

RANSAC, ICP, Fitting and Alighment

Computer Vision

Szeliski 2.1

d 8.1
James Hays an

Project 2

The top 100 most confident local feature matches from a baseline implementation of project 2. In this case, 93 were correct (highlighted in green) and
7 were incorrect (highlighted in red).

Project 2: Local Feature Matching

Fitting and Alignment: Methods

— RANSAC
* |terative Closest Points (ICP)

Review: Hough Transform

1. Create a grid of parameter values

2. Each point (or correspondence) votes for a set of parameters,
incrementing those values in grid

3. Find maximum or local maxima in grid

Review: Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Given a set of poinfts, find the curve or line that
explains the data points best

o

Hough space

y=mx+Db

Slide from S. Savarese

Review: Hough transform

Slide from S. Savarese

m

Hough transform for circles

For every edge pixel (x,y) :
For each possible radius value r:
For each possible direction 6:

a=x-—rcos(6)
b=y+rsin()
H[a,b,r] += 1
end
end

Kristen Grauman

13

Example: detecting circles with Hough

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumulators)

was used for each circle radius (quarters vs. penny).
14

Slide credit: Kristen Grauman

Example: detecting circles with Hough

Combfpediniatections Edges Votes: Quarter

Slide credit: Kristen Grauman Coin finding sample images from: Vivek Kwatra

15

Fitting and Alignment: Methods

~lobal /S hf
—Leastsguarestit

—Robustleastsguares
—Otherparametersearch-methods

* Hypothesize and test

—Hough-transform
— RANSAC

* |terative Closest Points (ICP)

RANSAC

(RANdom SAmple Consensus) :

Fischler & Bolles in ‘81.

Algorithm:

1. Sample (randomly) the number of points required to fit the model
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

lllustration by Savarese

RANSAC

Line fitting example

Algorithm:

1. mple (randomly) the number of points requir fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Line fitting example

N, =6

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

RANSAC

Algorithm:

1. Sample (randomly) the number of points required to fit the model (#=2)
2. Solve for model parameters using samples

3. Score by the fraction of inliers within a preset threshold of the model

Repeat 1-3 until the best model is found with high confidence

How to choose parameters?

* Number of samples (iterations) N

— Choose N so that, with probability p, at least one random sample is free

from outliers (e.g. p=0.99) (outlier ratio: e)

* Number of sampled points s
— Minimum number needed to fit the model

e Distance threshold 6

— Choose ¢ so that a good point with noise is likely (e.g., prob=0.95) within threshold

N = log(l —p)/10g(1 —(1- e)s)

proportion of outliers e

S 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 / 11 17

3 3 4 / 9 11 19 35

4 3 S 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 / 16 24 37 97 293

/ 4 8 20 33 54 163 588

8 S 9 26 44 /8 272 1177
For P= 0.99 modified from M. Pollefeys

RANSAC conclusions
Good

e Robust to outliers

* Applicable for larger number of model parameters than
Hough transform

* Optimization parameters are easier to choose than Hough
transform

Bad

 Computational time grows quickly with fraction of outliers
and number of parameters

* Not good for getting multiple fits

Common applications
 Computing a homography (e.g., image stitching)
e Estimating fundamental matrix (relating two views)

Can we use RANSAC instead of Hough transform??

Original Edges Votes: Penny

Slide credit: Kristen Grauman

Can we use RANSAC instead of Hough transform??

Original Edges

Let’s find circles of any radius from 6 to 55
pixels

Let’'s assume that for a particular coin, 10%
of the overall edge pixels are “inliers” (on the
perimeter of that coin)

Recall this equation to estimate the number
of RANSAC iterations needed, N

N = log(1 —p)/lOg(1 - (1 - e)s)

s = number of samples needed to fit a model
p = desired probability of finding an outlier free solution
e = proportion of outliers

Can we use RANSAC instead of Hough transform??

Edges

Let’s find circles of any radius from 6 to 55
pixels

® T »
nm nn

Let’'s assume that for a particular coin, 10%
of the overall edge pixels are “inliers” (on the
perimeter of that coin)

Recall this equation to estimate the number
of RANSAC iterations needed, N

N =log(l1-p)/ log(l - (1- e)s)

s = number of samples needed to fit a model
p = desired probability of finding an outlier free solution
e = proportion of outliers

Can we use RANSAC instead of Hough transform??

Edges
Let’s find circles of any radius from 6 to 55 s=3
pixels p=.99
e=.9
Let’'s assume that for a particular coin, 10%
of the overall edge pixels are “inliers” (on the N = log(1 - .99)/
perimeter of that coin) Iog(1 - 001)

Recall this equation to estimate the number
of RANSAC iterations needed, N

N =log(l1-p)/ log(l - (1- e)s)

s = number of samples needed to fit a model
p = desired probability of finding an outlier free solution
e = proportion of outliers

Can we use RANSAC instead of Hough transform??

Edges
Let’s find circles of any radius from 6 to 55 s=3
pixels p=.99
e=.9

Let’'s assume that for a particular coin, 10%

of the overall edge pixels are “inliers” (on the N = log(1 - .99) /
. . - Og -

perimeter of that coin) og(1 - .001)

Recall this equation to estimate the number

of RANSAC iterations needed, N N = 4,602

N =log(l1-p)/ log(l - (1- e)s)

s = number of samples needed to fit a model
p = desired probability of finding an outlier free solution
e = proportion of outliers

How do we fit the best alighment?

" Ng

£
1 81

?.
&
é

e |

How do we fit the best alighment?

How do we fit the best alighment?

Part 6: Homography with RANSAC

For two photographs of a scene, it’s unlikely that you’d have pertect point correspondence with which to solve
for the homography matrix. So, next you are going to compute the homography with point correspondences
computed using SIFT. As discussed 1n class, a direct least-squares solution alone is not appropriate in this
scenario due to the presence of multiple outliers. In order to estimate the homography from this noisy data,
you'll need to use RANSAC. This technique is especially powertul for aligning images of planar surfaces, like
building facades or the ground plane.

You’'ll use these putative point correspondences and RANSAC to find the "best” homography matrix. You
will iteratively choose a minimal set of point correspondences (4 for a homography), solve for the homog-
raphy matrix, and then count the number of inliers. Inliers in this context will be point correspondences
that "agree” with the estimated homography. In order to count how many inliers a homography has, you’ll
need a distance metric. For a homography, this is typically the reprojection error: the geometric distance
between a point in the second image (') and the location predicted by mapping its corresponding point
from the first image (Hx). You'll need to pick a threshold between inliers and outliers; your results are very
sensitive to this threshold, so explore a range of values. You don’t want to be too permissive about what
you consider an inlier, nor do you want to be too conservative. Return the homography with the most inliers.

Recall from lecture the expected number of iterations of RANSAC to find the "right” solution in the presence
of outliers. For example, if half of your input correspondences are wrong, then you have a (0.5)* = 6.25%

Alignment

* Alignment: find parameters of model that maps
one set of points to another

e Typically want to solve for a global transformation
that accounts for *most™ true correspondences

e Difficulties
— Noise (typically 1-3 pixels)
— QOutliers (often 50%)
— Many-to-one matches or multiple objects

Parametric (global) warping

Transformation T is a coordinate-changing machine:
p'=T(p)

What does it mean that T is global and parametric?
— Global: Is the same for any point p
— Parametric: can be described by just a few numbers

We’re going to focus on linear transformations. We can represent T as
a matrix multiplication

Common transformations

original

Transformed

perspective

Scaling

Scaling a coordinate means multiplying each of its components by a

scalar

Uniform scaling means this scalar is the same for all components:

X 2

N

Scaling

* Non-uniform scaling: different scalars per component:

X x 2,
Y x0.5

Scaling

* Scaling operation: x'=ax

y'=by

 Or, in matrix form: _

0
y'| 10 b_
H_J

scaling matrix S

2-D Rotation (around the origin)

A

o (X, Y)

(X, y)

2-D Rotation (around the origin)
‘(X,’ y,)
(X, ¥)

X =X cos(0) -y sin(0)
0 Yy’ = x sin(0) + y cos(6)

2-D Rotation

This is easy to capture in matrix form:
x"] [cos(@) —sin(@)
! _sin(6’) cos(&’)_ Y

&

"
R

Even though sin(0) and cos(0) are nonlinear functions of 6,
— For a particular 0, x’ is a linear combination of x and y
— For a particular 0, y’ is a linear combination of x and y

What is the inverse transformation?
— Rotation by —0
— For rotation matrices R_1 — RT

How about translation?

How about translation?

Rty
n

ﬁ —>

Basic 2D transformations

x' B cos® —smn0O || x
V' | sin® cos® y

Rotate

Shear
F
x' 1 O [
ylloo1 o T
Translate - -

Affine is any combination of
translation, scale, rotation,
shear

From the original SIFT paper

Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.

7.4 Solution for affine parameters

The Hough transform is used to identify all clusters with at least 3 entries in a bin. Each such
cluster is then subject to a geometric verification procedure in which a least-squares solution
is performed for the best affine projection parameters relating the training image to the new
image.

An affine transformation correctly accounts for 3D rotation of a planar surface under
orthographic projection, but the approximation can be poor for 3D rotation of non-planar
objects. A more general solution would be to solve for the fundamental matrix (Luong and
Faugeras, 1996; Hartley and Zisserman, 2000). However, a fundamental matrix solution
requires at least 7 point matches as compared to only 3 for the affine solution and in practice
requires even more matches for good stability. We would like to perform recognition with
as few as 3 feature matches, so the affine solution provides a better starting point and we
can account for errors in the affine approximation by allowing for large residual errors. If
we imagine placing a sphere around an object, then rotation of the sphere by 30 degrees
will move no point within the sphere by more than 0.25 times the projected diameter of the
sphere. For the examples of typical 3D objects used in this paper, an affine solution works
well given that we allow residual errors up to 0.25 times the maximum projected dimension
of the object. A more general approach is given in (Brown and Lowe, 2002), in which the
initial solution is based on a similarity transform, which then progresses to solution for the
fundamental matrix in those cases in which a sufficient number of matches are found.

The affine transformation of a model point [« 4]? to an image point [u v]? can be written

HEERIHEH

|

2D Affine Transformations

Affine transformations are combinations of ...

* Linear transformations, and
 Translations

Parallel lines remain parallel

.)

Slide credit: Kristen Grauman

Projective Transformations (or Homographies)

x' a b c| x
y'ii=ld e [y
W | g h [|| w)

Projective transformations:
 Affine transformations, and
* Projective warps

Parallel lines do not necessarily remain parallel

.D .

Slide credit: Kristen Grauman

Textbook 2.1.1

Projective. This transformation, also known as a perspective transform or homography,

operates on homogeneous coordinates,
%' = Hx, (2.20)

where H is an arbitrary 3 x 3 matrix. Note that H is homogeneous, i.e., it is only defined
up to a scale, and that two H matrices that differ only by scale are equivalent. The resulting
homogeneous coordinate X’ must be normalized in order to obtain an inhomogeneous result

X, 1.e.,
/ hlol‘ -+ hny + }112

B hgol‘ + }121y -+ }122 .

= hoox + hmy + ho2

— and
hgoil? + }121y + h22

(2.21)

Perspective transformations preserve straight lines (i.e., they remain straight after the trans-
formation).

50

2D image transformations (reference table)

A
) similarity P1o) ﬂm ©
translation
/"y
Euclidean aﬂme >
~— x
Name Matrix # D.O.F. | Preserves: Icon
translation [I ‘ t]2 ; 2 orientation + - - -
oy
rigid (Euclidean) [R ‘ t]2 ; 3 lengths + - - - O
oy
similarity [sR | t]2 \ 4 angles + - - - O
oy
afline [A]ng 6 parallelism + - - - E
projective [H]3){3 8 straight lines E|

Szeliski 2.1

Example: solving for translation

B
Xi
Vi

MEH

Example: solving for translation

(t0 t))

Least squares solution B 4 ;
1. Write down objective function X —_ X +
2. Derived solution y,B y,A t
a) Compute derivative ot ! -
b) Compute solution 10 x; —x;
3. Computational solution 0 1) | =¥
a) Write in form Ax=b o Lx} :
b) Solve using pseudo-inverse or 1 0f-7- | x%—x/
eigenvalue decomposition 0 1] =yl

Example: solving for translation

(t0 t))

Problem: outliers

RANSAC solution 1+ B A t
Sample a set of matching points (1 pair) = +
Solve for transformation parameters

Score parameters with number of inliers

Repeat steps 1-3 N times

BwnN =

Example: solving for translation

Problem: outliers, multiple objects, and/or many-to-one matches

Hough transform solution B A /
1. Initialize a grid of parameter values ’B = ’A +
2. Each matched pair casts a vote for Vi Vi ¢

consistent values
3. Find the parameters with the most votes
4. Solve using least squares with inliers

But what about solving for a homography?

RANSAC solution

1. Sample a set of matching points (4 pairs)
2. Solve for transformation parameters

3. Score parameters with number of inliers
4. Repeat steps 1-3 N times

Setup. Given putative correspondences A; <> B; with A; = (x;,1;) in image
A and B; = (u;,v;) in image B, let

hi1 hiz his T U
H = |ha1 hoe hazl|, x=|y|l, x'=]v
h31 hz2 hss 1 1
The projective mapping is x’ ~ Hx, i.e.
o h]l.’r + hlgy + h13 - h21.'13 + hggy + h23

U = s v = .
hgl.’l? + hggy + h33 h31.’13 + hggy + h33

Per-correspondence linear equations. Cross-multiplying and rearranging
yields, for each match (x;,y;) — (u;,v;),

zihi1 + yihi2 + hiz — uizihgr — wiyihaa — uihzg = 0, (1)
xiho1 + yihoo + hog — vizihgr — viyihaa — vihgz = 0. (2)

Minimal 4-point linear solve (fixing scale). With exactly four non-degenerate

correspondences (i = 1,...,4), fix the global scale by setting hsgs = 1 and solve
the 8 X 8 system for h = [hlly hlg, h13, hgl, hgg, h23, h31, hggJTi

ry y1 1 0 0 0 —wxy —wy| [hn Uy

0 0 0 1 W 1 —U1I —U1l1 h12 (5]

zo y2 1 0 0 0 —ugry —uayz| |his Ug

0 0 0 T2 Y2 1 —VoX9 —U21Y2 hgl .)

vz ys 1 0 0 0 —wugws —usys| [hoa| |us

0 0 0 =23 w3 1 —w3zzz —v3ys| [hes U3

Iq Ya 1 0 0 0 —U4Ty —U4Y4 h31 U4q
10 0 0 24 ya 1 —vama —vaya| |hs2| |va

N ~ e N~
Agxs h b

Recover H by appending hss = 1.

v

Part 6: Homography with RANSAC

Your task is to implement the RANSAC algorithm to robustly align the Notre Dame image pair, which is challenging due to many incorrect initial feature matches. Since the cathedral facade is a planar
surface, the correct geometric model is a Homography (H), which accurately accounts for perspective distortion.

from vision.parté ransac import (

calculate_num_ransac_iterations,
ransac_homography,

)
from vision.utils import single2im
Python
Load the data
Notre Dame
img_a_path = "data/Notre_Dame/921919841 a3e@df938f2 o.jpg"
img b path = "data/Notre Dame/41914536857 c86828celf o.jpg"
try:
img_a bgr = cv2.imread(img_a_path)
img_b_bgr = cv2.imread(img_b_path)
if img_a_bgr is None or img_b_bgr is None: raise FileNotFoundError
img_a = cv2.cvtColor(img_a_bgr, cv2.COLOR_BGR2RGB)
img_b = cv2.cvtColor(img_b_bgr, cv2.COLOR_BGR2RGB)
except FileNotFoundError:
print("Error: One or both images could not be loaded. Check paths.")
Python

from tests.test_part6_ransac import (
test_calculate_num_ransac_iterations,
test_ransac_homography,

)
print(
"test calculate_num_ransac_iterations():",
verify(test_calculate_num_ransac_iterations),
)

print("test_ransac_homography():", verify(test_ransac_homography))

® part6_ransac.py 2 X

C: > Users > james > Desktop > compvision > project-2-student > src > vision > #® part6_ransac.py > ...
38 def ransac_homography/(

39 points a: np.ndarray, points_b: np.ndarray

40) -> (np.ndarray, np.ndarray, np.ndarra

41 e

42 Uses the RANSAC algorithm to robustly estimate a homography matrix.

43

44 Args:

45 = points_a: A numpy array of shape (N, 2) of points from image A.

46 - points b: A numpy array of shape (N, 2) of corresponding points from image B.
47

48 Returns:

49 - best_H: The best homography matrix of shape (3, 3).

50 - inliers_a: The subset of points_a that are inliers (M, 2).

51 - inliers_b: The subset of points_b that are inliers (M, 2).

52 e

53 St e e e s e e R e R e e e R
54 # TODO: YOUR CODE HERE #
55 # #
56 # HINT: You are allowed to use the " cv2.findHomography™ function to #
57 # compute the homography from a sample of points. To compute a direct #
58 # solution without OpenCV's built-in RANSAC, use it like this: #
59 # H, _ = cv2.findHomography(sample_a, sample_b, 8) #
60 # The "@ flag ensures it computes a direct least-squares solution. #
61 St e e R e R R e e R e e R
62

63 raise NotImplementedError(

64 "“ransac_homography™ function in "

65 + " part6_ransac.py needs to be implemented"

66)

67

68 HRHEHE R R A R R
69 # END OF YOUR CODE #
70 St e e e s e e e e R R e e
71

72 return best H, inliers_a, inliers b

73

Fitting and Alignment: Methods

* |terative Closest Points (ICP)

Example: solving for translation

What if you want to align but have no prior matched pairs?

* Hough transform and RANSAC not applicable

* Important applications

Medical imaging: align brain Robotics: align point clouds
scans or contours

Iterative Closest Points (ICP) Algorithm

Goal: estimate transform between two dense sets
of points

1. Initialize transformation (e.g., compute difference in means
and scale)

2. Assign each pointin {Set 1} to its nearest spatial neighbor in
{Set 2}

3. Estimate transformation parameters

— e.g., least squares or robust least squares
4. Transform the points in {Set 1} using estimated parameters
5. Repeat steps 2-4 until change is very small

Example: aligning boundaries

Extract edge pixels p;..pn and q,..qm

2. Compute initial transformation (e.g., compute translation and scaling
by center of mass, variance within each image)

3. Get nearest neighbors: for each point p; find corresponding
match(i) = argmin dist(pi, qj)
J

Compute transformation T based on matches
5. Warp points p accordingto T

Repeat 3-5 until convergence

___—-*:r—“‘”‘_'*‘“—\‘

Example: solving for translation

(t0 t))

Problem: no initial guesses for correspondence

ICP solution v x4 t
1. Find nearest neighbors for each point ZB = ZA +
2. Compute transform using matches Vi Vi ty

3. Move points using transform
4. Repeat steps 1-3 until convergence

G\

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Sparse ICP

Sofien Bouaziz

Andrea Tagliasacchi

Mark Pauly

KISS-ICP: In Defense of Point-to-Point ICP —
Simple, Accurate, and Robust Registration
If Done the Right Way

Ignacio Vizzo Tiziano Guadagnino Benedikt Mersch ~ Louis Wiesmann Jens Behley Cyrill Stachniss

W

Using the sme
parameter set

“ | Livox ndeld ;

File Panels Help

I'f_'Jinlevact “# Move Camera iJ Focus Camera 0 Measure * 2D Pose Estimate /" 2D Nav Goal ¥ Publish Point

() Time

Pause Synchronization: Off ROS Time: |1674576592.37 ROS Elapsed: 36.63 Wall Time: 1674576592.43 Wall Elapsed: 36.63

Algorithm Summaries

* Least Squares Fit
— closed form solution
— robust to noise
— not robust to outliers
* Robust Least Squares
— improves robustness to outliers
— requires iterative optimization
* Hough transform
— robust to noise and outliers
— can fit multiple models
— only works for a few parameters (1-4 typically)
* RANSAC
— robust to noise and outliers
— works with a moderate number of parameters (e.g, 1-8)
* |terative Closest Point (ICP)
— For local alignment only: does not require initial correspondences
— Sensitive to initialization

Rough count of mentions in recent literature

* Keypoint 2,180 mentions
 SIFT 3,530 mentions

'{]

e “Least Squares” 2,290 mentions
* “Robust Least Squares” 4 mentions
* Hough: 901 mentions

* RANSAC: 1,690 mentions

* |CP: 895 mentions

e Affine 2,970

* ResNet: 8,510 mentions

Google search for site:https://openaccess.thecvf.com [term]
Seems to find results since 2013.

Rough count of mentions in recent literature

* Keypoint 7,600 mentions
 SIFT 3,400 mentions

'{]

e “Least Squares” 3,300 mentions

* Hough: 1,200 mentions

e RANSAC: 2,500 mentions
* |[CP: 1,300 mentions

e Affine 4,600

* ResNet: 16,400 mentions

Google search for site:https://openaccess.thecvf.com [term]
Seems to find results since 2013.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5: RANSAC, ICP, Fitting and Alignment
	Slide 6: Project 2
	Slide 9: Fitting and Alignment: Methods
	Slide 10: Review: Hough Transform
	Slide 11
	Slide 12
	Slide 13: Hough transform for circles
	Slide 14
	Slide 15
	Slide 16: Fitting and Alignment: Methods
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: How to choose parameters?
	Slide 23: RANSAC conclusions
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: How do we fit the best alignment?
	Slide 30: How do we fit the best alignment?
	Slide 31: How do we fit the best alignment?
	Slide 32
	Slide 33: Alignment
	Slide 34: Parametric (global) warping
	Slide 35: Common transformations
	Slide 36: Scaling
	Slide 37: Scaling
	Slide 38: Scaling
	Slide 39: 2-D Rotation (around the origin)
	Slide 40: 2-D Rotation (around the origin)
	Slide 42: 2-D Rotation
	Slide 43: How about translation?
	Slide 44: How about translation?
	Slide 45: Basic 2D transformations
	Slide 46: From the original SIFT paper
	Slide 47
	Slide 48: 2D Affine Transformations
	Slide 49: Projective Transformations (or Homographies)
	Slide 50: Textbook 2.1.1
	Slide 51: 2D image transformations (reference table)
	Slide 52: Example: solving for translation
	Slide 53: Example: solving for translation
	Slide 54: Example: solving for translation
	Slide 55: Example: solving for translation
	Slide 56: But what about solving for a homography?
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Fitting and Alignment: Methods
	Slide 61: Example: solving for translation
	Slide 62: What if you want to align but have no prior matched pairs?
	Slide 63: Iterative Closest Points (ICP) Algorithm
	Slide 64: Example: aligning boundaries
	Slide 65: Example: aligning boundaries
	Slide 66: Example: aligning boundaries
	Slide 67: Example: aligning boundaries
	Slide 68: Example: solving for translation
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Algorithm Summaries
	Slide 73: Rough count of mentions in recent literature
	Slide 74: Rough count of mentions in recent literature

