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Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)



Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters, 
incrementing those values in grid

3. Find maximum or local maxima in grid
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Review: Hough transform

Given a set of points, find the curve or line that 

explains the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

Hough space

Slide from S. Savarese
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Review: Hough transform



Hough transform for circles

For every edge pixel (x,y) : 

 For each possible radius value r:

     For each possible direction θ: 

  // or use estimated gradient at (x,y)

      a = x – r cos(θ) // column

      b = y + r sin(θ)  // row

      H[a,b,r] += 1

 end

end

  
Kristen Grauman
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Original Edges

Example: detecting circles with Hough

Votes: Penny

Note: a different Hough transform (with separate accumulators) 

was used for each circle radius (quarters vs. penny).
14

Slide credit: Kristen Grauman



Original Edges

Example: detecting circles with Hough

Votes: QuarterCombined detections

Coin finding sample images from: Vivek Kwatra
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Slide credit: Kristen Grauman



Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)



RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model

2.  Solve for model parameters using samples 

3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Fischler & Bolles in ‘81.

(RANdom SAmple Consensus) :



RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)

2.  Solve for model parameters using samples 

3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Illustration by Savarese

Line fitting example



RANSAC

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)

2.  Solve for model parameters using samples 

3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

6=IN

Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)

2.  Solve for model parameters using samples 

3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

Line fitting example





RANSAC

14=IN
Algorithm:

1.  Sample (randomly) the number of points required to fit the model (#=2)

2.  Solve for model parameters using samples 

3.  Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence



How to choose parameters?
• Number of samples (iterations) N

– Choose N so that, with probability p, at least one random sample is free 
from outliers (e.g. p=0.99) (outlier ratio: e )

• Number of sampled points s
– Minimum number needed to fit the model

• Distance threshold 
– Choose   so that a good point with noise is likely (e.g., prob=0.95) within threshold

( ) ( )( )se11log/p1logN −−−=
proportion of outliers e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

modified from  M. Pollefeys
For p = 0.99



RANSAC conclusions

Good
• Robust to outliers
• Applicable for larger number of model parameters than 

Hough transform
• Optimization parameters are easier to choose than Hough 

transform

Bad
• Computational time grows quickly with fraction of outliers 

and number of parameters 
• Not good for getting multiple fits

Common applications
• Computing a homography (e.g., image stitching)
• Estimating fundamental matrix (relating two views)



Original Edges

Can we use RANSAC instead of Hough transform?

Votes: Penny

Slide credit: Kristen Grauman



Original Edges
Let’s find circles of any radius from 6 to 55 

pixels

Let’s assume that for a particular coin, 10% 

of the overall edge pixels are “inliers” (on the 

perimeter of that coin)

Recall this equation to estimate the number 

of RANSAC iterations needed, N

( ) ( )( )se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?



Edges
Let’s find circles of any radius from 6 to 55 

pixels

Let’s assume that for a particular coin, 10% 

of the overall edge pixels are “inliers” (on the 

perimeter of that coin)

Recall this equation to estimate the number 

of RANSAC iterations needed, N

( ) ( )( )se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9



Edges
Let’s find circles of any radius from 6 to 55 

pixels

Let’s assume that for a particular coin, 10% 

of the overall edge pixels are “inliers” (on the 

perimeter of that coin)

Recall this equation to estimate the number 

of RANSAC iterations needed, N

( ) ( )( )se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

N = log(1 - .99) / 

       log(1 - .001)



Edges
Let’s find circles of any radius from 6 to 55 

pixels

Let’s assume that for a particular coin, 10% 

of the overall edge pixels are “inliers” (on the 

perimeter of that coin)

Recall this equation to estimate the number 

of RANSAC iterations needed, N

( ) ( )( )se11log/p1logN −−−=

s = number of samples needed to fit a model

p = desired probability of finding an outlier free solution

e = proportion of outliers

Can we use RANSAC instead of Hough transform?

s = 3

p = .99

e = .9

N = log(1 - .99) / 

       log(1 - .001)

N = 4,602



How do we fit the best alignment?



How do we fit the best alignment?



How do we fit the best alignment?





Alignment

• Alignment: find parameters of model that maps 
one set of points to another

• Typically want to solve for a global transformation 
that accounts for *most* true correspondences

• Difficulties

– Noise (typically 1-3 pixels)

– Outliers (often 50%) 

– Many-to-one matches or multiple objects



Parametric (global) warping

Transformation T is a coordinate-changing machine:
     p’ = T(p)
 
 What does it mean that T is global and parametric?

– Global: Is the same for any point p
– Parametric: can be described by just a few numbers

 
 We’re going to focus on linear transformations. We can represent T as 

a matrix multiplication
       p’ = Tp

T

p = (x,y) p’ = (x’,y’)
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Common transformations

translation rotation aspect

affine perspective

original

Transformed

Slide credit (next few slides): 

A. Efros and/or S. Seitz



Scaling
• Scaling a coordinate means multiplying each of its components by a 

scalar

• Uniform scaling means this scalar is the same for all components:

 2



• Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

• Scaling operation:

• Or, in matrix form:

byy

axx
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scaling matrix S



2-D Rotation (around the origin)



(x, y)

(x’, y’)



2-D Rotation (around the origin)



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation
This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

– For a particular  x’ is a linear combination of x and y

– For a particular  y’ is a linear combination of x and y

What is the inverse transformation?

– Rotation by –

– For rotation matrices
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How about translation?



How about translation?

x’ = x + tx
y’ = y + ty



Basic 2D transformations

TranslateRotate

ShearScale
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Affine

Affine is any combination of 

translation, scale, rotation, 

shear



From the original SIFT paper





2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel
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Slide credit: Kristen Grauman



Projective Transformations (or Homographies)

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel
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Slide credit: Kristen Grauman



Textbook 2.1.1

50



2D image transformations (reference table)

Szeliski 2.1



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or 

eigenvalue decomposition 
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers

A4

A5

B5

B4



Example: solving for translation

A1

A2 A3
B1

B2 B3

Hough transform solution









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x

(tx, ty)

1. Initialize a grid of parameter values

2. Each matched pair casts a vote for 

consistent values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches



But what about solving for a homography?

A1

A2

A3

B1

B2

B3

RANSAC solution
1. Sample a set of matching points (4 pairs)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

A4

A5
B5

B4









Fitting and Alignment: Methods

• Global optimization / Search for parameters

– Least squares fit

– Robust least squares

– Other parameter search methods

• Hypothesize and test

– Hough transform

– RANSAC

• Iterative Closest Points (ICP)



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence









+








=









y

x

A

i

A

i

B

i

B

i

t

t

y

x

y

x



What if you want to align but have no prior matched pairs?

• Hough transform and RANSAC not applicable

• Important applications

Medical imaging: align brain 

scans or contours

Robotics: align point clouds



Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets 
of points

1. Initialize transformation (e.g., compute difference in means 
and scale)

2. Assign each point in {Set 1} to its nearest spatial neighbor in 
{Set 2}

3. Estimate transformation parameters 
– e.g., least squares or robust least squares

4. Transform the points in {Set 1} using estimated parameters

5. Repeat steps 2-4 until change is very small



Example: aligning boundaries
1. Extract edge pixels 𝑝1. . 𝑝𝑛 and 𝑞1. . 𝑞𝑚 

2. Compute initial transformation (e.g., compute translation and scaling 
by center of mass, variance within each image)

3. Get nearest neighbors: for each point 𝑝𝑖 
find corresponding 

match(i) = argmin
𝑗

𝑑𝑖𝑠𝑡(𝑝𝑖, 𝑞𝑗) 

4. Compute transformation T based on matches

5. Warp points p according to T

6. Repeat 3-5 until convergence

p
q



Example: aligning boundaries



Example: aligning boundaries



Example: aligning boundaries



Example: solving for translation

(tx, ty)

Problem: no initial guesses for correspondence
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1. Find nearest neighbors for each point

2. Compute transform using matches

3. Move points using transform

4. Repeat steps 1-3 until convergence









Algorithm Summaries
• Least Squares Fit 

– closed form solution
– robust to noise
– not robust to outliers

• Robust Least Squares
– improves robustness to outliers
– requires iterative optimization

• Hough transform
– robust to noise and outliers
– can fit multiple models
– only works for a few parameters (1-4 typically)

• RANSAC
– robust to noise and outliers
– works with a moderate number of parameters (e.g, 1-8)

• Iterative Closest Point (ICP)
– For local alignment only: does not require initial correspondences
– Sensitive to initialization 



Rough count of mentions in recent literature

• Keypoint 2,180 mentions

• SIFT 3,530 mentions

• “Least Squares” 2,290 mentions

• “Robust Least Squares” 4 mentions

• Hough: 901 mentions

• RANSAC: 1,690 mentions

• ICP: 895 mentions

• Affine 2,970

• ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term]

Seems to find results since 2013.



Rough count of mentions in recent literature

• Keypoint 7,600 mentions

• SIFT 3,400 mentions

• “Least Squares” 3,300 mentions

• Hough: 1,200 mentions

• RANSAC: 2,500 mentions

• ICP: 1,300 mentions

• Affine 4,600

• ResNet: 16,400 mentions

Google search for site:https://openaccess.thecvf.com [term]

Seems to find results since 2013.
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