likely (e.g., prob=0.95) within threshold

() ()()se11log/p1logN −−−=
proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from M. Pollefeys
For p = 0.99

RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than

Hough transform
• Optimization parameters are easier to choose than Hough

transform

Bad
• Computational time grows quickly with fraction of outliers

and number of parameters
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)

Original Edges

Can we use RANSAC instead of Hough transform?

Votes: Penny

Slide credit: Kristen Grauman

Original Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

N = log(1 - .99) /

 log(1 - .001)

Edges
Let’s find circles of any radius from 6 to 55

pixels

Let’s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the

perimeter of that coin)

Recall this equation to estimate the number

of RANSAC iterations needed, N

() ()()se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

N = log(1 - .99) /

 log(1 - .001)

N = 4,602

How do we fit the best alignment?

How do we fit the best alignment?

How do we fit the best alignment?

Alignment

• Alignment: find parameters of model that maps
one set of points to another

• Typically want to solve for a global transformation
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%)

– Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:
 p’ = T(p)

 What does it mean that T is global and parametric?

– Global: Is the same for any point p
– Parametric: can be described by just a few numbers

 We’re going to focus on linear transformations. We can represent T as

a matrix multiplication
 p’ = Tp

T

p = (x,y) p’ = (x’,y’)









=









y

x

y

x
T

'

'

Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides):

A. Efros and/or S. Seitz

Scaling
• Scaling a coordinate means multiplying each of its components by a

scalar

• Uniform scaling means this scalar is the same for all components:

 2

• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5

Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx

=

=

'

'

















=









y

x

b

a

y

x

0

0

'

'

scaling matrix S

2-D Rotation (around the origin)



(x, y)

(x’, y’)

2-D Rotation (around the origin)



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()

2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– For a particular  x’ is a linear combination of x and y

– For a particular  y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices

() ()

() () 














 −
=









y

x

y

x





cossin

sincos

'

'

T
RR =

−1

R

How about translation?

How about translation?

x’ = x + tx
y’ = y + ty

Basic 2D transformations

TranslateRotate

ShearScale

















=









y

x

y

x

y

x

1

1

'

'
























−
=









y

x

y

x

cossin

sincos

'

'

















=









y

x

s

s

y

x

y

x

0

0

'

'

























=













1
10

01
y

x

t

t

y

x

y

x

























=













1

y

x

fed

cba

y

x

Affine

Affine is any combination of

translation, scale, rotation,

shear

From the original SIFT paper

2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel

































=

















w

y

x

fed

cba

w

y

x

100'

'

'

Slide credit: Kristen Grauman

Projective Transformations (or Homographies)

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel




























=















w

y
x

ihg

fed
cba

w

y
x

'

'
'

Slide credit: Kristen Grauman

Textbook 2.1.1

50

2D image transformations (reference table)

Szeliski 2.1

Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or

eigenvalue decomposition 





















−

−

−

−

=






























A

n

B

n

A

n

B

n

AB

AB

y

x

yy

xx

yy

xx

t

t


11

11

10

01

10

01

Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4

Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches

But what about solving for a homography?

A1

A2

A3

B1

B2

B3

RANSAC solution
1. Sample a set of matching points (4 pairs)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

A4

A5
B5

B4

Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: align brain

scans or contours

Robotics: align point clouds

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each point in {Set 1} to its nearest spatial neighbor in
{Set 2}

3. Estimate transformation parameters
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small

Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖
find corresponding

match(i) = argmin
𝑗

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗)

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q

Example: aligning boundaries

Example: aligning boundaries

Example: aligning boundaries

Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

xICP solution
1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence

Algorithm Summaries
• Least Squares Fit

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to outliers
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences
– Sensitive to initialization

Rough count of mentions in recent literature

• Keypoint 2,180 mentions

• SIFT 3,530 mentions

• “Least Squares” 2,290 mentions

• “Robust Least Squares” 4 mentions

• Hough: 901 mentions

• RANSAC: 1,690 mentions

• ICP: 895 mentions

• Affine 2,970

• ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term]

Seems to find results since 2013.

Rough count of mentions in recent literature

• Keypoint 7,600 mentions

• SIFT 3,400 mentions

• “Least Squares” 3,300 mentions

• Hough: 1,200 mentions

• RANSAC: 2,500 mentions

• ICP: 1,300 mentions

• Affine 4,600

• ResNet: 16,400 mentions

Google search for site:https://openaccess.thecvf.com [term]

Seems to find results since 2013.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: RANSAC, ICP, Fitting and Alignment
	Slide 6: Project 2
	Slide 9: Fitting and Alignment: Methods
	Slide 10: Review: Hough Transform
	Slide 11
	Slide 12
	Slide 13: Hough transform for circles
	Slide 14
	Slide 15
	Slide 16: Fitting and Alignment: Methods
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: How to choose parameters?
	Slide 23: RANSAC conclusions
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: How do we fit the best alignment?
	Slide 30: How do we fit the best alignment?
	Slide 31: How do we fit the best alignment?
	Slide 32
	Slide 33: Alignment
	Slide 34: Parametric (global) warping
	Slide 35: Common transformations
	Slide 36: Scaling
	Slide 37: Scaling
	Slide 38: Scaling
	Slide 39: 2-D Rotation (around the origin)
	Slide 40: 2-D Rotation (around the origin)
	Slide 42: 2-D Rotation
	Slide 43: How about translation?
	Slide 44: How about translation?
	Slide 45: Basic 2D transformations
	Slide 46: From the original SIFT paper
	Slide 47
	Slide 48: 2D Affine Transformations
	Slide 49: Projective Transformations (or Homographies)
	Slide 50: Textbook 2.1.1
	Slide 51: 2D image transformations (reference table)
	Slide 52: Example: solving for translation
	Slide 53: Example: solving for translation
	Slide 54: Example: solving for translation
	Slide 55: Example: solving for translation
	Slide 56: But what about solving for a homography?
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Fitting and Alignment: Methods
	Slide 61: Example: solving for translation
	Slide 62: What if you want to align but have no prior matched pairs?
	Slide 63: Iterative Closest Points (ICP) Algorithm
	Slide 64: Example: aligning boundaries
	Slide 65: Example: aligning boundaries
	Slide 66: Example: aligning boundaries
	Slide 67: Example: aligning boundaries
	Slide 68: Example: solving for translation
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Algorithm Summaries
	Slide 73: Rough count of mentions in recent literature
	Slide 74: Rough count of mentions in recent literature

