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Abstract. When the white disks in a scintillating grid are reduced in size, and outlined in black,
they tend to disappear. One sees only a few of them at a time, in clusters which move erratically
on the page. Where they are not seen, the grey alleys seem to be continuous, generating grey
crossings that are not actually present. Some black sparkling can be seen at those crossings
where no disk is seen. The illusion also works in reverse contrast.

The Hermann grid (Brewster 1844; Hermann 1870) 1s a robust illusion. It 1s classically
presented as a two-dimensional array of black squares, separated by rectilinear alleys.
It 1s thought to be caused by processes of local brightness computation in arrays of
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From Wikipedia, the free encyclopedia

A grid illusion is any kind of grid that deceives a person's vision. The two most common
types of grid illusions are the Hermann grid illusion and the scintillating grid illusion.

Hermann grid illusion edi)

The Hermann grid illusion is an optical illusion reported by Ludimar Hermann in 1870.
['] The illusion is characterized by "ghostlike" grey blobs perceived at the intersections of
a white (or light-colored) grid on a black background. The grey blobs disappear when

looking directly at an intersection.

Scintillating grid illusion [edi;

An example of the Hermann grid
illusion. Dark blobs appear at the

The scintillating grid illusion is an optical illusion, discovered by E. and B. Lingelbach intersections.
and M. Schrauf in 1994.14] |t is often considered a variation of the Hermann grid illusion

but possesses different properties.I13]

It is constructed by superimposing white discs on the intersections of orthogonal gray
bars on a black background. Dark dots seem to appear and disappear rapidly at random
intersections, hence the label "scintillating”. When a person keeps their eyes directly on
a single intersection, the dark dot does not appear. The dark dots disappear if one is too
close to or too far from the image.

Differences between the scintillating and Hermann grid

i"nc.n'nnq I o~ 1

https://en.wikipedi
a.org/wik1/Grid 1ll
usion
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Dimensionality Reduction

Simplest dimensionality reduction: drop a dimension

Credit: xked



Dimensionality Reduction
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Non-linear Dimensionality Reduction

The Humanity Globe: World Population Density, 30km”2 Grid

People per 30km”*2

|2 | = 0= 50 100- | 800

ader + rayrender

Credit: xked



Dimensionality Reduction

* PCA, ICA, LLE, Isomap,
Autoencoder

 PCA s the most important technique to
know. It takes advantage of correlations in
data dimensions to produce the best possible
lower dimensional representation based on
linear projections (minimizes reconstruction
error).

* Be wary of trying to assign meaning to the
discovered bases.



Eigenfaces for Recognition

Matthew Turk and Alex Pentland

Vision and Modeling Group
The Media Laboratory
Massachusetts Institute of Technology

Training data
16 256x256 images

Figure 2. Seven of the eigenfaces calculated from the input images

oy Reconstruction of in-
The “Eigenfaces” domain and out-of-domain

images



PCA as a data interpretation tool

RGB embedding filters
(first 28 principal components)

Input patch column

Position embedding similarity ViT-L/16
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Figure 7: Left: Filters of the initial linear embedding of RGB values of ViT-L/32. Center: Sim-
ilarity of position embeddings of ViT-L/32. Tiles show the cosine similarity between the position
embedding of the patch with the indicated row and column and the position embeddings of all other
patches. Right: Size of attended area by head and network depth. Each dot shows the mean attention

D.6 for details.

distance across images for one of 16 heads at one layer. See Appendix

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, Neil Houlsby. ICLR 2021
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BAD MAP PROJECTION #77:

TIME ZONES

WHERE EACH COUNTRY SHOULD B,
BASED ON [T5 TIME ZONE®)

Credit: xked







* http://fakeisthenewreal.org/reform/
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Clustering example: image segmentation

Goal: Break up the image into meaningful or perceptually
similar regions

v
A |

o



Segmentation for feature support or efficiency
(l.e. Superpixels)
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Types of segmentations

Undersegmentation

Multiple Segmentations



Vision Transformer (ViT)

Class

Bird MLP
]?:Zr" Head

Transformer Encoder
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a) Gradually merge tokens in each block

b) Transformer Block + Token Merging
4 = )
X Attention #,)_ ToMe—— MLP —(+)—>
\_ Image e L = A\ A
c) Bipartite Soft Matching / \
S 5 99
00O
Q0 — O O — O —/*™ 00
Q0 Q O QO O e
OO o—=oO O O O O
Step 1: Assign  Step 2: Draw one edge from  Step 3: Keep the top Step 4: Merge Step 5: Concatenate
TokenstoSetA  tokensinSetAandtheir  mostsimilaredges.  connected tokens.  the sets back together.
or Set B. most similar token in Set B. /

Figure 1: Token Merging. (a) With ToMe, similar patches are merged in each transformer block: for
example, the dog’s fur is merged into a single token. (b) ToMe is simple and can be inserted inside
the standard transformer block. (c) Our fast merging algorithm, see Appendix D for implementation.

Token Merging: Your ViT But Faster
Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, Judy Hoffman



https://arxiv.org/search/cs?searchtype=author&query=Bolya,+D
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Dai,+X
https://arxiv.org/search/cs?searchtype=author&query=Dai,+X
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+P
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+P
https://arxiv.org/search/cs?searchtype=author&query=Feichtenhofer,+C
https://arxiv.org/search/cs?searchtype=author&query=Feichtenhofer,+C
https://arxiv.org/search/cs?searchtype=author&query=Hoffman,+J

Figure 4: Image Visualizations. Results of merging on ImageNet-1k val using a ViT—H},\fI?’.*_,E model

trained with ToMe. Patches with the same inner and border color are merged together. Unlike pruning,
ToMe can merge similar parts of the image whether they’re in the foreground or background.

Token Merging: Your ViT But Faster
Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, Judy Hoffman



https://arxiv.org/search/cs?searchtype=author&query=Bolya,+D
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Fu,+C
https://arxiv.org/search/cs?searchtype=author&query=Dai,+X
https://arxiv.org/search/cs?searchtype=author&query=Dai,+X
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+P
https://arxiv.org/search/cs?searchtype=author&query=Zhang,+P
https://arxiv.org/search/cs?searchtype=author&query=Feichtenhofer,+C
https://arxiv.org/search/cs?searchtype=author&query=Feichtenhofer,+C
https://arxiv.org/search/cs?searchtype=author&query=Hoffman,+J

Clustering: group together similar points and represent them
with a single token

Key Challenges:
1) What makes two points/images/patches similar?
2) How do we compute an overall grouping from pairwise similarities?



How do we cluster?

K-means
— lteratively re-assign points to the nearest cluster center

Agglomerative clustering

— Start with each point as its own cluster and iteratively merge the closest
clusters

Mean-shift clustering
— Estimate modes of pdf

Spectral clustering
— Split the nodes in a graph based on assigned links with similarity weights



Clustering for Summarization

Goal: cluster to minimize variance in data given clusters

— Preserve information

Cluster center  pgtg

/L
c*,ﬁ*:argmm%ii J(c —X )
J

c,0 ;

Whether X; is assigned to ¢,



K-means algorithm

L
1. Randomly E §
select K centers s o°
¥
2. Assign each °
point to nearest - -
center ° | e
[m| ]
I:II:I I:l.
3. Compute new « m
center (mean) p‘-
for each cluster & ¥
N

lllustration: http://en.wikipedia.org/wiki/K-means clustering



http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering

K-means algorithm

(o]
o o
1. Randomly s E
select K centers = s ®
o
om

2. Assign each
point to nearest

center
Back to 2
3. Compute new g C
center (mean) & 5
for each cluster D\nf’
]

lllustration: http://en.wikipedia.org/wiki/K-means clustering



http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering

K-means

1. Initialize cluster centers: ¢° ; t=0

2. Assign each point to the closest center

N K )
r__ 1 -1
' =argmin 3735 (e -x)
i [

3. Update cluster centers as the mean of the points
N K
. 2
¢’ =argmin #ZZ& (cl. —xj)
C ] i

4. Repeat 2-3 until no points are re-assigned (t=t+1)



K-means converges to a local minimum

@
» 2®
*s
o @
® “%
@ nmu OO%
® ®
® ¢ o - @ o o ®
ooo&u oad® %o o@o% o8 ® %
g @ @ 2 @ @
Q*om . e o @ o0

@ e @ @ @
OOOQU 0%800 O*OQU 0%8 @
g ® .Wo 2 ® ®
e ol @ o*om o)
%ooo & %ooo &
)
&
@ o
AV
®e
A
)
L] L] # @ @y W
g° "t +° g oﬁo% S¥e
) ] @
ow @ ow
mo%% & mw?%w &



K-means: design choices

* |nitialization
— Randomly select K points as initial cluster center
— Or greedily choose K points to minimize residual

* Distance measures

— Traditionally Euclidean, could be others

* Optimization
— Will converge to a local minimum
— May want to perform multiple restarts



K-means clustering using intensity or color

Image Clusters on intensity Clusters on color




K-Means pros and cons

Pros

Finds cluster centers that minimize
conditional variance (good
representation of data)

Simple and fast*
Easy to implement

Cons

Need to choose K
Sensitive to outliers
Prone to local minima

All clusters have the same parameters
(e.g., distance measure is non-
adaptive)

*Can be slow: each iteration is O(KNd)
for N d-dimensional points

Usage

Rarely used for pixel segmentation

outher

e

outher




Building Visual Dictionaries

1. Sample patches from
a database

— E.g., 128 dimensional
SIFT vectors

2. Cluster the patches

—  Cluster centers are
the dictionary

3. Assign a codeword
(number) to each
new patch, according
to the nearest cluster




Examples of learned codewords

=

Most likely codewords for 4 learned “topics”

http://www.robots.ox.ac.uk/~vgg/publications/papers/sivicO5b.pdf Sivic et al. ICCV 2005



http://www.robots.ox.ac.uk/~vgg/publications/papers/sivic05b.pdf

Which algorithm to try first?

 Quantization/Summarization: K-means
— Aims to preserve variance of original data

— Can easily assign new point to a cluster

Summary of 20,000 photos of Rome using
“greedy k-means’”
http://grail.cs.washington.edu/projects/canonview/

Quantization for
computing histograms



http://grail.cs.washington.edu/projects/canonview/

Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or

- clustering
categorization

dimensionality
reduction

regression




The machine learning framework

* Apply a prediction function to a feature representation of
the image to get the desired output:

f((EJ) = "apple’
f(Rd) = “tomato”
f() — “COW!!



Learning a classifier

Given some set of features with corresponding labels, learn a
function to predict the labels from the features




Generalization

Training set (labels known) Test set (labels
unknown)

* How well does a learned model generalize from
the data it was trained on to a new test set?



Very brief tour of some classifiers

* K-nearest neighbor

e SVM

 Boosted Decision Trees
 Neural networks

* Naive Bayes

* Bayesian network

* Logistic regression
 Randomized Forests

e RBMs

* Deep Convolutional Network
e Attentional models or “Transformers”
* Etc.



Classification

» Assign input vector to one of two or more
classes

* Any decision rule divides input space into
decision regions separated by decision
boundaries ,

X




Nearest Neighbor Classifier

« Assign label of nearest training data point to each test data
point

from Duda et al.

Voronoi partitioning of feature space
for two-category 2D and 3D data



K-nearest neighbor

X2

x1



1-nearest neighbor

X2

x1



3-nearest neighbor

X2

x1



5-nearest neighbor

X2

x1



Using K-NN

* Simple to implement and interpret, a good classifier to try first



Classifiers: Linear SVM

x1

* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



Classifiers: Linear SVM

x1

* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



Classifiers: Linear SVM

x1

* Find a linear function to separate the classes:

f(x) = sgn(w - x + b)



Nonlinear SVMs

« Datasets that are linearly separable work out great:

ol T X

« But what if the dataset is just too hard?

*—0 o—0— o-0—O oo —

0 X

 We can map it to a higher-dimensional space:

Slide credit: Andrew Moore



Nonlinear SVMs

* General idea: the original input space can
always be mapped to some higher-dimensional
feature space where the training set is
separable:
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Slide credit: Andrew Moore



Nonlinear SVMs

* The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x;, x5) = o(x;) - 9(X;)

(to be valid, the kernel function must satisfy
Mercer’s condition)

* This gives a nonlinear decision boundary in the
original feature space:

Y ayp(x)-o(x) +b=> a,y,K(x,,x) +b

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

SVMs: Pros and cons

* Pros

« Linear SVMs are surprisingly accurate, while being
lightweight and interpretable
* Non-linear, kernel-based SVMs are very powerful, flexible

« SVMs work very well in practice, even with very small
training sample sizes

« Cons
* No “direct” multi-class SVM, must combine two-class SVMs

« Computation, memory

— During training time, must compute matrix of kernel values for
every pair of examples. Quadratic memory consumption.

— Learning can take a very long time for large-scale problems



Very brief tour of some classifiers

* K-nearest neighbor

e SVM

 Boosted Decision Trees
 Neural networks

* Naive Bayes

* Bayesian network

* Logistic regression
 Randomized Forests

e RBMs

* Deep Convolutional Network
e Attentional models or “Transformers”
* Etc.



Generalization

Training set (labels known) Test set (labels
unknown)

 How well does a learned model generalize from
the data it was trained on to a new test set?



Generalization

Components of generalization error

— Bias: how much the average model over all training sets differ
from the true model?

 Error due to inaccurate assumptions/simplifications made by
the model. “Bias” sounds negative. “Regularization” sounds
nicer.

— Variance: how much models estimated from different training
sets differ from each other. Typical of more “expressive” models.

Underfitting: model is too “simple” to represent all the

relevant class characteristics

— High bias (few degrees of freedom) and low variance

— High training error and high test error

Overfitting: model is too “complex” and fits irrelevant
characteristics (noise) in the data

— Low bias (many degrees of freedom) and high variance

— Low training error and high test error



Bias-Variance Trade-off

Y. Sample 2

e Models with too few

| parameters are
. . /o inaccurate because of a
IR large bias (not enough
— flexibility).

 Models with too many
parameters are
inaccurate because of a
large variance (too much
sensitivity to the sample).




Bias-variance tradeoff

Underfitting Overfitting
| -
@)
=
L
High Bias ; Low Bias
Low Variance CompIeX|ty High Variance

Strong Regularization Expressive model



Bias-variance tradeoff

Test Error

High Bias CompIeXIty Low Bias

Low Variance High Variance
Strong Regularization Expressive model



Error

Effect of Training Size

Fixed prediction model

| IclicidalLallvll 11ul

Number of Training Examples



Remember...

No classifier is inherently
better than any other: you
need to make assumptions to

generalize

Error sources

— Bias: due to over-simplifications
/ regularization

— Variance: due to inability to
perfectly estimate parameters
from limited data



* How to reduce variance (expressiveness)?
— Choose a simpler classifier
— Regularize the parameters
— Get more training data

 How to reduce bias (regularization)?
— Choose a more complex, more expressive classifier

— Remove regularization
— (These might not be safe to do unless you get more training data)



What to remember about classifiers

* No free lunch: machine learning algorithms are tools, not dogmas
* Try simple classifiers first

e Better to have smart features and simple classifiers than simple features
and smart classifiers

e Use increasingly expressive classifiers with more training data (bias-
variance tradeoff)



Machine Learning Considerations

* 3 important design decisions:
1) What data do | use?
2) How do | represent my data (what feature)?

3) What classifier / regressor / machine learning tool
do | use?

 These are in decreasing order of importance

* Deep learning addresses 2 and 3
simultaneously (and blurs the boundary
between them).

* You can take the representation from deep
learning and use it with any classifier.



Continuous Discrete

Machine Learning Problems

Supervised Learning  Unsupervised Learning

classification or
categorization

clustering

dimensionality

regression :
reduction




 Andrew Ng’s ranking of machine learning
Impact
1. Supervised Learning
2. Transfer Learning

3. Unsupervised Learning (I prefer “self-
supervised” learning)

4. Reinforcement Learning

@ Al is the new electricity. - Andrew Ng (Coursera)

James thinks 2 and 3 might
have switched ranks.




Usage in recent computer vision papers

* “PCA” 3,610
e “K-means” 2,950
e “ResNet” 14,900
e “ViT” 5,540
* “Reinforcement learning” 3,320
e “Self-supervised” 11,300

“Unsupervised” 18,400

site:https://openaccess.thecvi.com “search term” seems to search
ICCV, CVPR, and WACYV papers
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