

A middle-aged man with light-colored hair and a beard is wearing glasses, a white shirt, and a dark tie with a subtle pattern. He is seated in front of a solid black background. The lighting is focused on him, creating a soft shadow behind him.

www.grand-illusions.com

[source](#)

Deep Learning Neural Net Basics

Computer Vision

James Hays

Outline

- Neural Networks
- *Convolutional* Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

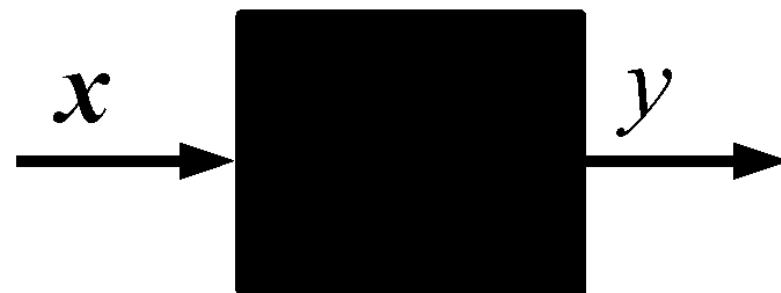
Supervised Learning

$\{(\mathbf{x}^i, y^i), i=1 \dots P\}$ training dataset

\mathbf{x}^i i-th input training example

y^i i-th target label

P number of training examples



Goal: predict the target label of unseen inputs.

Supervised Learning: Examples

Classification

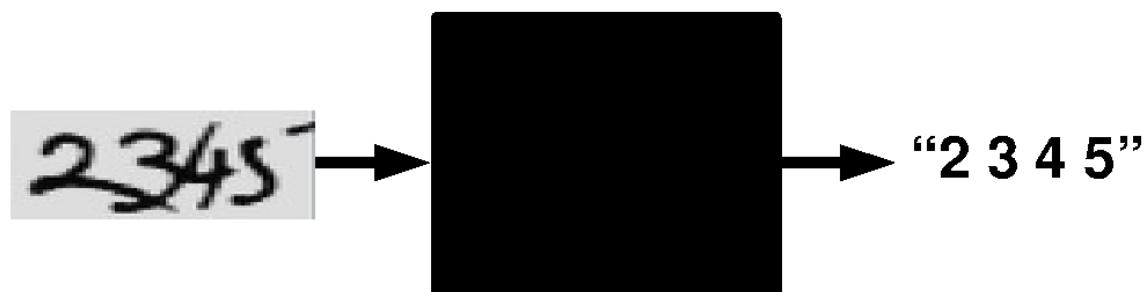


classification

Denoising

regression

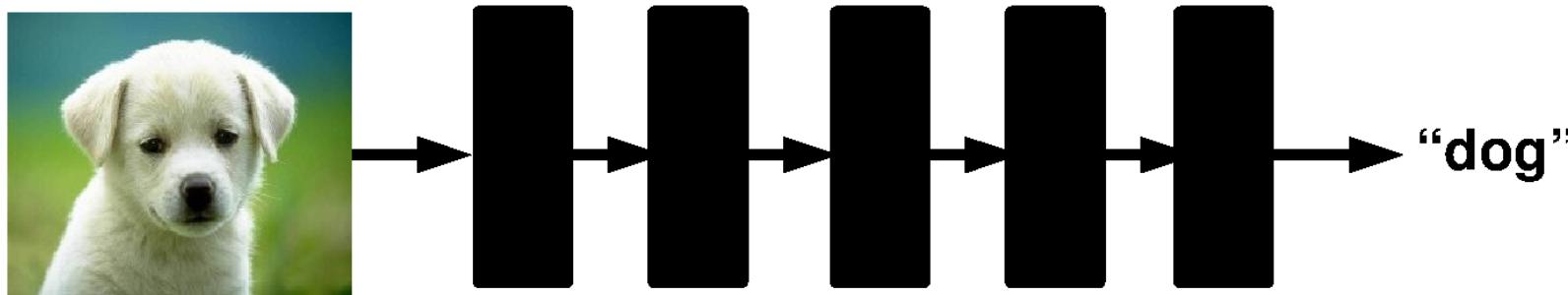
OCR



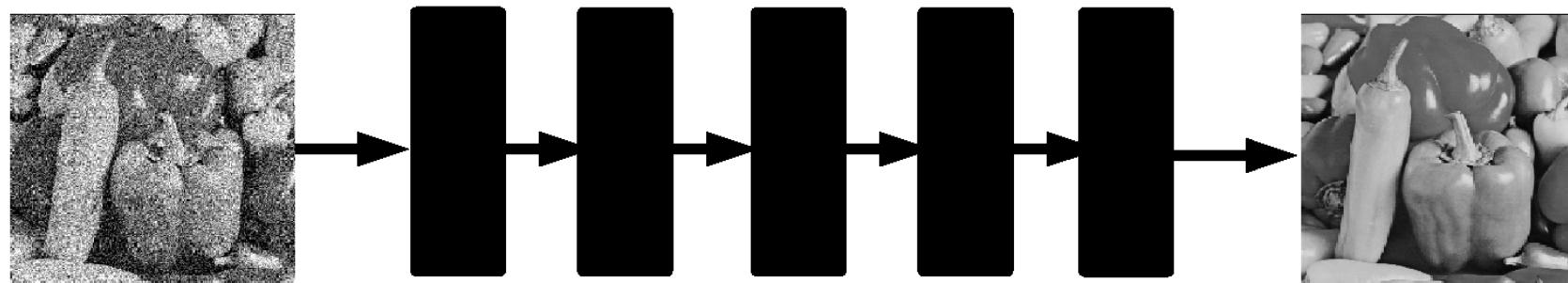
structured
prediction

Supervised Deep Learning

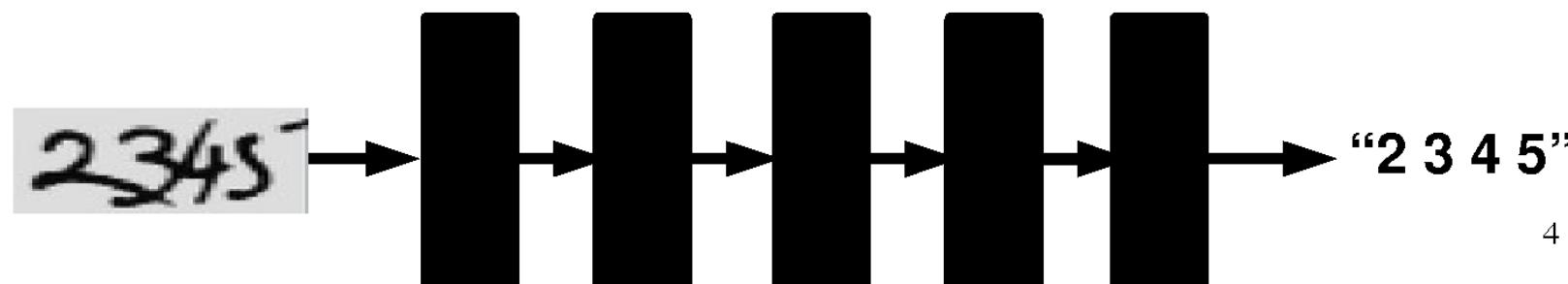
Classification



Denoising



OCR



Project 3: Scene Classification with Deep Nets

Dataset

The dataset to be used in this assignment is the 15-scene dataset, containing natural images in 15 possible scenarios like bedrooms and coasts. It was first introduced by [Lazebnik et al, 2006](#) [1]. The images have a typical size of around 200 by 200 pixels, and serve as a good milestone for many vision tasks. A sample collection of the images can be found below:

Figure 1: Example scenes from each of the categories of the dataset.

1 Part 1: SimpleNet

Introduction

In this project, scene recognition with deep learning, we are going to train a simple convolutional neural net from scratch. We'll be starting with some modification to the dataloader used in this project to include a few extra pre-processing steps. Subsequently, you will define your own model and optimization function. A trainer class will be provided to you, and you will be able to test out the performance of your model with this complete pipeline of classification problem.

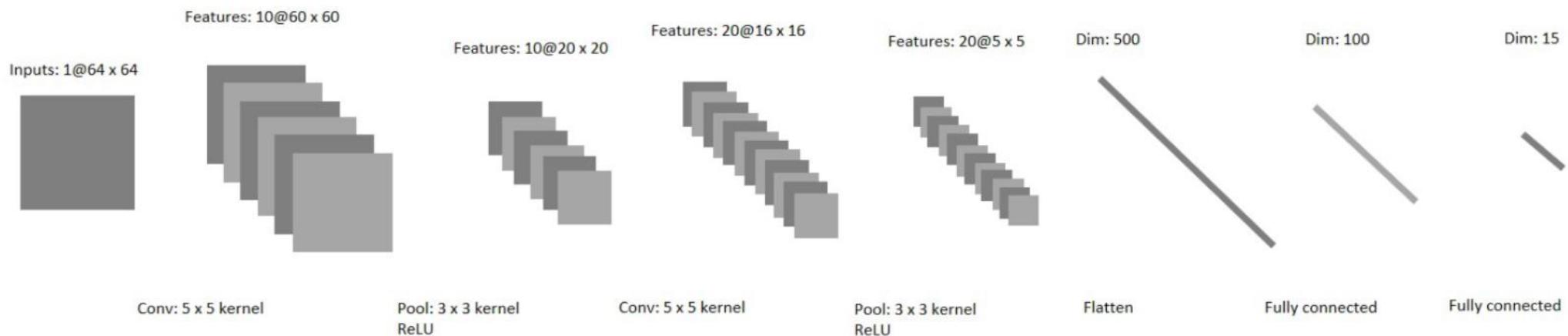


Figure 2: The base SimpleNet architecture for Part 1.

Outline

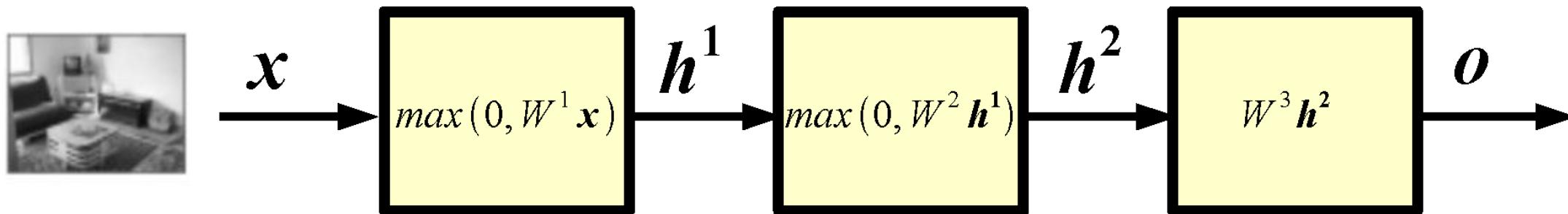
- **Neural Networks**
- *Convolutional* Neural Networks
- Variants
 - Detection
 - Segmentation
 - Siamese Networks
- Visualization of Deep Networks

Neural Networks

Assumptions (for the next few slides):

- The input image is vectorized (disregard the spatial layout of pixels)
- The target label is discrete (classification)

Neural Networks: example



x input

h^1 1-st layer hidden units

h^2 2-nd layer hidden units

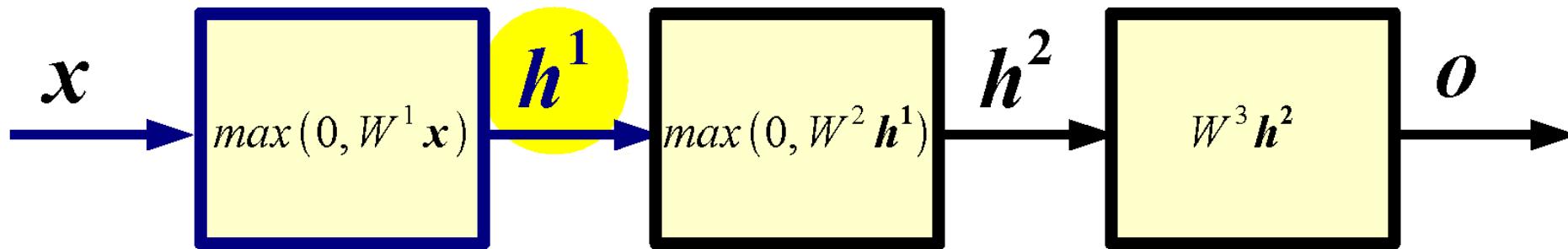
o output

Example of a 2 hidden layer neural network (or 4 layer network, counting also input and output).

Forward Propagation

Def.: Forward propagation is the process of computing the output of the network given its input.

Forward Propagation



$$x \in R^D \quad W^1 \in R^{N_1 \times D} \quad b^1 \in R^{N_1} \quad h^1 \in R^{N_1}$$

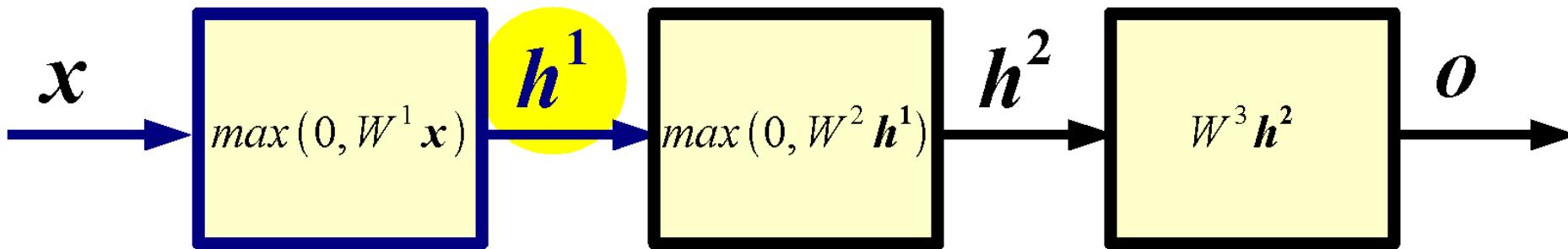
$$h^1 = \max(0, W^1 x + b^1)$$

W^1 1-st layer weight matrix or weights

b^1 1-st layer biases

The non-linearity $u = \max(0, v)$ is called **ReLU** in the DL literature. Each output hidden unit takes as input all the units at the previous layer: each such layer is called “**fully connected**”.

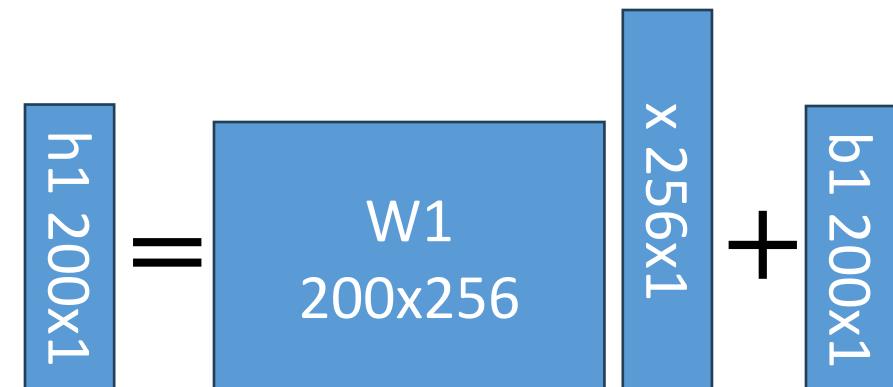
Forward Propagation



$$x \in R^D \quad W^1 \in R^{N_1 \times D} \quad b^1 \in R^{N_1} \quad h^1 \in R^{N_1}$$

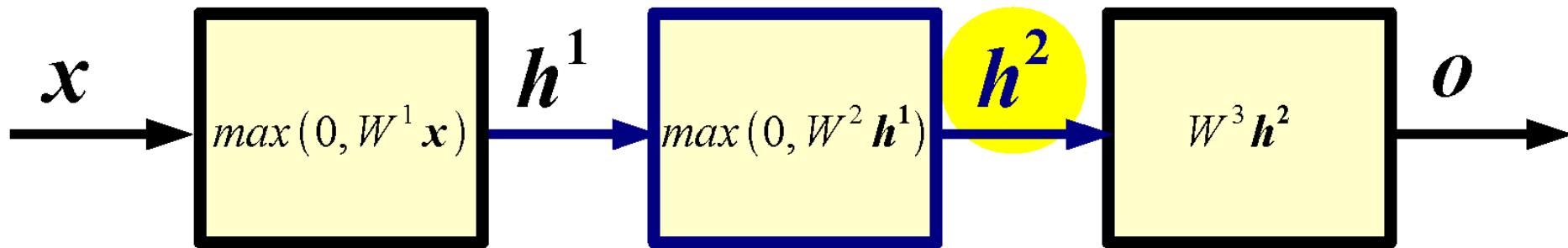
$$h^1 = \max(0, W^1 x + b^1)$$

W^1 1-st layer weight matrix or weights
 b^1 1-st layer biases



The non-linearity $u = \max(0, v)$ is called **ReLU** in the DL literature. Each output hidden unit takes as input all the units at the previous layer: each such layer is called “**fully connected**”.

Forward Propagation



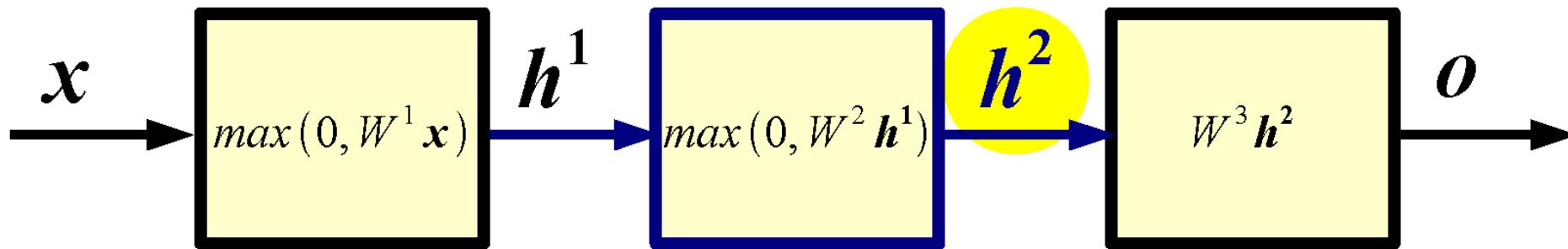
$$h^1 \in R^{N_1} \quad W^2 \in R^{N_2 \times N_1} \quad b^2 \in R^{N_2} \quad h^2 \in R^{N_2}$$

$$h^2 = \max(0, W^2 h^1 + b^2)$$

W^2 2-nd layer weight matrix or weights

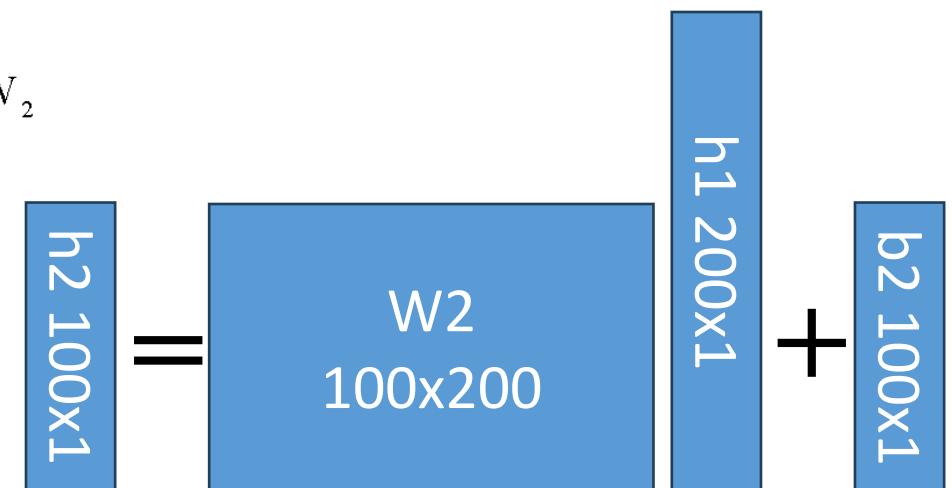
b^2 2-nd layer biases

Forward Propagation



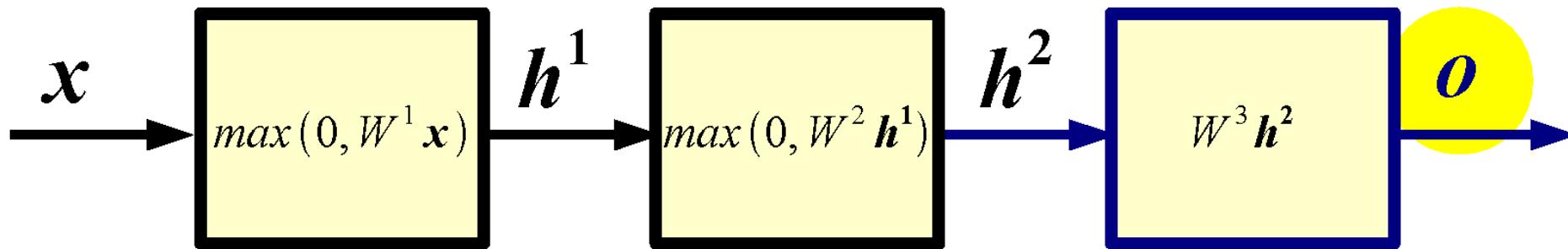
$$h^1 \in R^{N_1} \quad W^2 \in R^{N_2 \times N_1} \quad b^2 \in R^{N_2} \quad h^2 \in R^{N_2}$$

$$h^2 = \max(0, W^2 h^1 + b^2)$$



W^2 2-nd layer weight matrix or weights
 b^2 2-nd layer biases

Forward Propagation



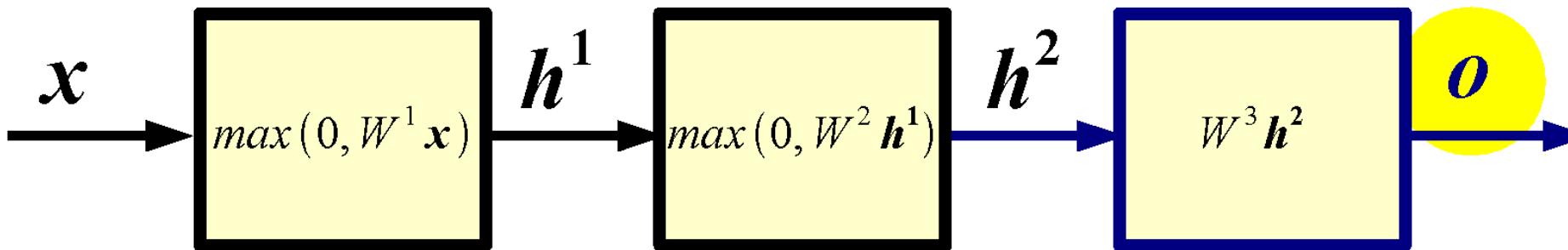
$$h^2 \in R^{N_2} \quad W^3 \in R^{N_3 \times N_2} \quad b^3 \in R^{N_3} \quad o \in R^{N_3}$$

$$o = \max(0, W^3 h^2 + b^3)$$

W^3 3-rd layer weight matrix or weights

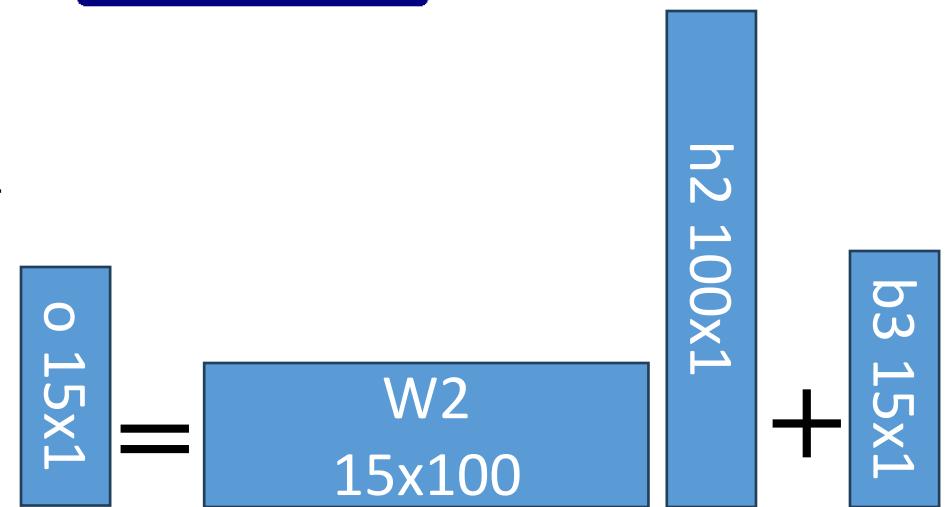
b^3 3-rd layer biases

Forward Propagation



$$h^2 \in R^{N_2} \quad W^3 \in R^{N_3 \times N_2} \quad b^3 \in R^{N_3} \quad o \in R^{N_3}$$

$$o = \max(0, W^3 h^2 + b^3)$$

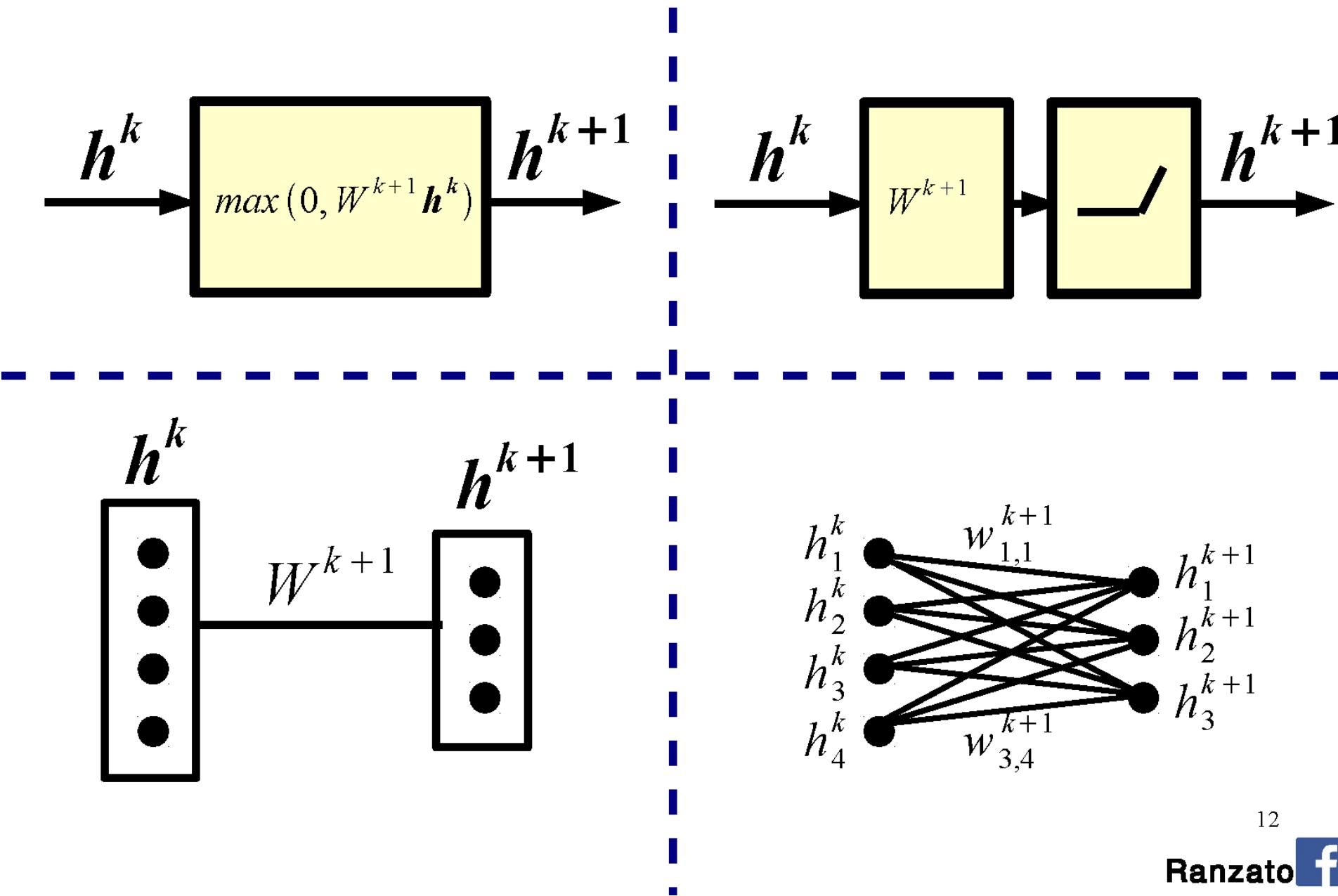


W^3 3-rd layer weight matrix or weights

b^3 3-rd layer biases

73,015 learnable
parameters for this
simple network

Alternative Graphical Representation

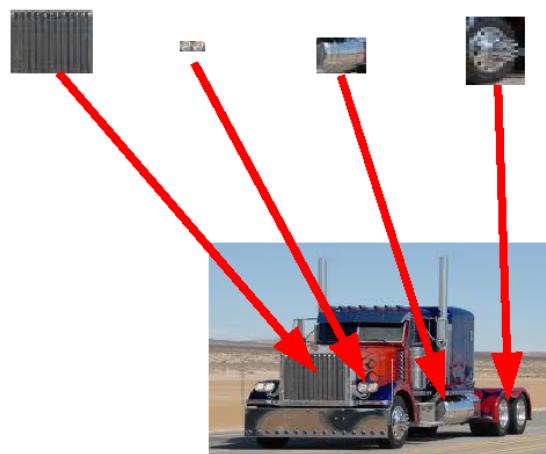


Interpretation

Question: Why do we need many layers?

Answer: When input has hierarchical structure, the use of a hierarchical architecture is potentially more efficient because intermediate computations can be re-used. DL architectures are efficient also because they use **distributed representations** which are shared across classes.

[0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 ...] truck feature

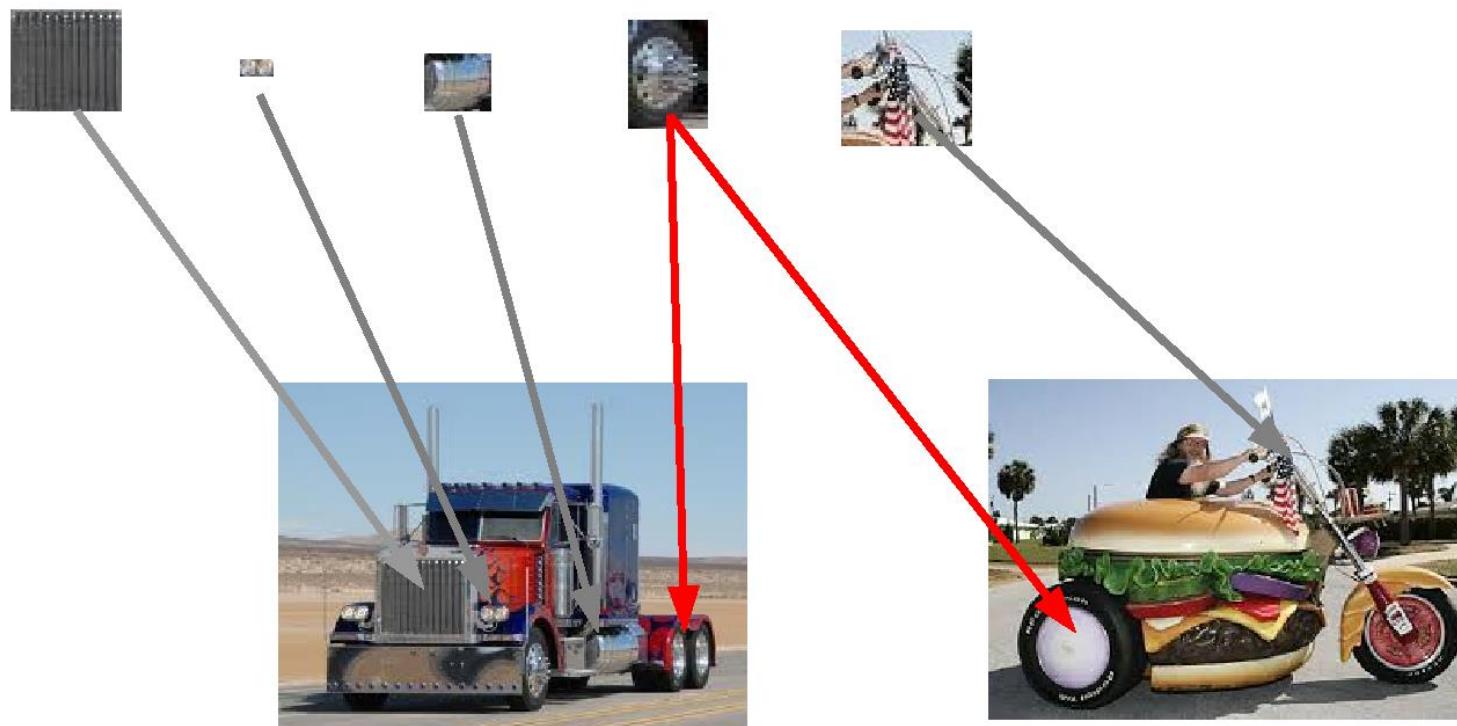


Exponentially more efficient than a 1-of-N representation (a la k-means)

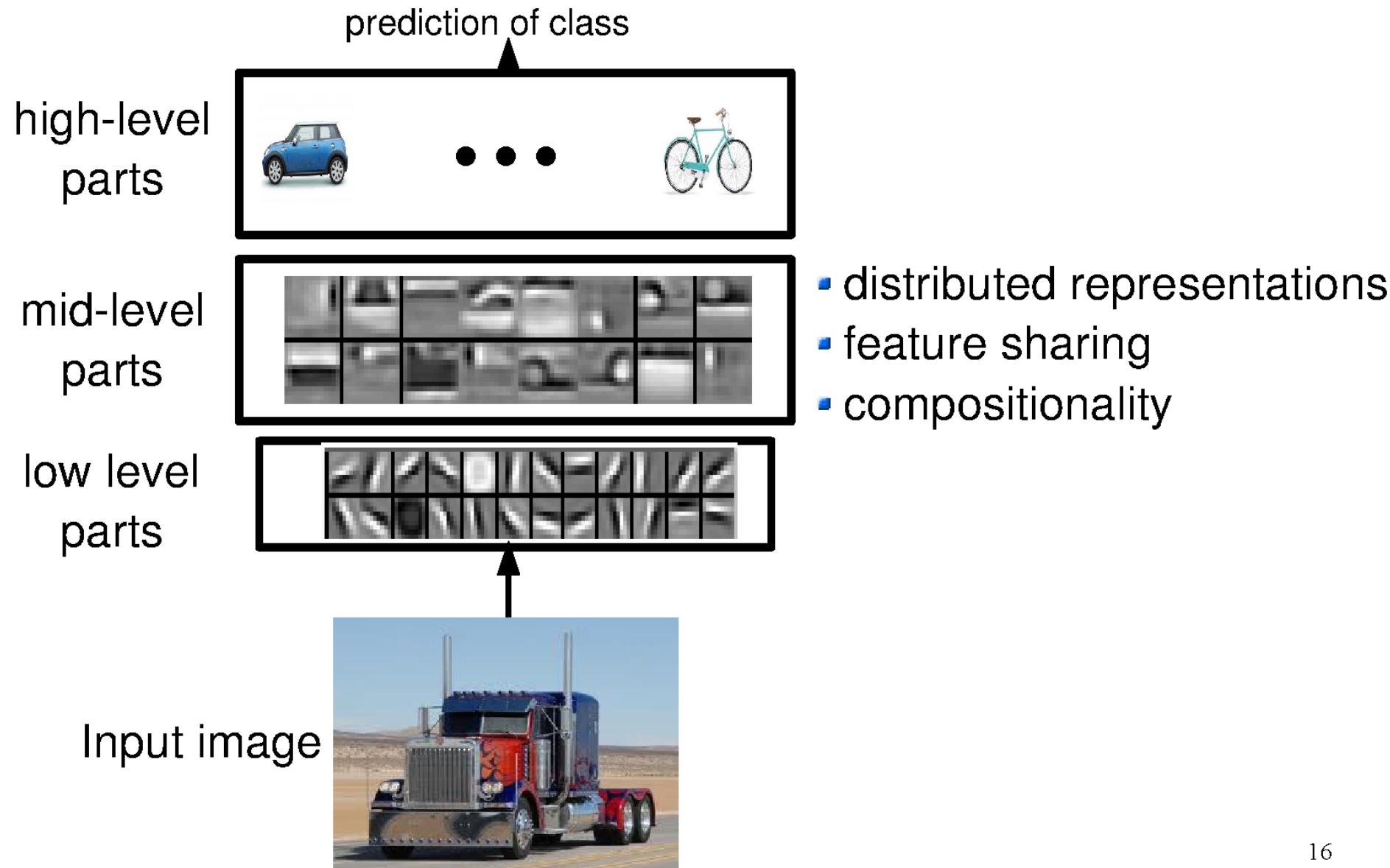
Interpretation

[1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1...] motorbike

[0 0 1 0 0 0 0 1 0 0 1 1 0 0 1 0...] truck



Interpretation



Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Interpretation

Question: What does a hidden unit do?

Answer: It can be thought of as a classifier or feature detector.

Question: How many layers? How many hidden units?

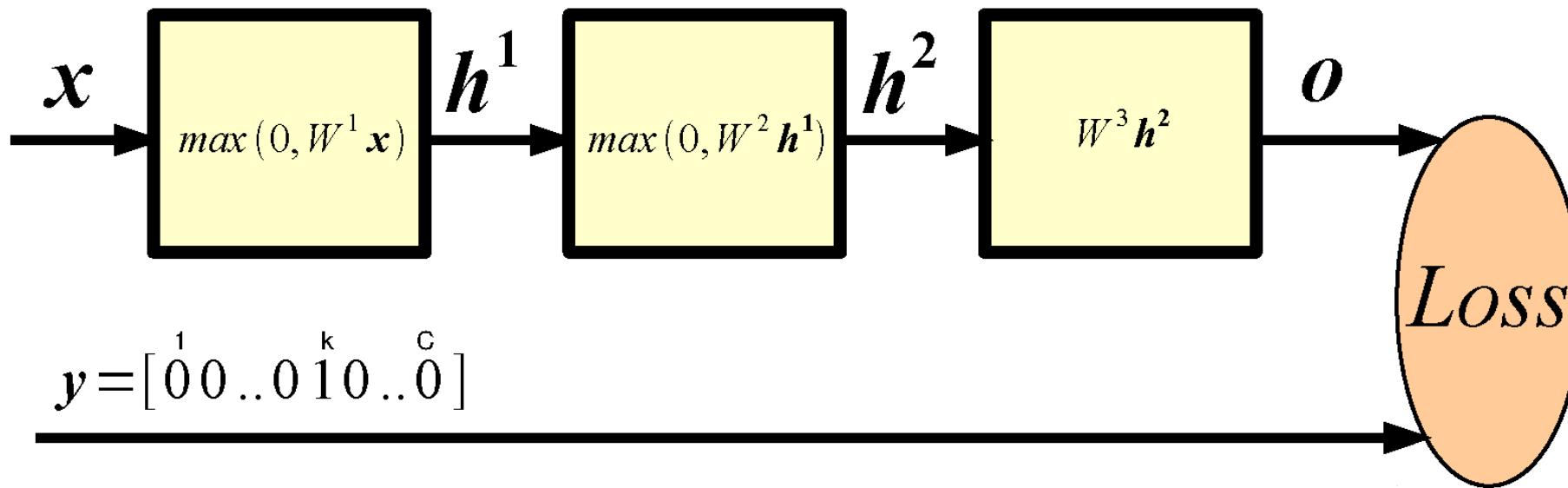
Answer: Cross-validation or hyper-parameter search methods are the answer. In general, the wider and the deeper the network the more complicated the mapping.

Question: How do I set the weight matrices?

Answer: Weight matrices and biases are learned.

First, we need to define a measure of quality of the current mapping.
Then, we need to define a procedure to adjust the parameters.

How Good is a Network?



Probability of class k given input (softmax):

$$p(c_k=1|x) = \frac{e^{o_k}}{\sum_{j=1}^C e^{o_j}}$$

(Per-sample) **Loss**; e.g., negative log-likelihood (good for classification of small number of classes):

$$L(x, y; \theta) = -\sum_j y_j \log p(c_j|x)$$

Training

Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = \arg \min_{\boldsymbol{\theta}} \sum_{n=1}^P L(\mathbf{x}^n, y^n; \boldsymbol{\theta})$$

Training

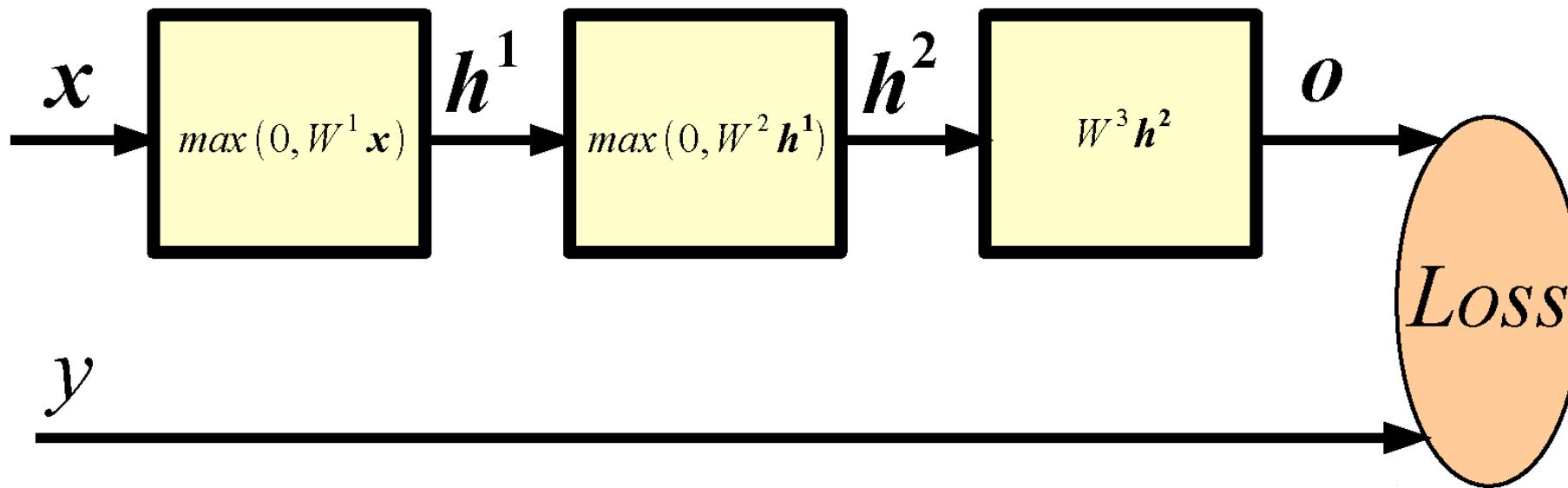
Learning consists of minimizing the loss (plus some regularization term) w.r.t. parameters over the whole training set.

$$\boldsymbol{\theta}^* = \arg \min_{\boldsymbol{\theta}} \sum_{n=1}^P L(\mathbf{x}^n, y^n; \boldsymbol{\theta})$$

Question: How to minimize a complicated function of the parameters?

Answer: Chain rule, a.k.a. **Backpropagation**! That is the procedure to compute gradients of the loss w.r.t. parameters in a multi-layer neural network.

Key Idea: Wiggle To Decrease Loss



Let's say we want to decrease the loss by adjusting $W_{i,j}^1$.
We could consider a very small $\epsilon = 1e-6$ and compute:

$$L(\mathbf{x}, y; \boldsymbol{\theta})$$

$$L(\mathbf{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^1, W_{i,j}^1 + \epsilon)$$

Then, update:

$$W_{i,j}^1 \leftarrow W_{i,j}^1 + \epsilon \operatorname{sgn}(L(\mathbf{x}, y; \boldsymbol{\theta}) - L(\mathbf{x}, y; \boldsymbol{\theta} \setminus W_{i,j}^1, W_{i,j}^1 + \epsilon))$$

Derivative w.r.t. Input of Softmax

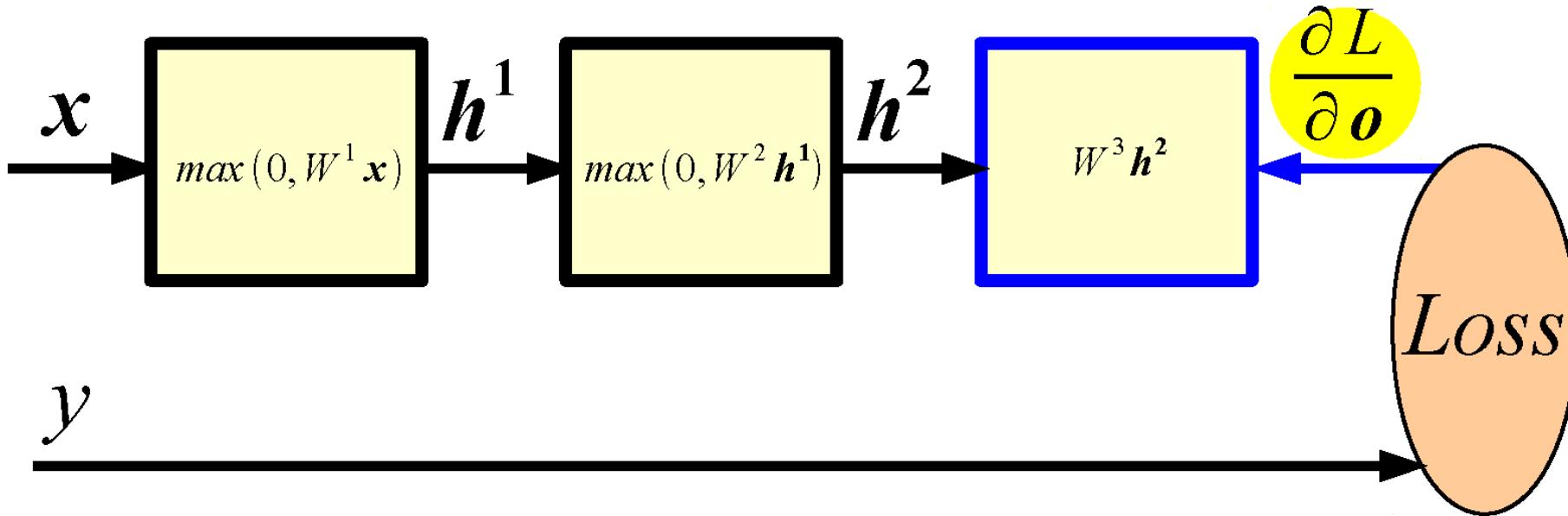
$$p(c_k=1|\mathbf{x}) = \frac{e^{o_k}}{\sum_j e^{o_j}}$$

$$L(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}) = -\sum_j y_j \log p(c_j|\mathbf{x}) \quad \mathbf{y} = [0^0..0^1 0..0^c]$$

By substituting the first formula in the second, and taking the derivative w.r.t. o we get:

$$\frac{\partial L}{\partial o} = p(c|\mathbf{x}) - y$$

Backward Propagation

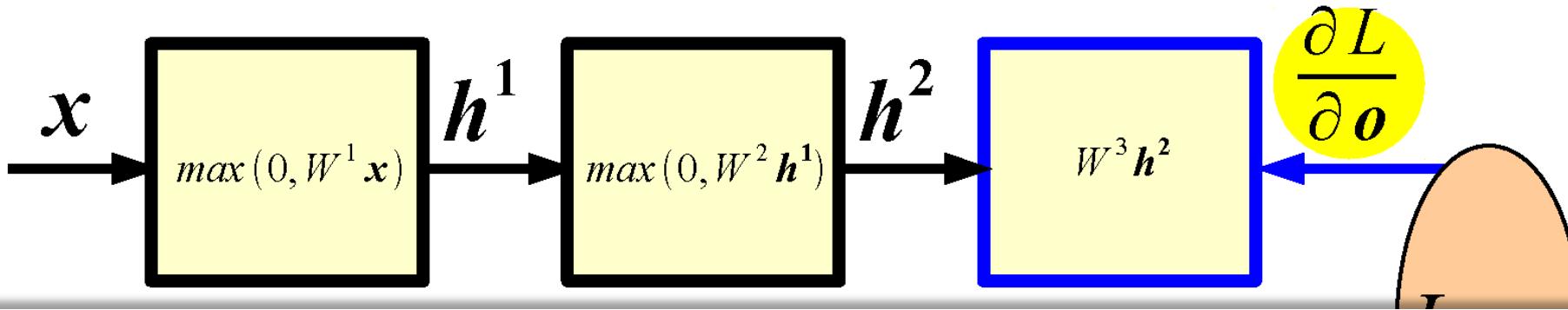


Given $\frac{\partial L}{\partial \mathbf{o}}$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial h^2}$$

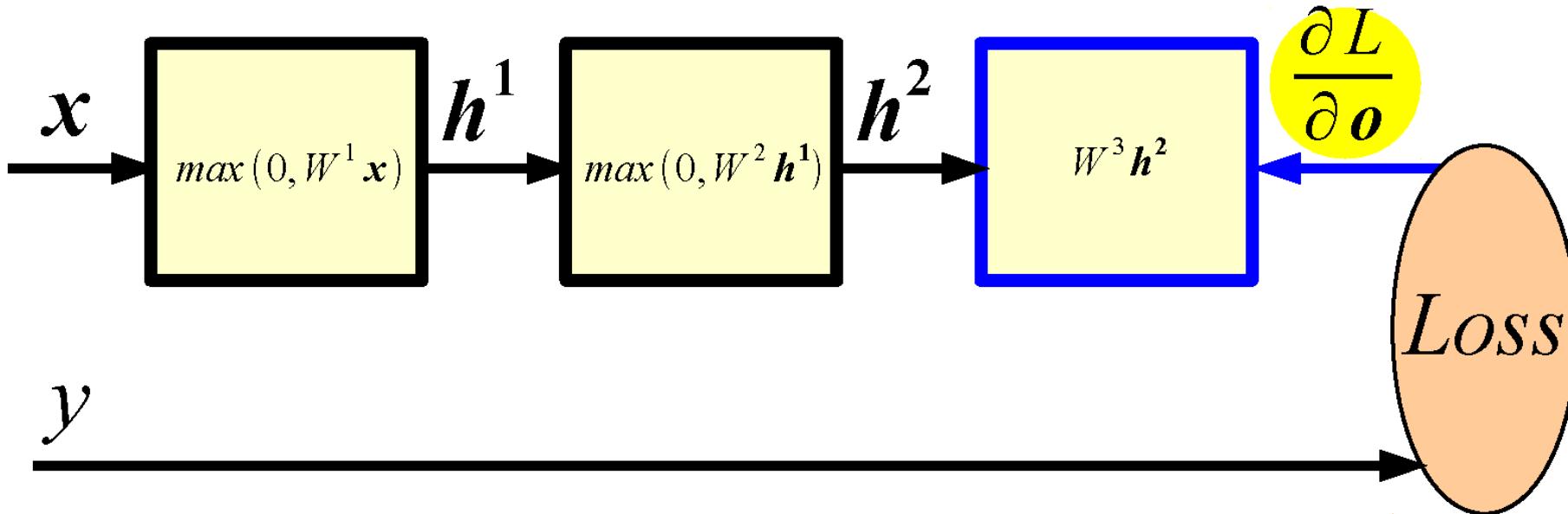
Backward Propagation



Suppose $\mathbf{f} : \mathbf{R}^n \rightarrow \mathbf{R}^m$ is a function such that each of its first-order partial derivatives exist on \mathbf{R}^n . This function takes a point $\mathbf{x} \in \mathbf{R}^n$ as input and produces the vector $\mathbf{f}(\mathbf{x}) \in \mathbf{R}^m$ as output. Then the Jacobian matrix of \mathbf{f} is defined to be an $m \times n$ matrix, denoted by \mathbf{J} , whose (i,j) th entry is $\mathbf{J}_{ij} = \frac{\partial f_i}{\partial x_j}$, or explicitly

$$\mathbf{J} = \left[\frac{\partial \mathbf{f}}{\partial x_1} \quad \dots \quad \frac{\partial \mathbf{f}}{\partial x_n} \right] = \begin{bmatrix} \nabla^T f_1 \\ \vdots \\ \nabla^T f_m \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Backward Propagation

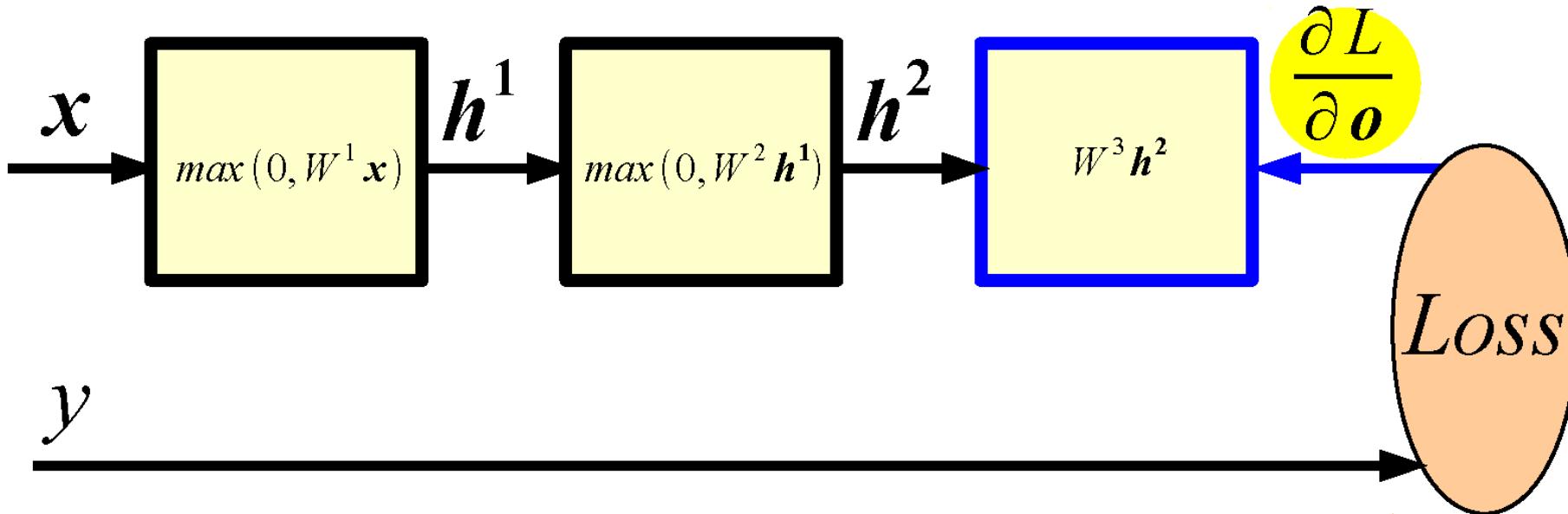


Given $\frac{\partial L}{\partial \mathbf{o}}$ and assuming we can easily compute the Jacobian of each module, we have:

$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial h^2}$$

Backward Propagation



Given $\frac{\partial L}{\partial \mathbf{o}}$ and assuming we can easily compute the Jacobian of each module, we have:

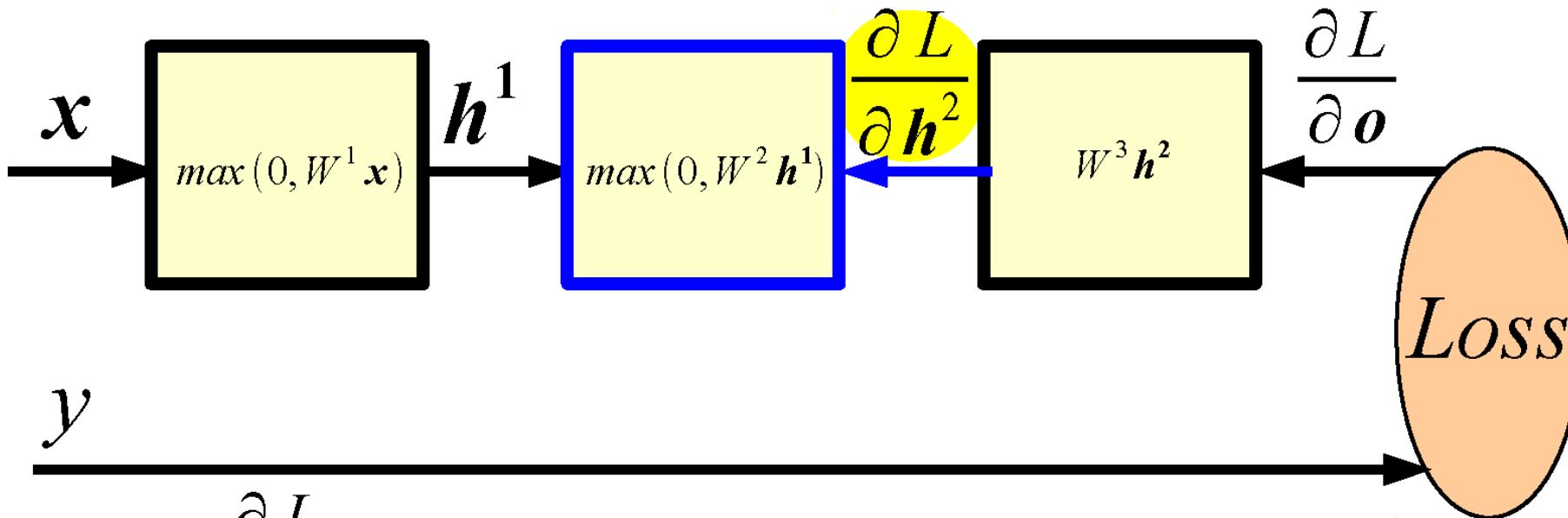
$$\frac{\partial L}{\partial W^3} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial W^3}$$

$$\frac{\partial L}{\partial h^2} = \frac{\partial L}{\partial \mathbf{o}} \frac{\partial \mathbf{o}}{\partial h^2}$$

$$\frac{\partial L}{\partial W^3} = (p(c|x) - y) h^{2T}$$

$$\frac{\partial L}{\partial h^2} = W^{3T} (p(c|x) - y)$$

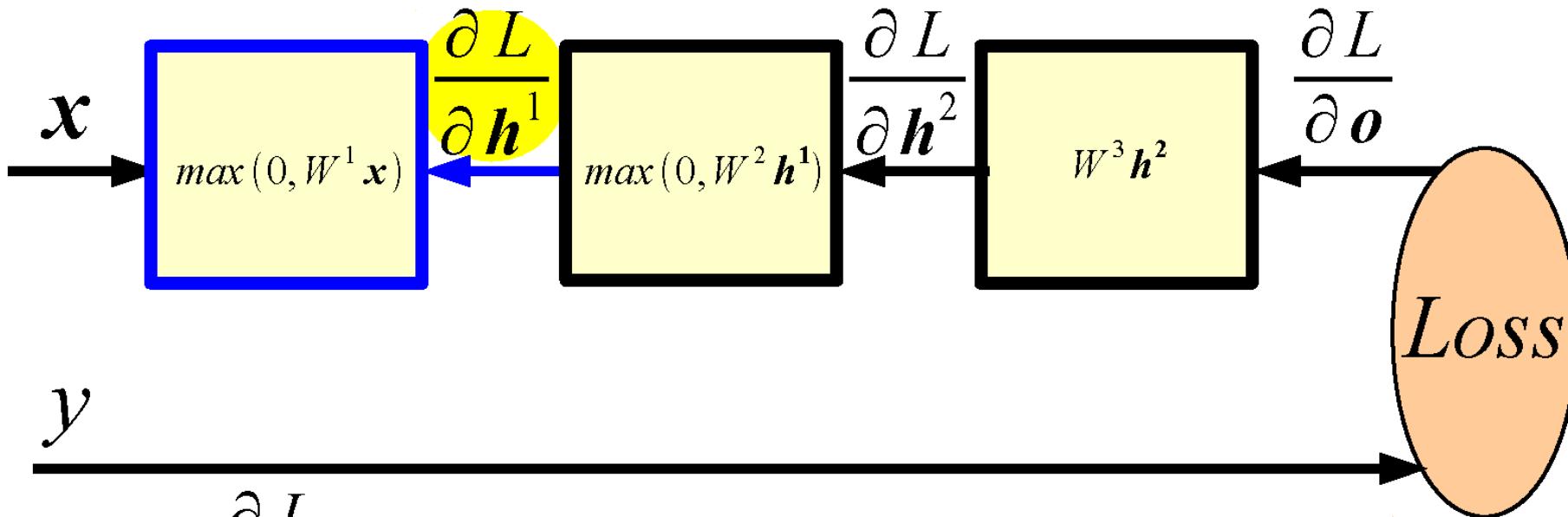
Backward Propagation



Given $\frac{\partial L}{\partial h^2}$ we can compute now:

$$\frac{\partial L}{\partial W^2} = \frac{\partial L}{\partial h^2} \frac{\partial h^2}{\partial W^2} \quad \frac{\partial L}{\partial h^1} = \frac{\partial L}{\partial h^2} \frac{\partial h^2}{\partial h^1}$$

Backward Propagation



Given $\frac{\partial L}{\partial h^1}$ we can compute now:

$$\frac{\partial L}{\partial W^1} = \frac{\partial L}{\partial h^1} \frac{\partial h^1}{\partial W^1}$$

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Backward Propagation

Question: Does BPROP work with ReLU layers only?

Answer: Nope, any a.e. differentiable transformation works.

Question: What's the computational cost of BPROP?

Answer: About twice FPROP (need to compute gradients w.r.t. input and parameters at every layer).

Optimization

Stochastic Gradient Descent (on mini-batches):

$$\theta \leftarrow \theta - \eta \frac{\partial L}{\partial \theta}, \eta \in (0, 1)$$

Stochastic Gradient Descent with Momentum:

$$\theta \leftarrow \theta - \eta \Delta$$

$$\Delta \leftarrow 0.9 \Delta + \frac{\partial L}{\partial \theta}$$

Note: there are many other variants...

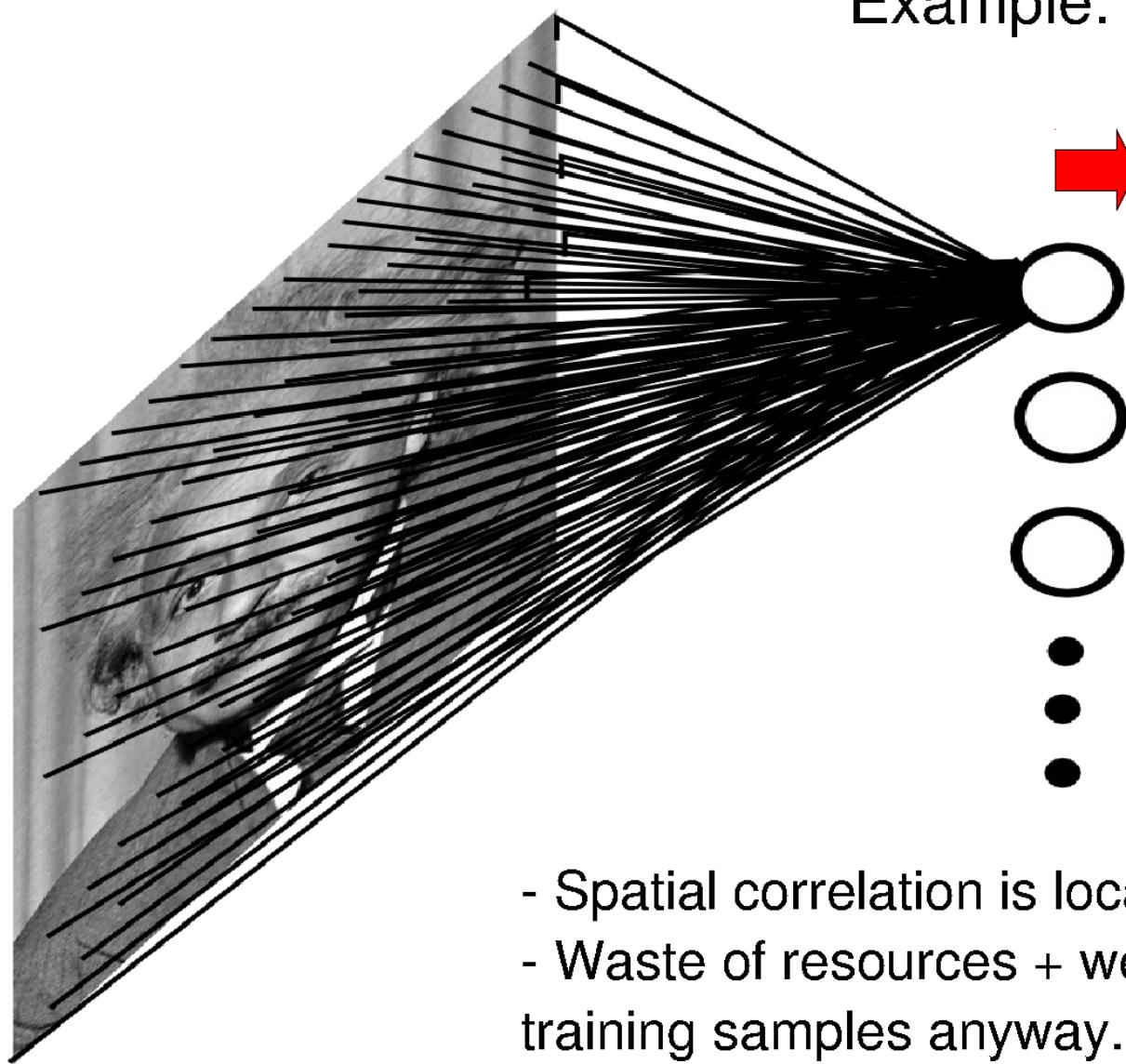
Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips

Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips

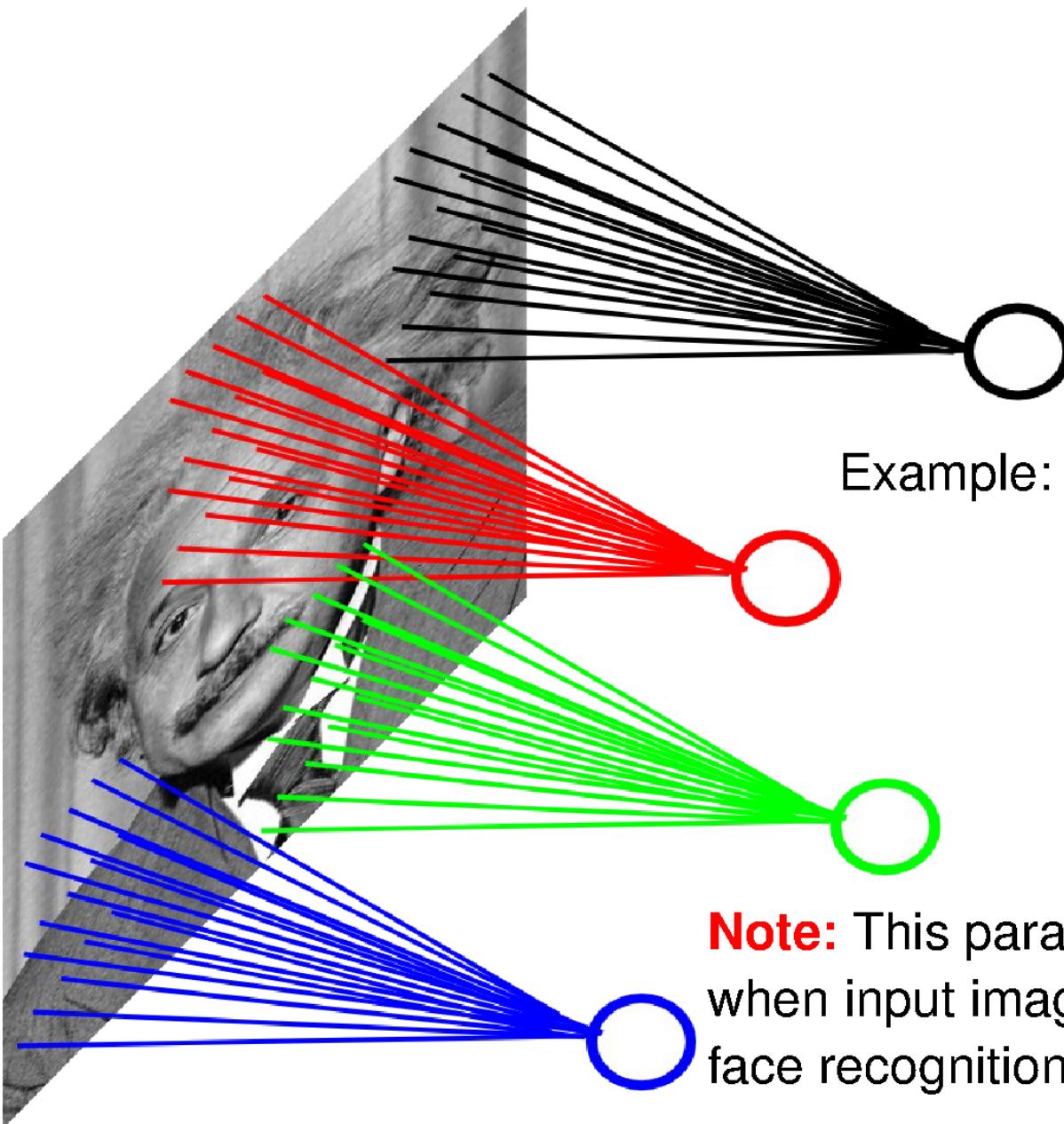
Fully Connected Layer



Example: 200x200 image
40K hidden units
→ **~2B parameters!!!**

- Spatial correlation is local
- Waste of resources + we have not enough training samples anyway..

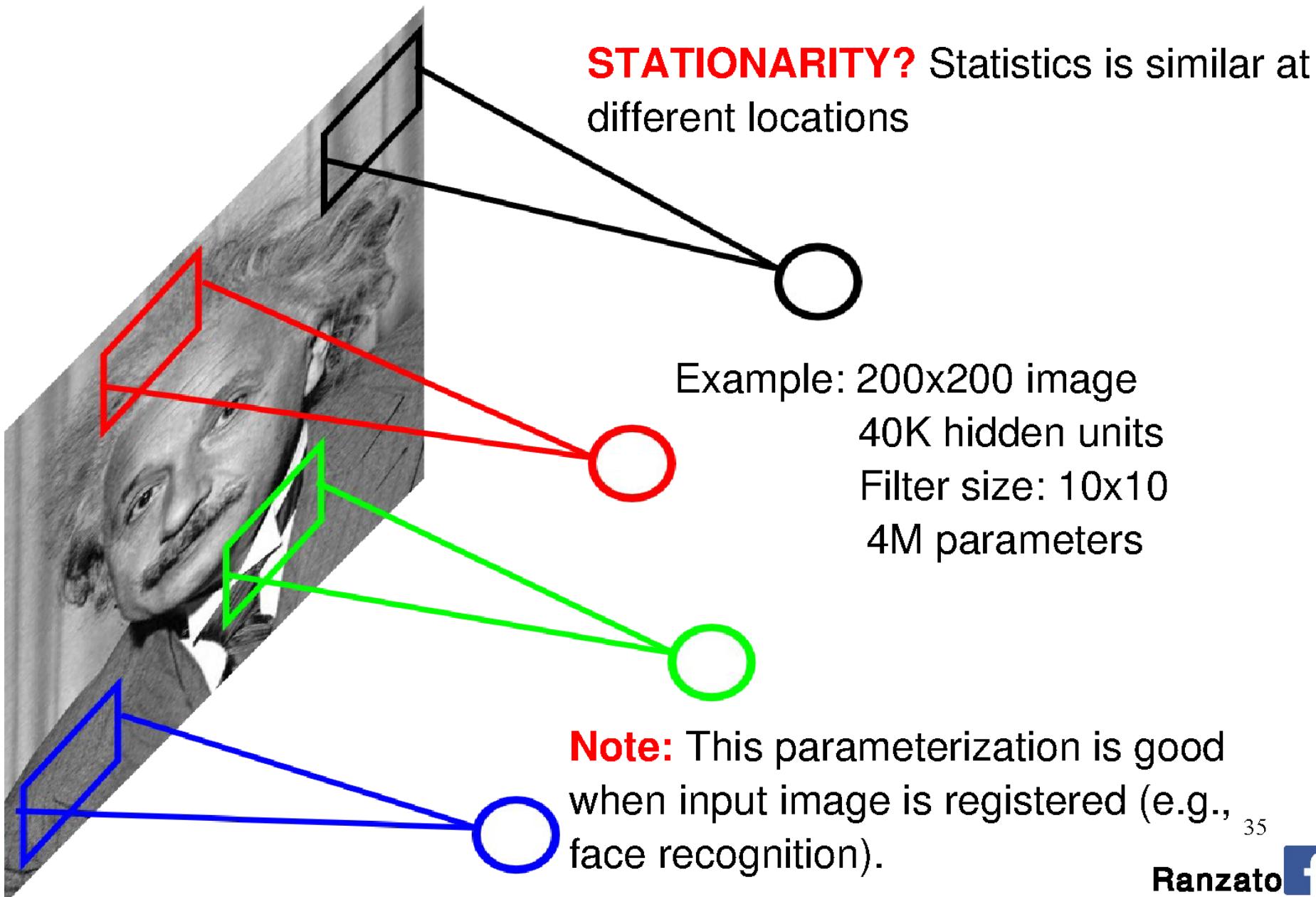
Locally Connected Layer



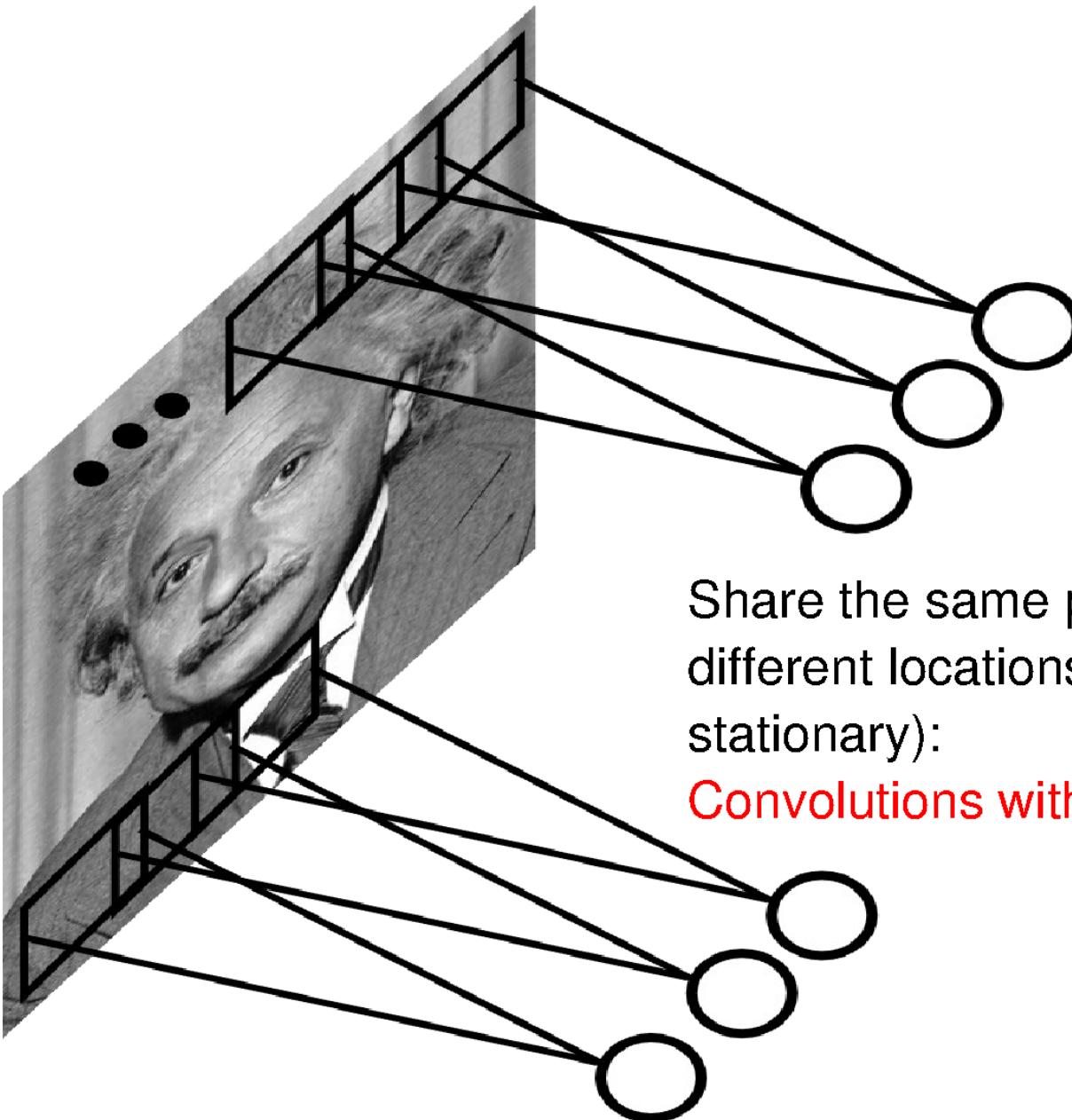
Example: 200x200 image
40K hidden units
Filter size: 10x10
4M parameters

Note: This parameterization is good
when input image is registered (e.g.,
face recognition).

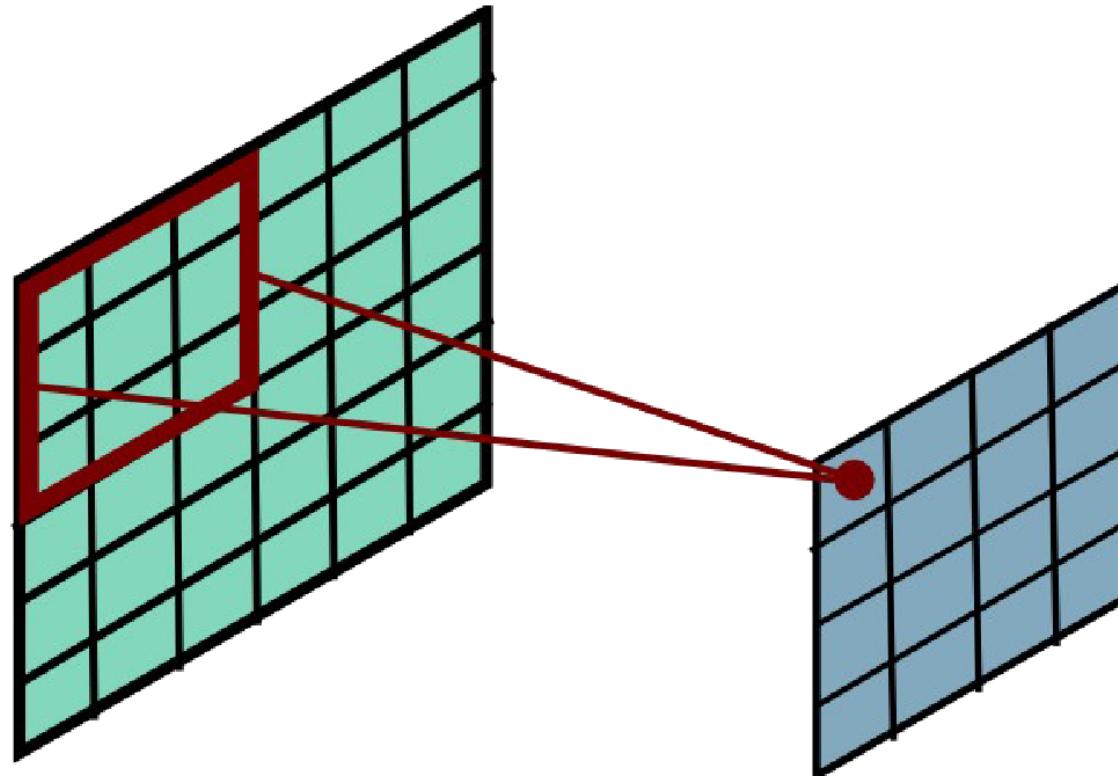
Locally Connected Layer



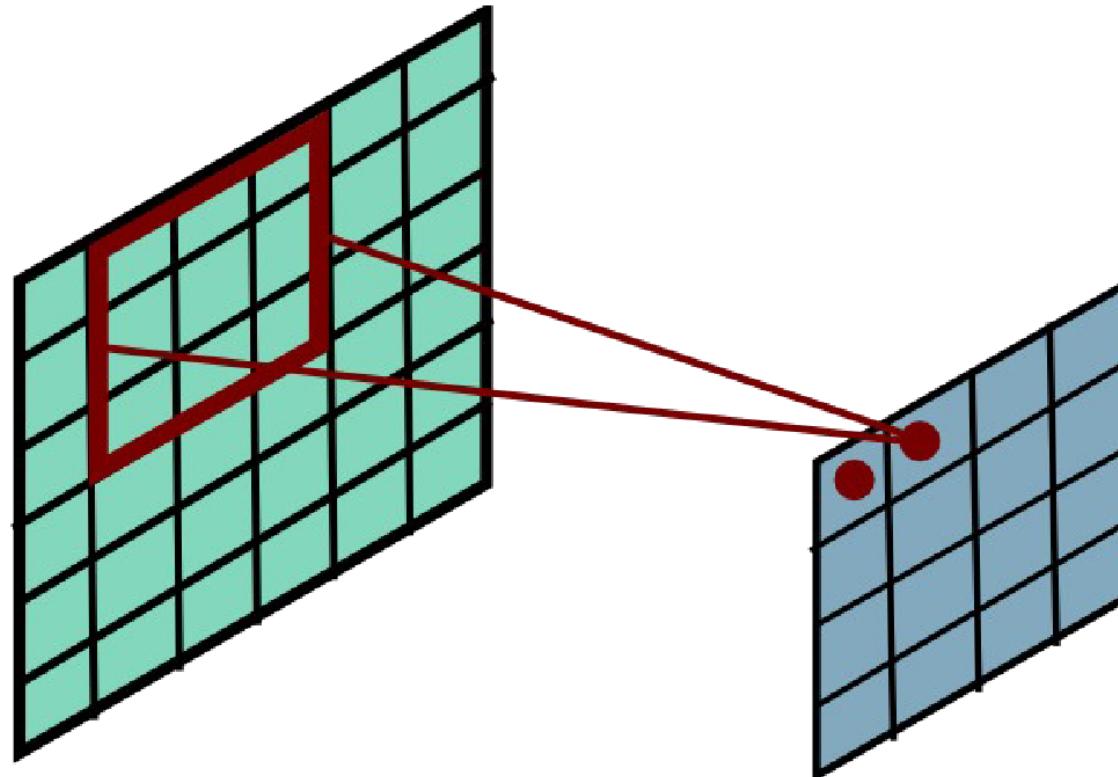
Convolutional Layer



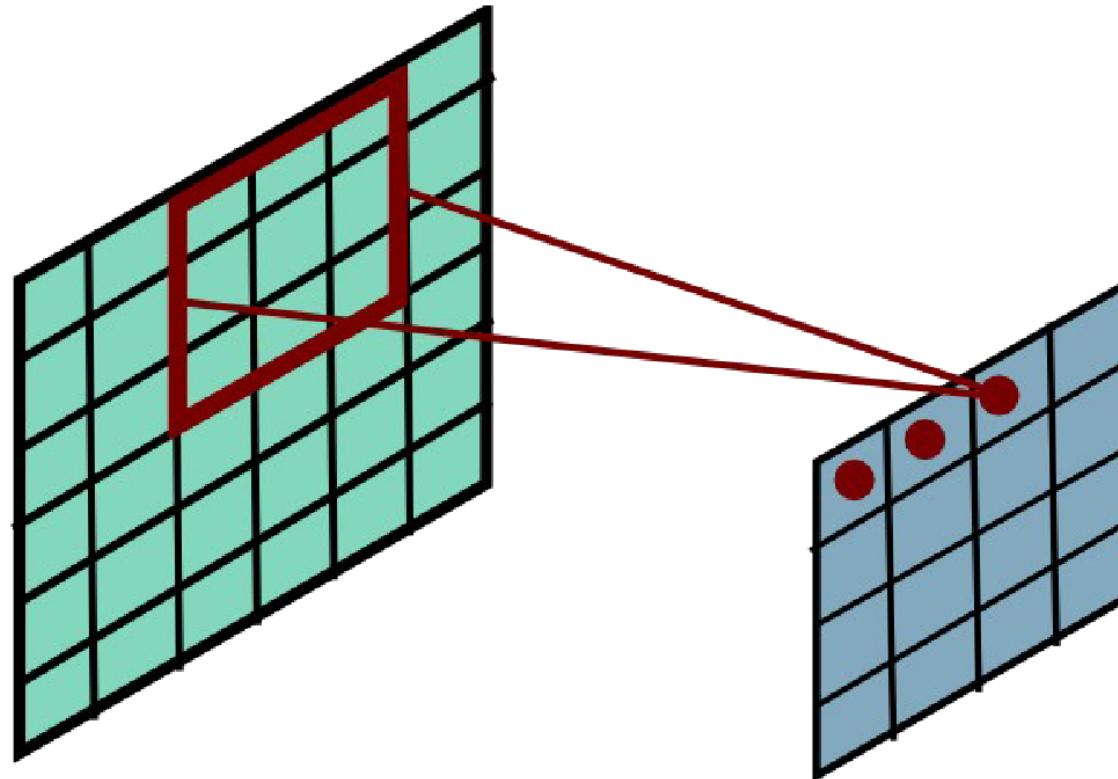
Convolutional Layer



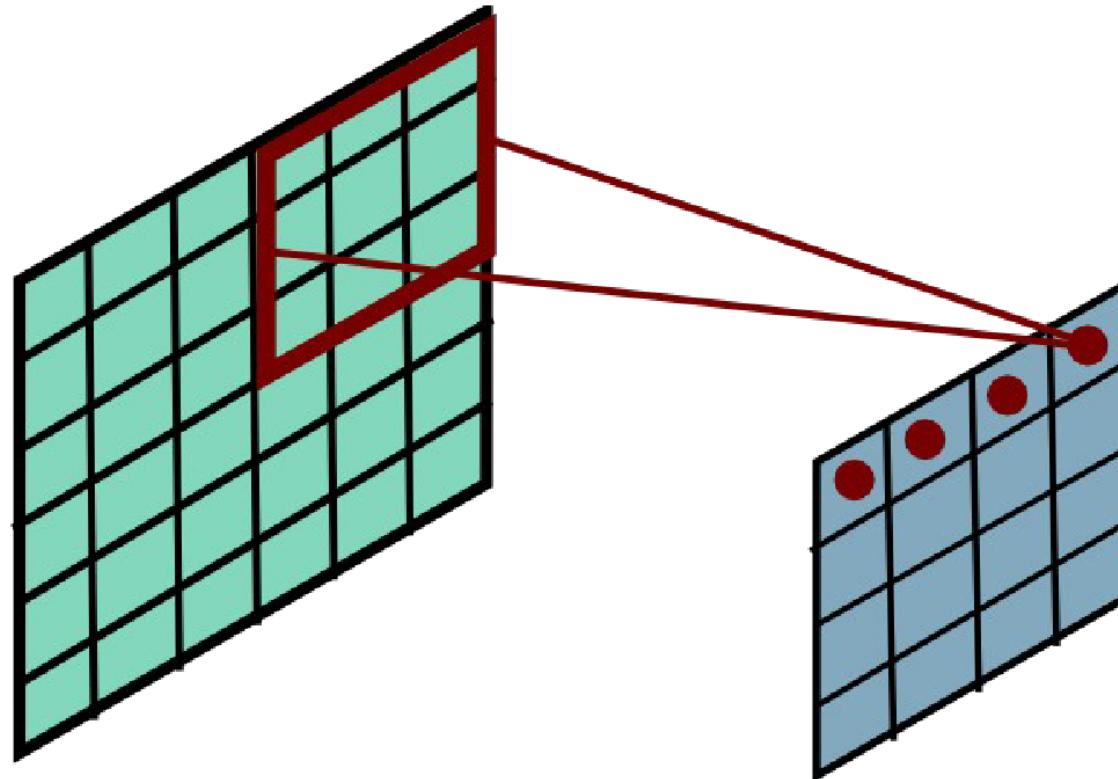
Convolutional Layer



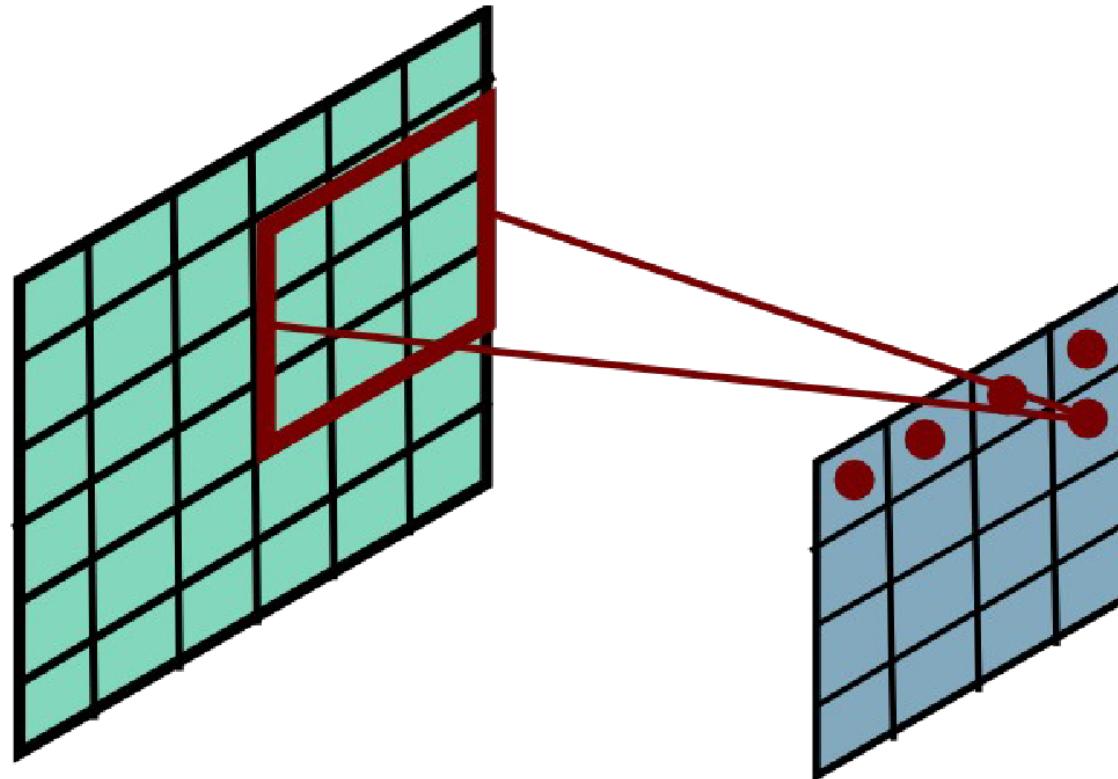
Convolutional Layer



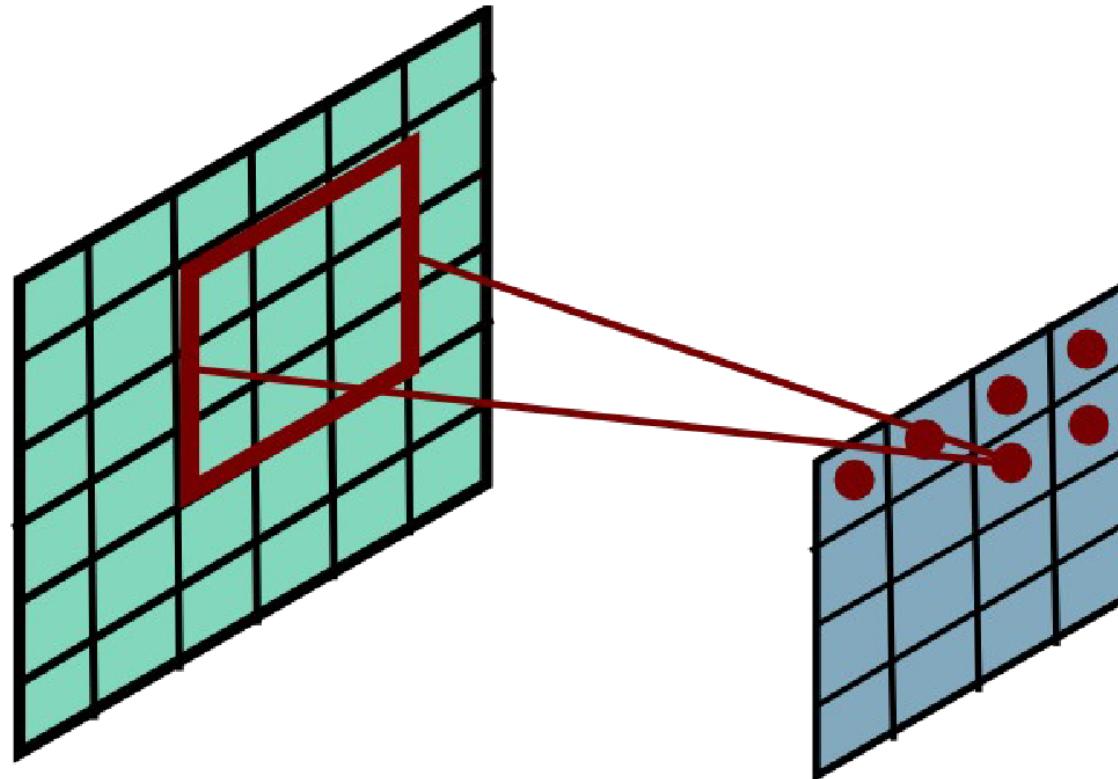
Convolutional Layer



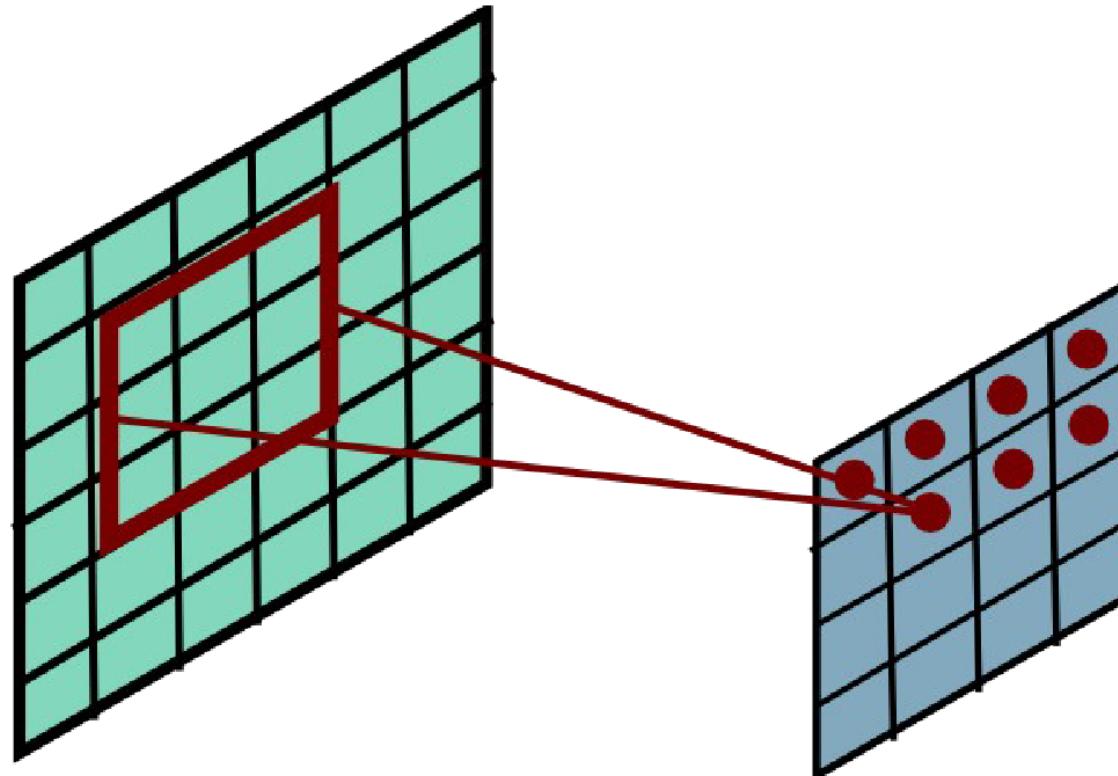
Convolutional Layer



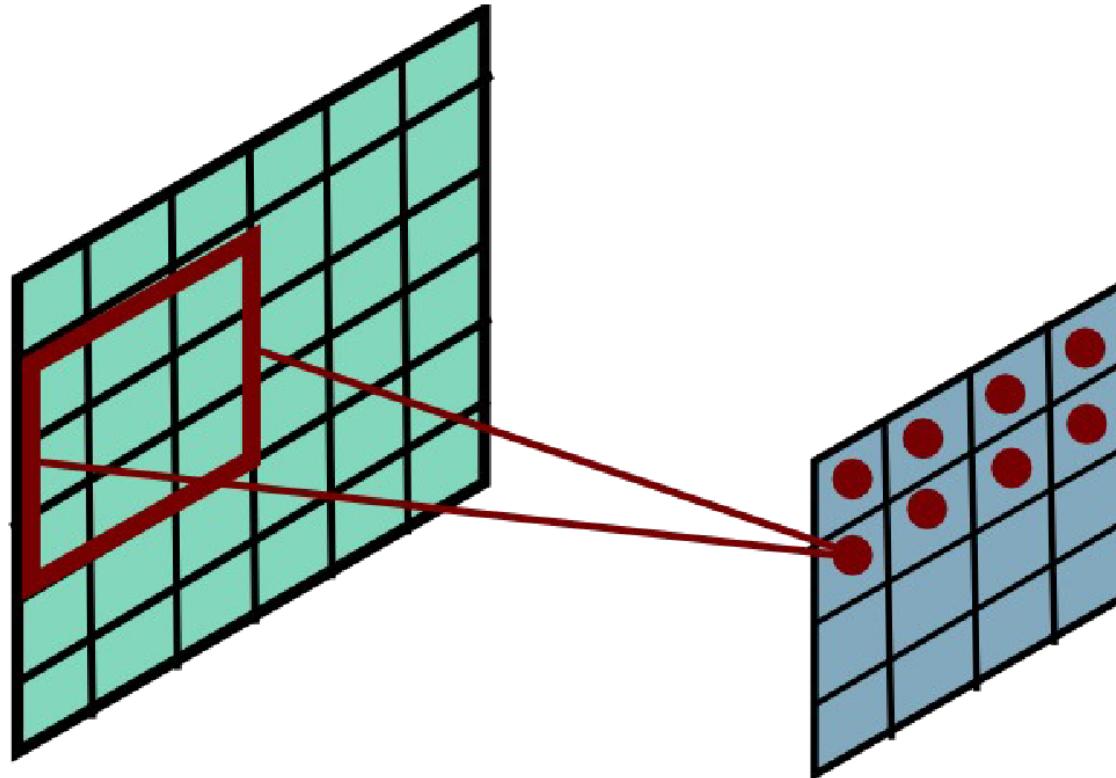
Convolutional Layer



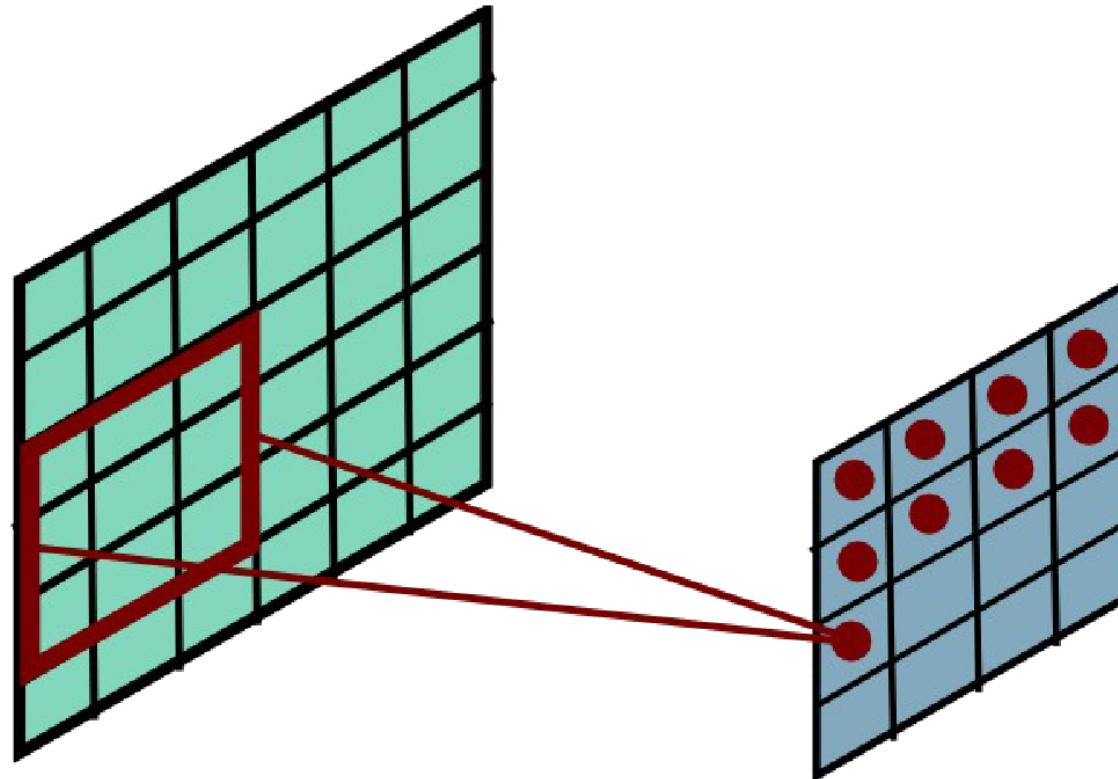
Convolutional Layer



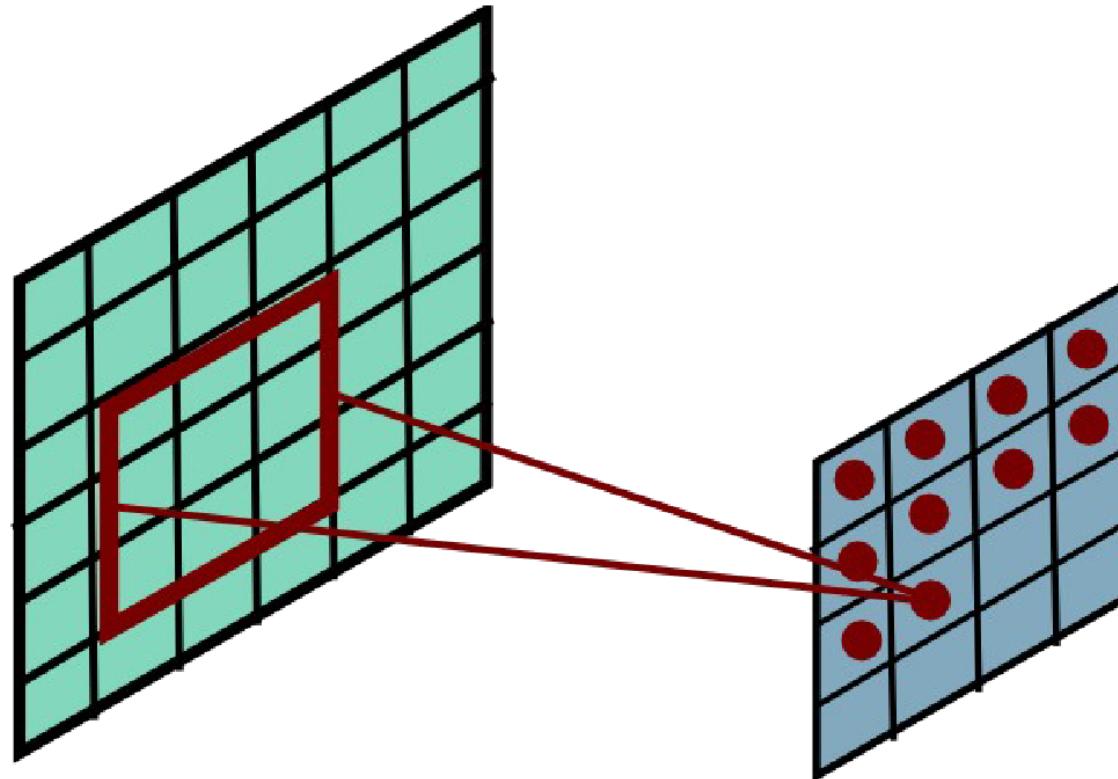
Convolutional Layer



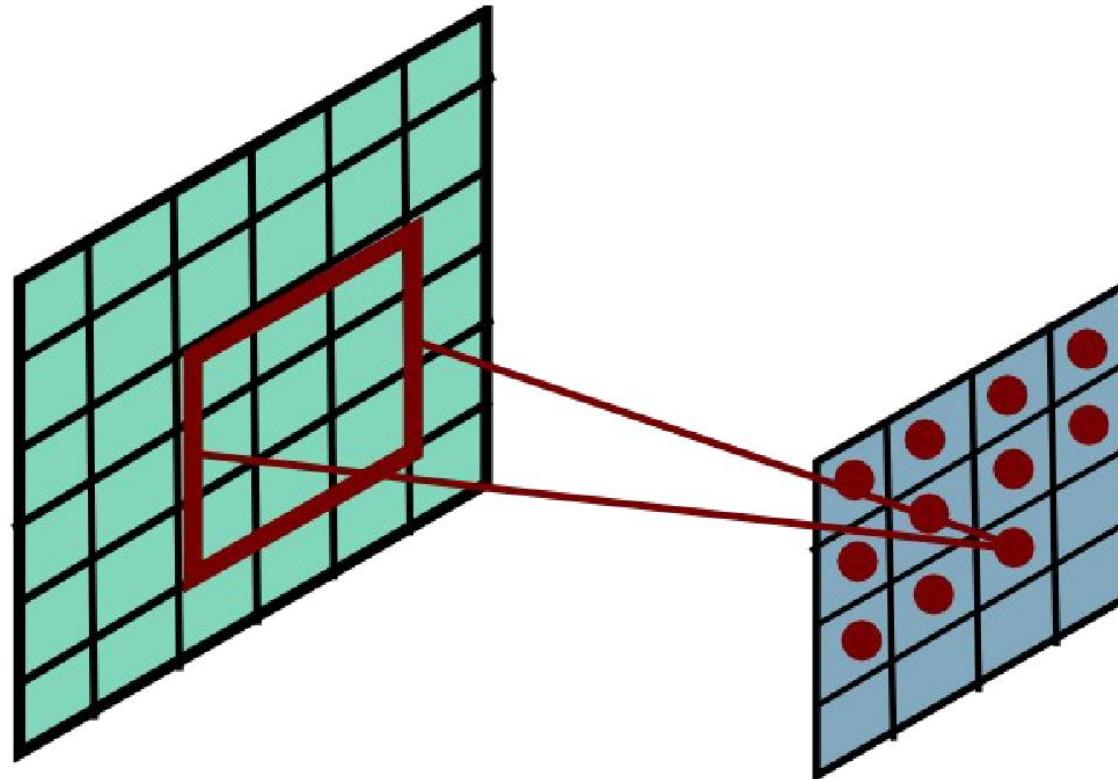
Convolutional Layer



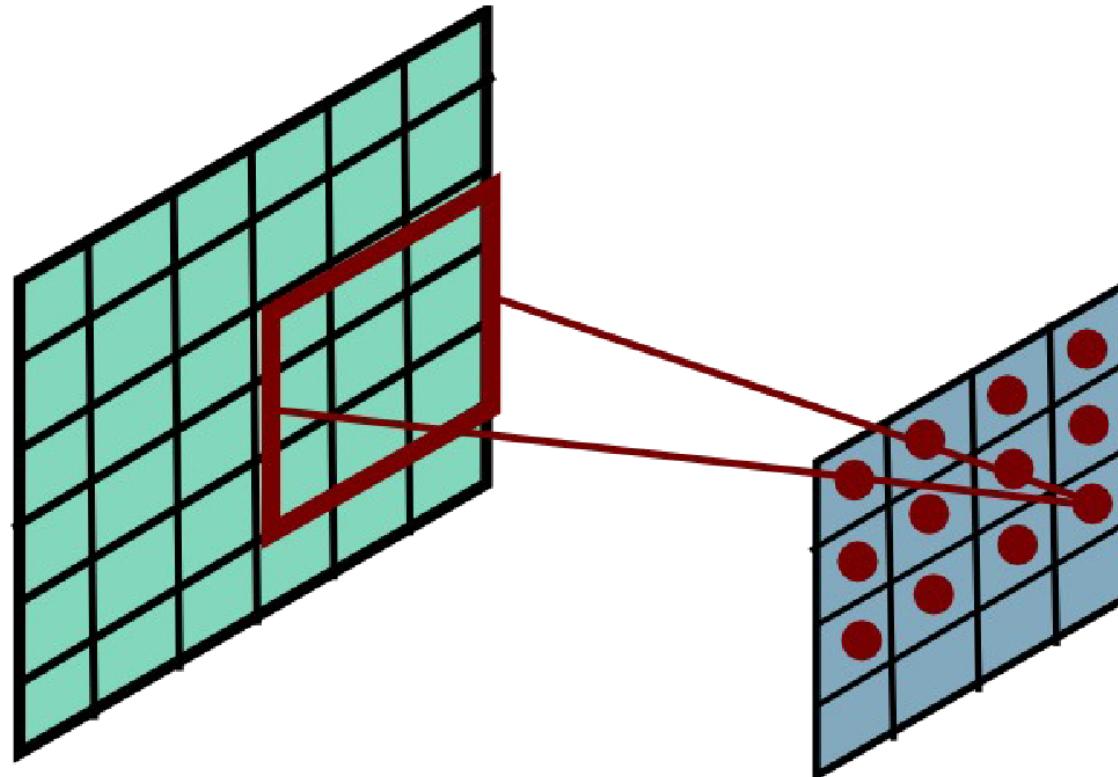
Convolutional Layer



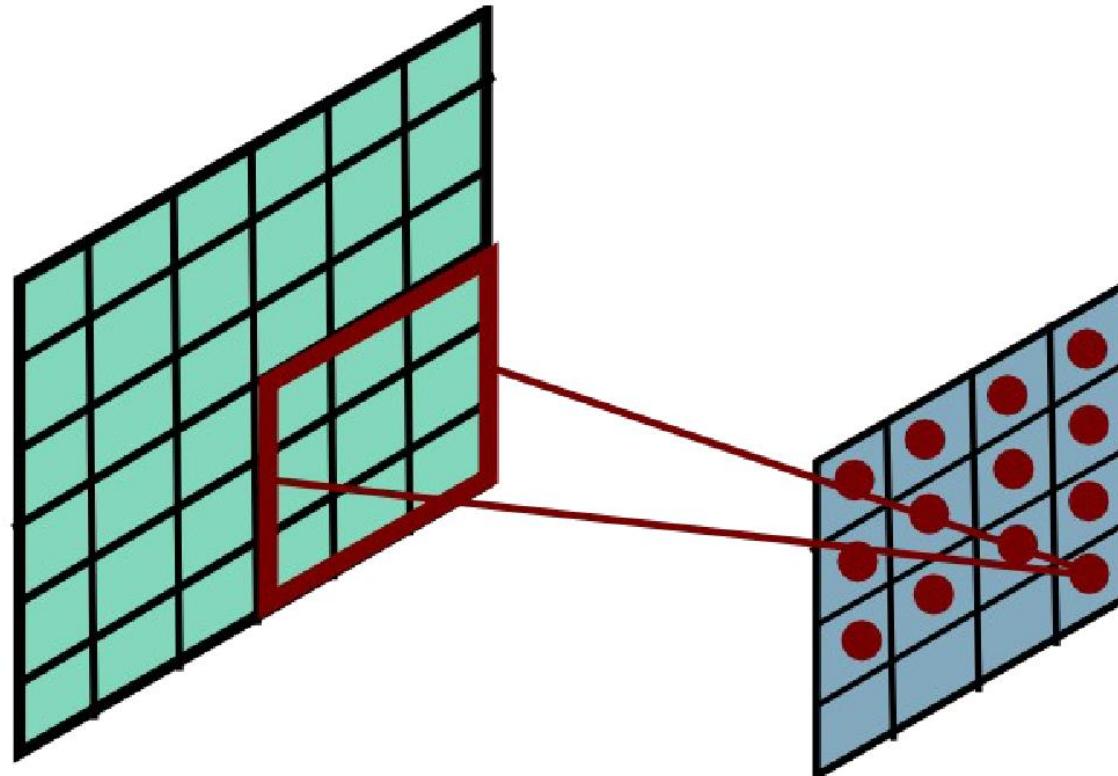
Convolutional Layer



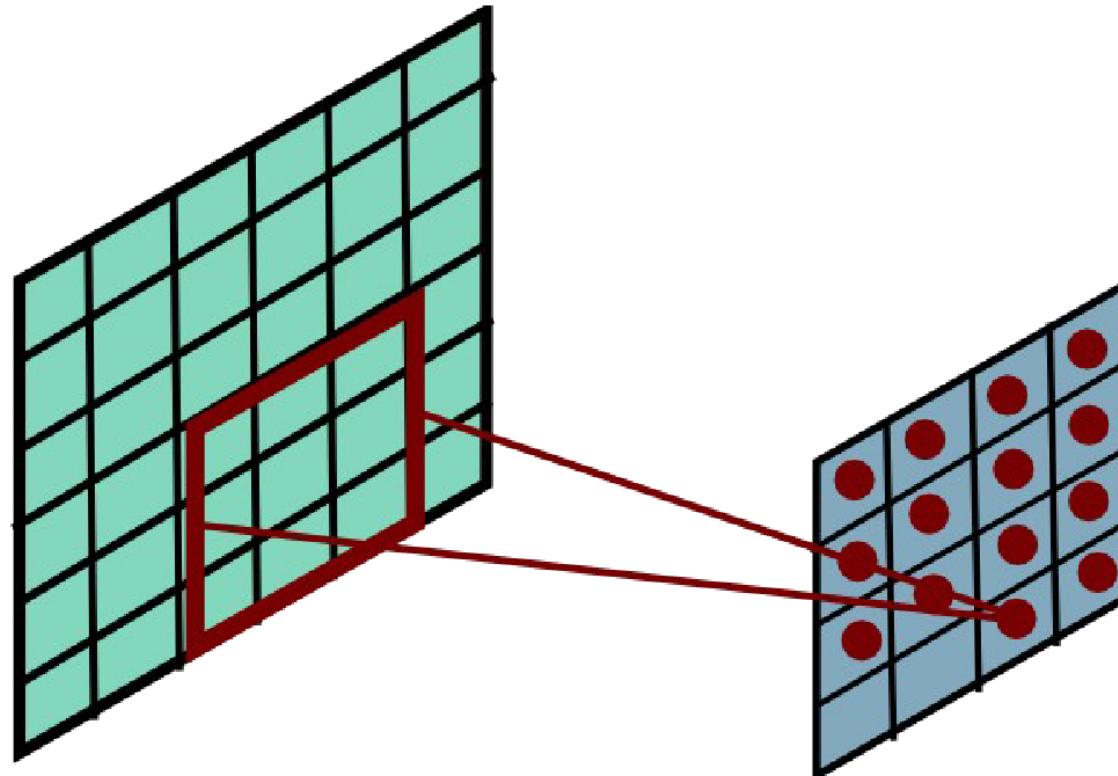
Convolutional Layer



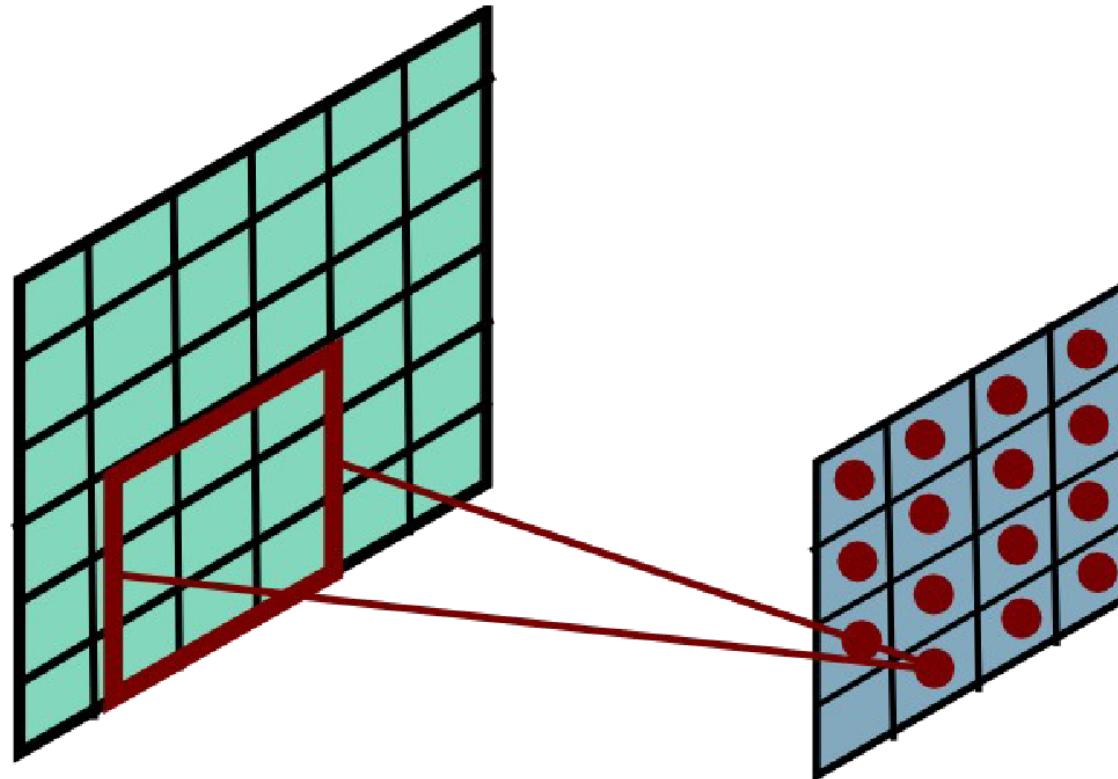
Convolutional Layer



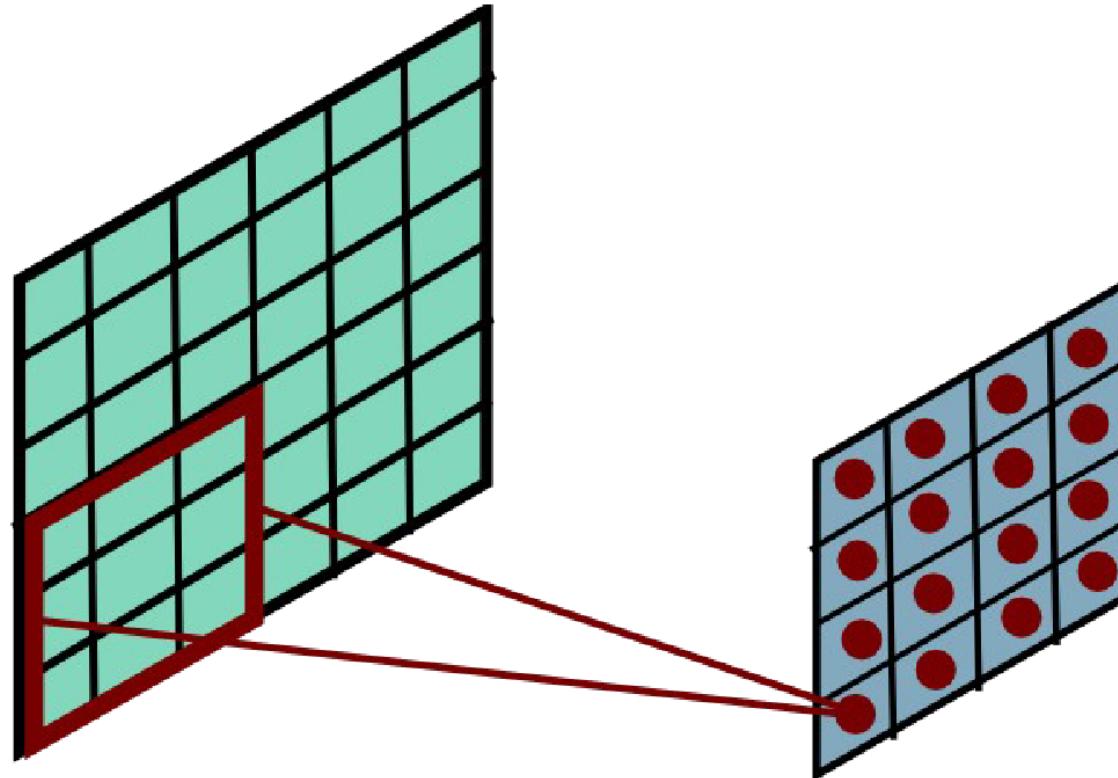
Convolutional Layer



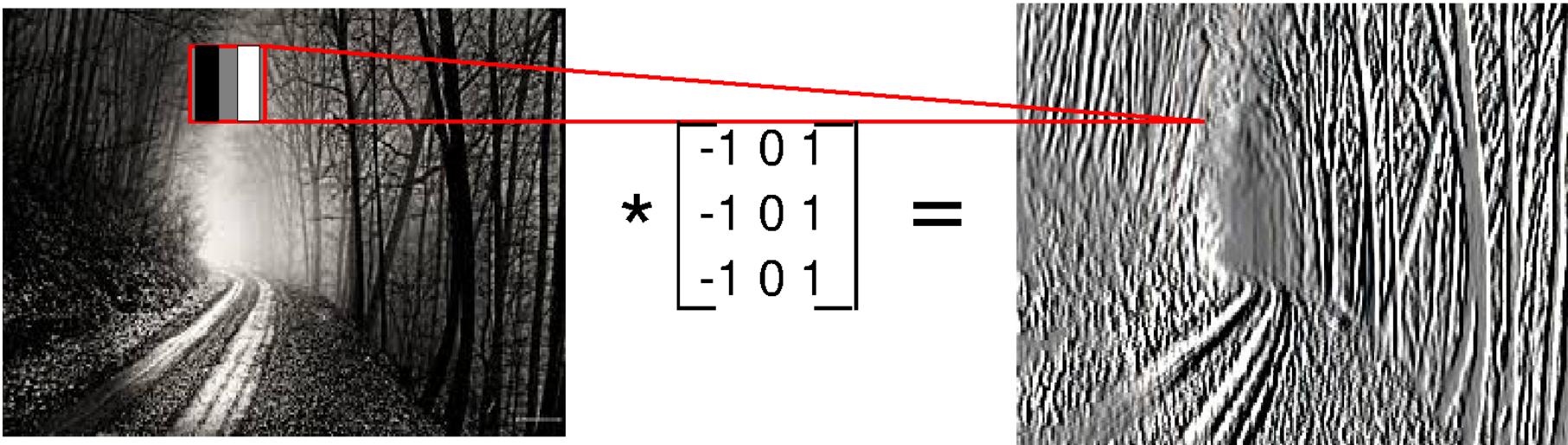
Convolutional Layer



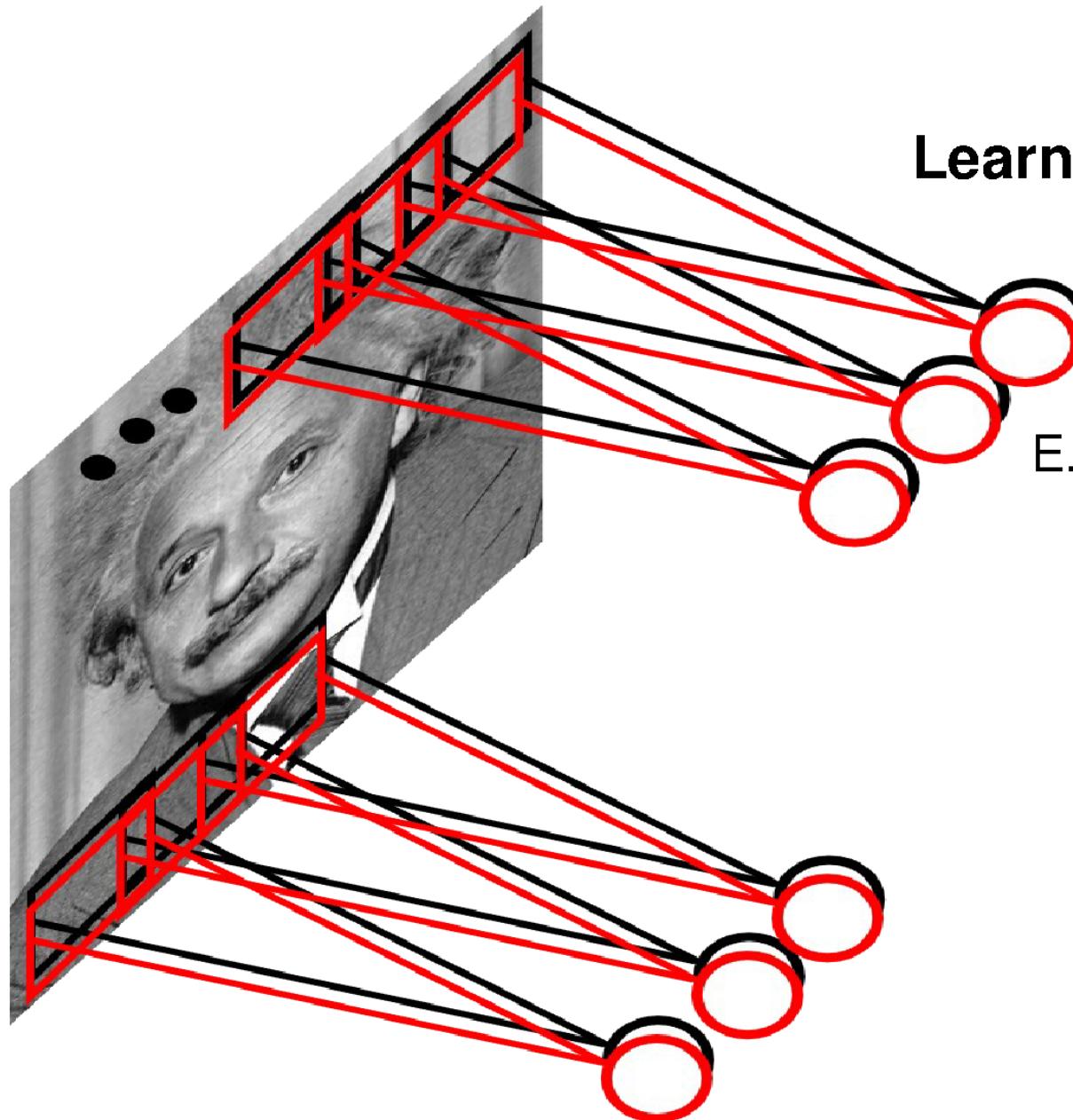
Convolutional Layer



Convolutional Layer



Convolutional Layer



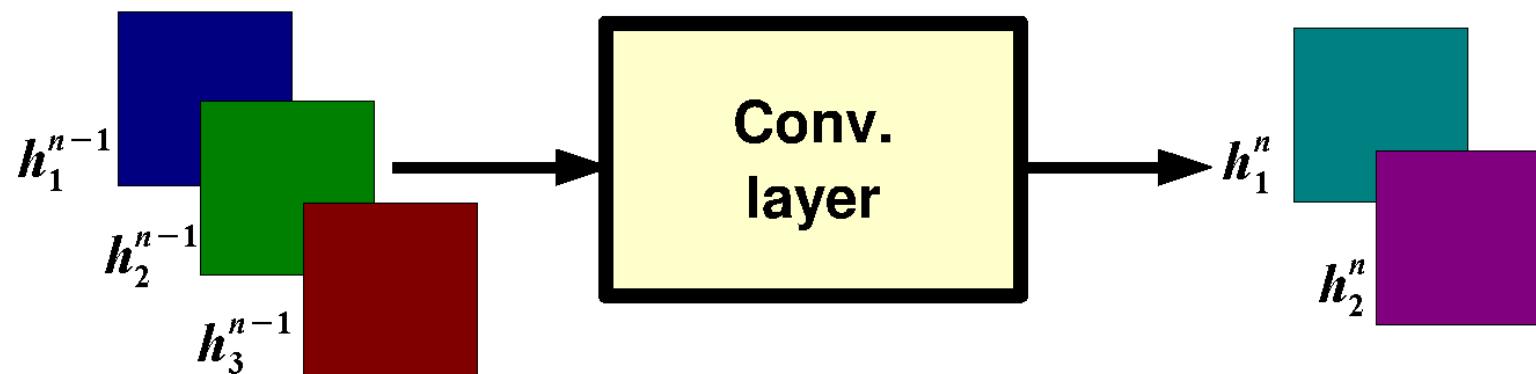
Learn multiple filters.

E.g.: 200x200 image
100 Filters
Filter size: 10x10
10K parameters

Convolutional Layer

$$h_j^n = \max \left(0, \sum_{k=1}^K h_k^{n-1} * w_{kj}^n \right)$$

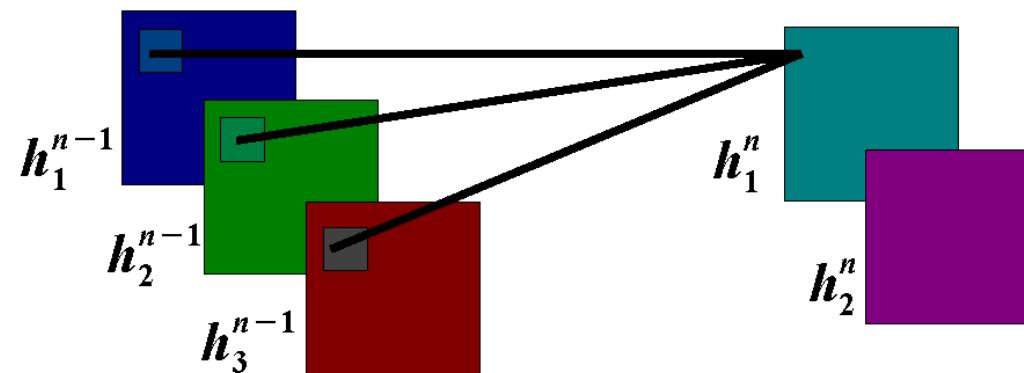
output feature map input feature map kernel



Convolutional Layer

$$h_j^n = \max \left(0, \sum_{k=1}^K h_k^{n-1} * w_{kj}^n \right)$$

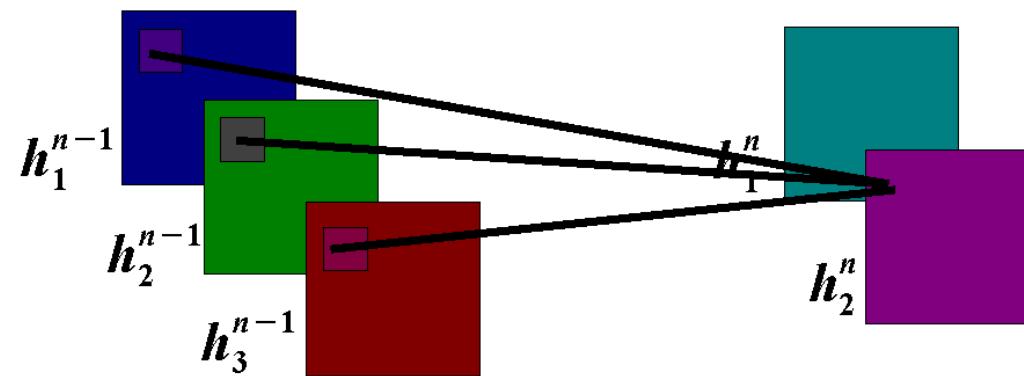
output feature map input feature map kernel



Convolutional Layer

$$h_j^n = \max \left(0, \sum_{k=1}^K h_k^{n-1} * w_{kj}^n \right)$$

output feature map input feature map kernel



Key Ideas

A standard neural net applied to images:

- scales quadratically with the size of the input
- does not leverage stationarity

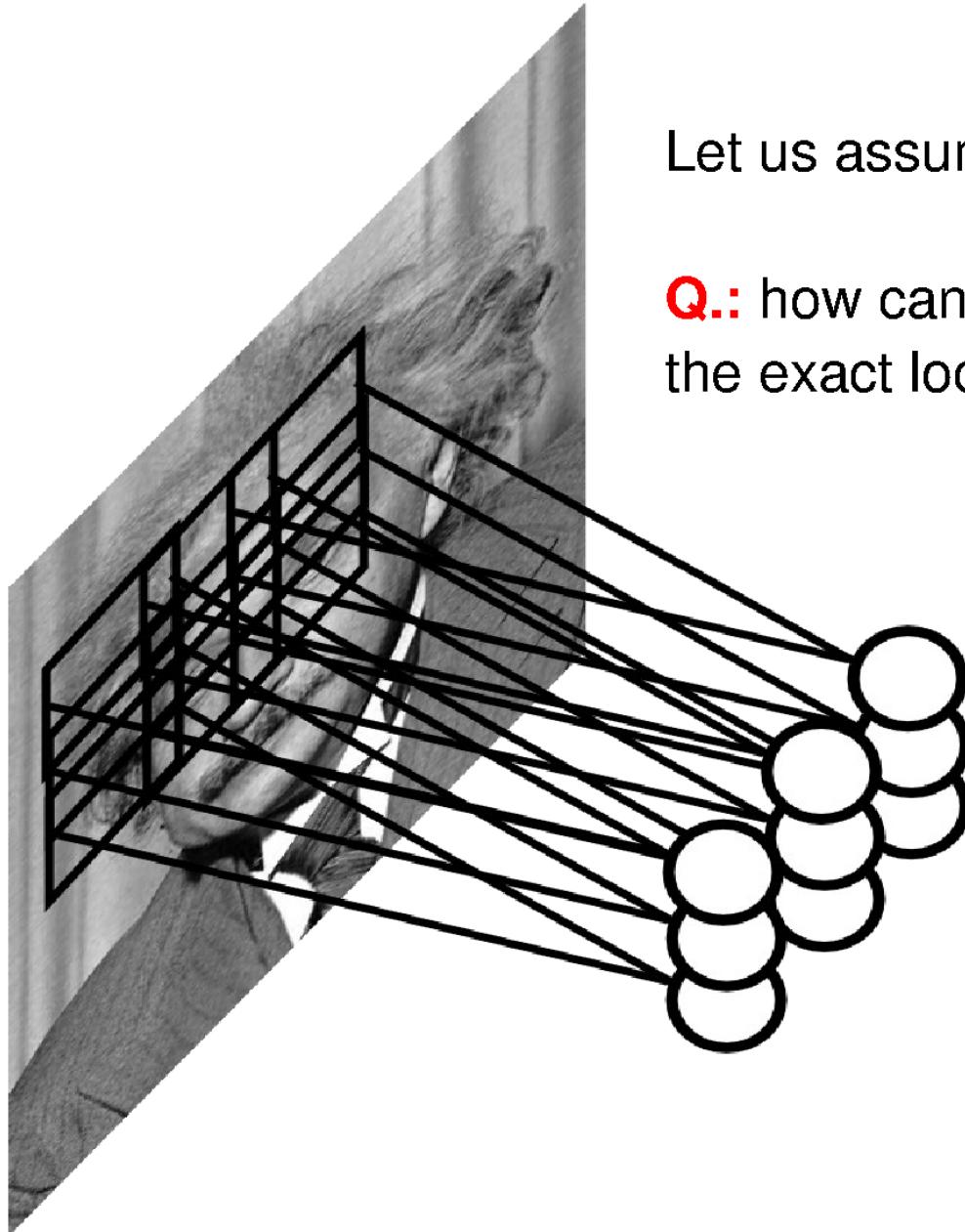
Solution:

- connect each hidden unit to a small patch of the input
- share the weight across space

This is called: **convolutional layer**.

A network with convolutional layers is called **convolutional network**.

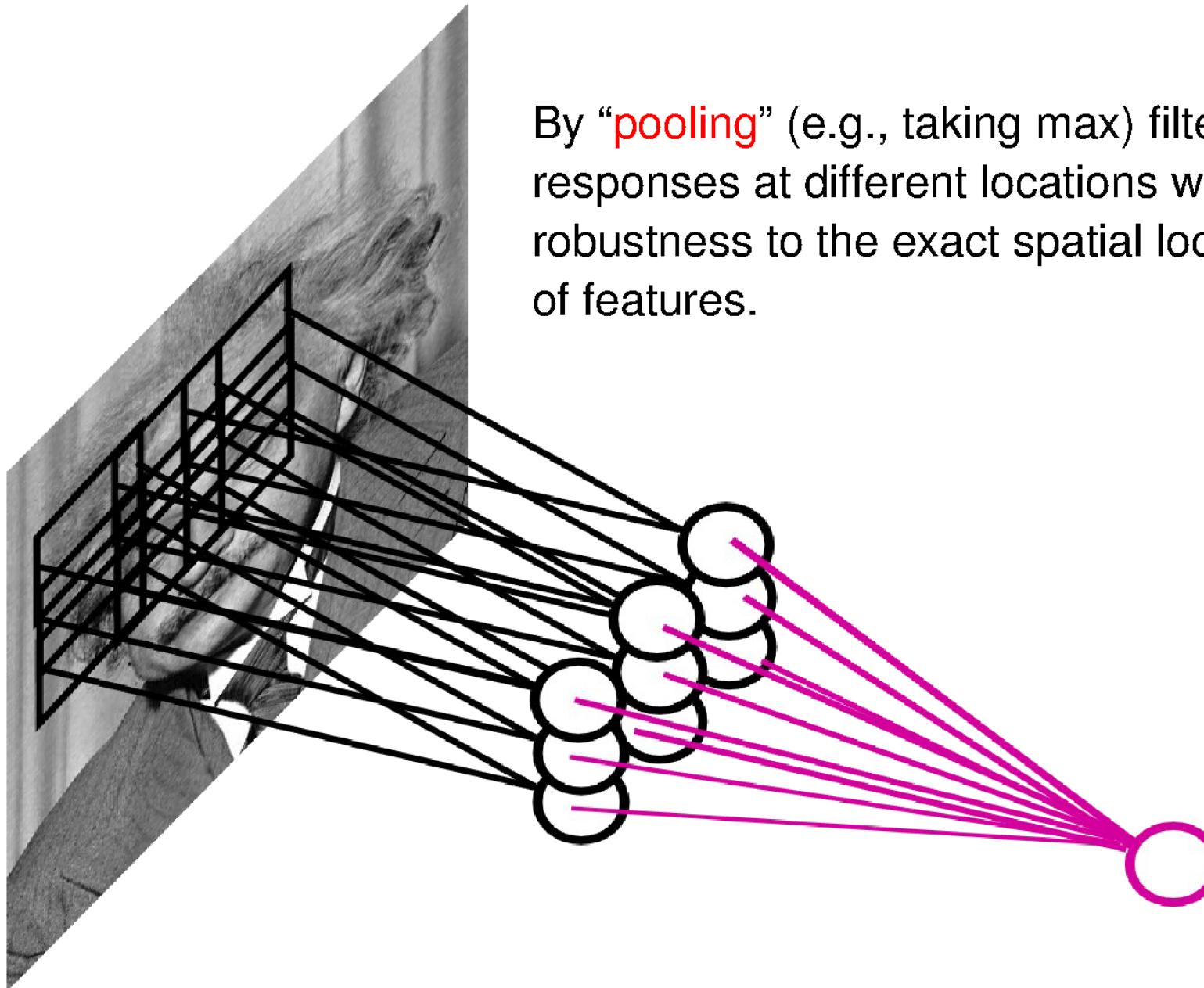
Pooling Layer



Let us assume filter is an “eye” detector.

Q.: how can we make the detection robust to the exact location of the eye?

Pooling Layer



By “**pooling**” (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Pooling Layer: Examples

Max-pooling:

$$h_j^n(x, y) = \max_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y})$$

Average-pooling:

$$h_j^n(x, y) = 1/K \sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y})$$

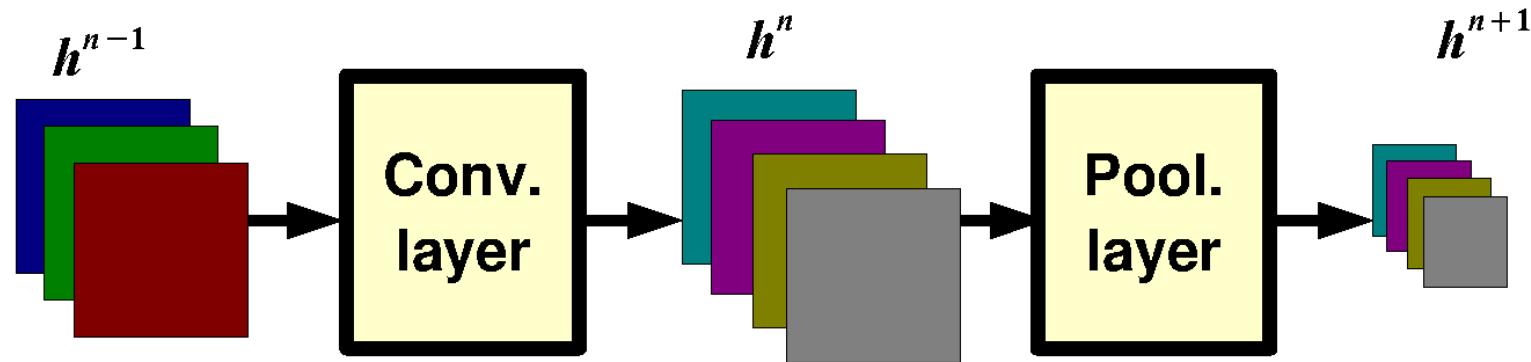
L2-pooling:

$$h_j^n(x, y) = \sqrt{\sum_{\bar{x} \in N(x), \bar{y} \in N(y)} h_j^{n-1}(\bar{x}, \bar{y})^2}$$

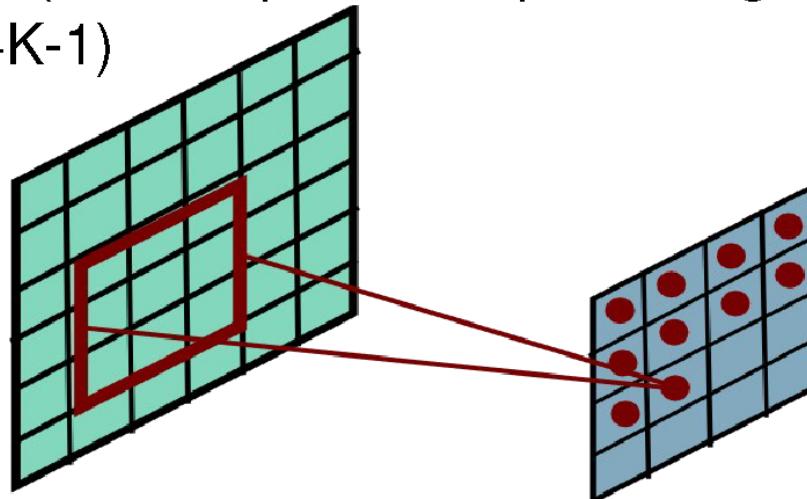
L2-pooling over features:

$$h_j^n(x, y) = \sqrt{\sum_{k \in N(j)} h_k^{n-1}(x, y)^2}$$

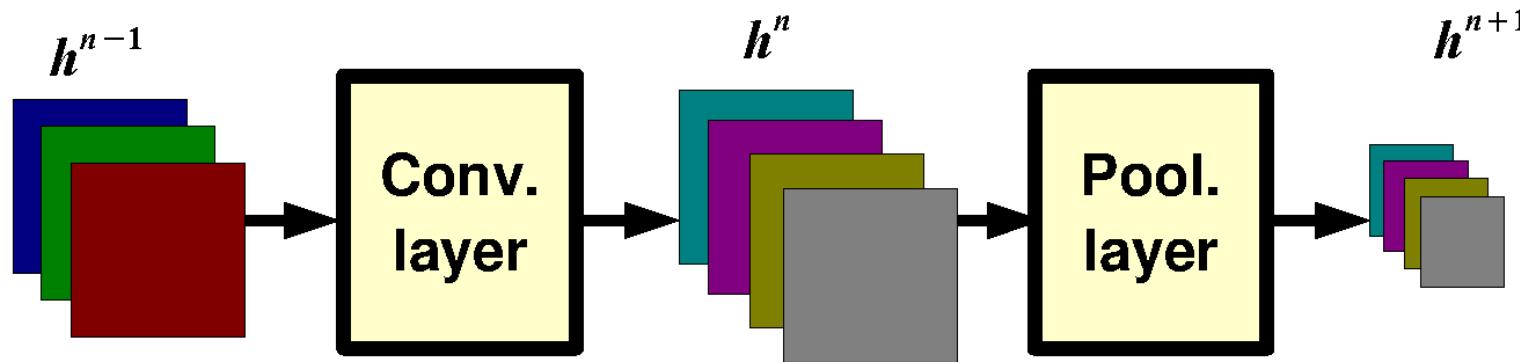
Pooling Layer: Receptive Field Size



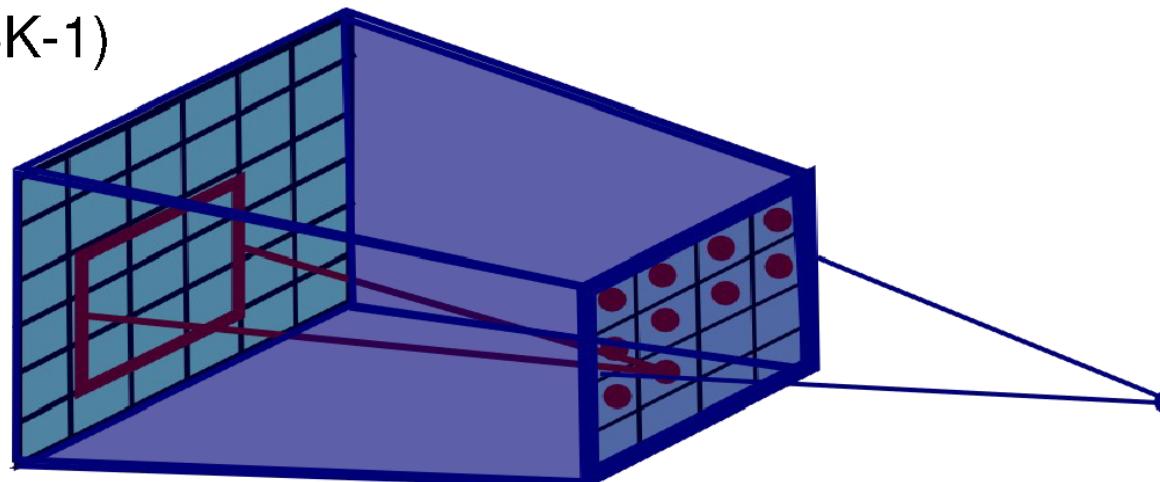
If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size:
$$(P+K-1) \times (P+K-1)$$



Pooling Layer: Receptive Field Size

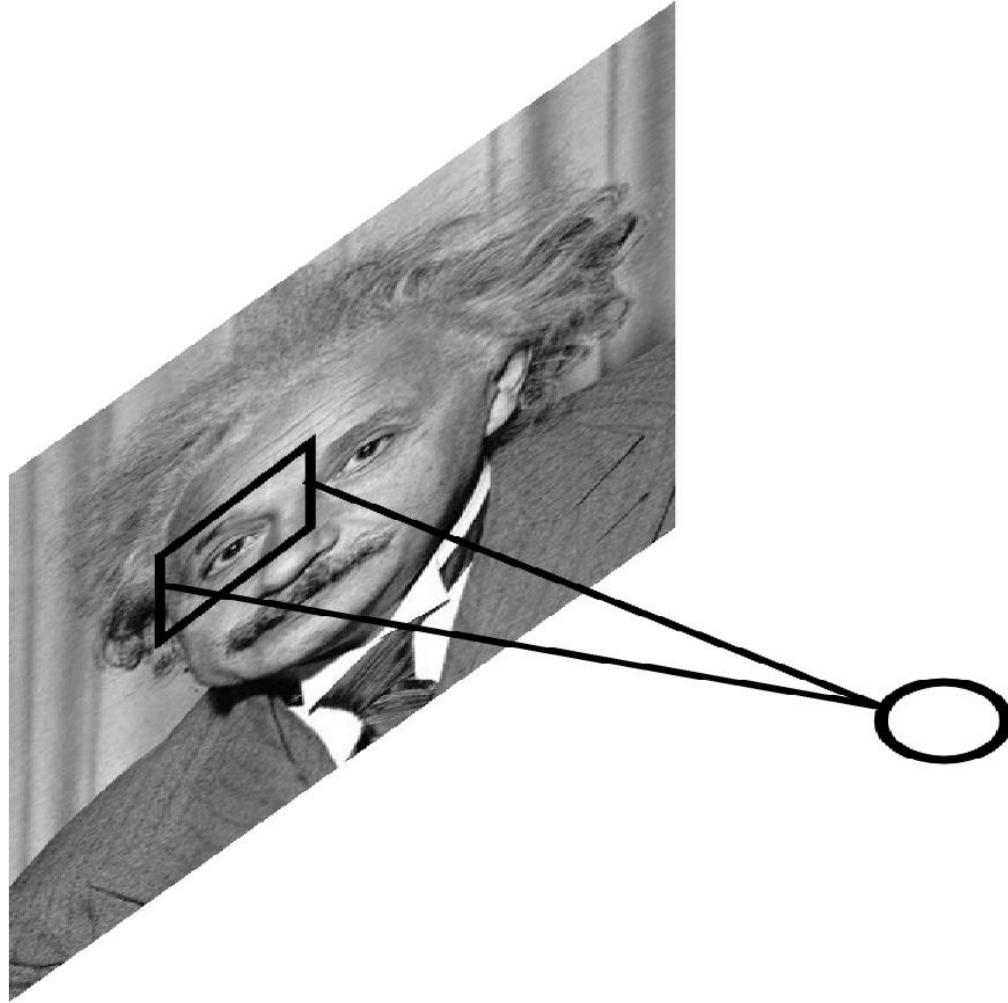


If convolutional filters have size $K \times K$ and stride 1, and pooling layer has pools of size $P \times P$, then each unit in the pooling layer depends upon a patch (at the input of the preceding conv. layer) of size: $(P+K-1) \times (P+K-1)$



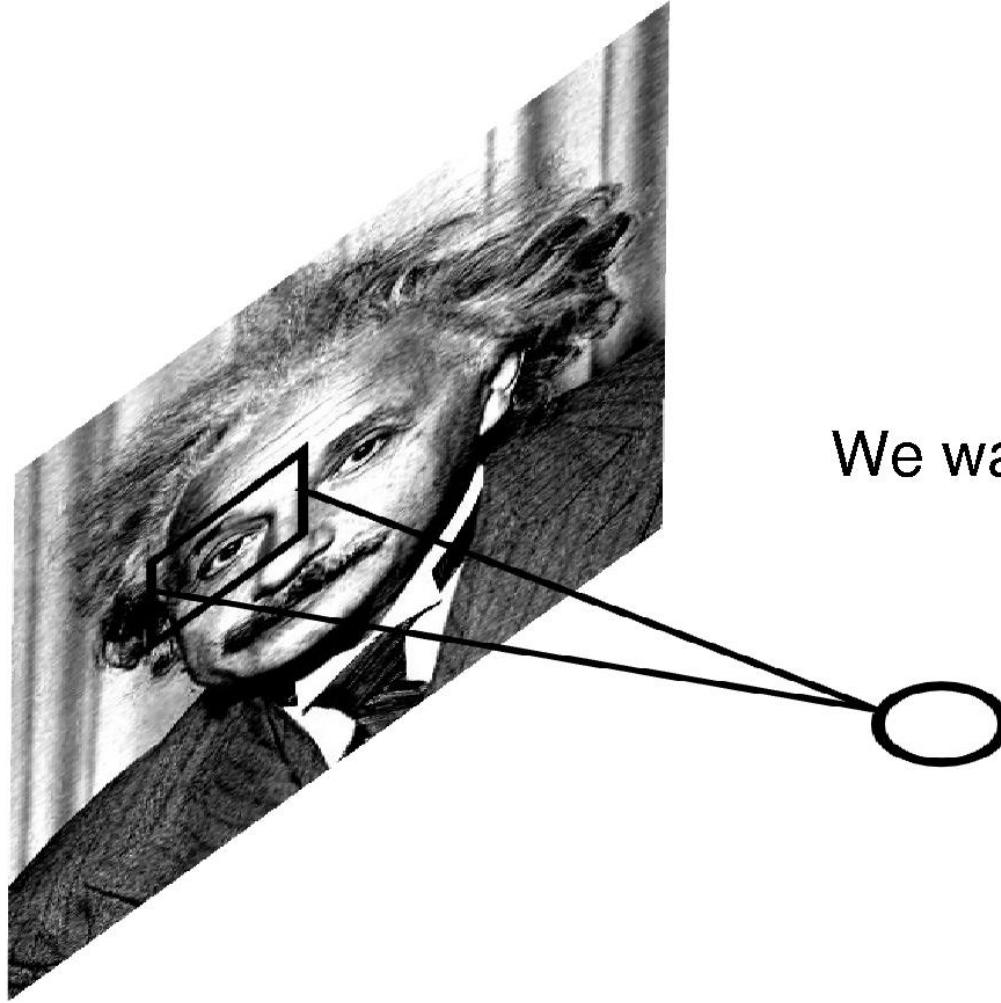
Local Contrast Normalization

$$h^{i+1}(x, y) = \frac{h^i(x, y) - m^i(N(x, y))}{\sigma^i(N(x, y))}$$



Local Contrast Normalization

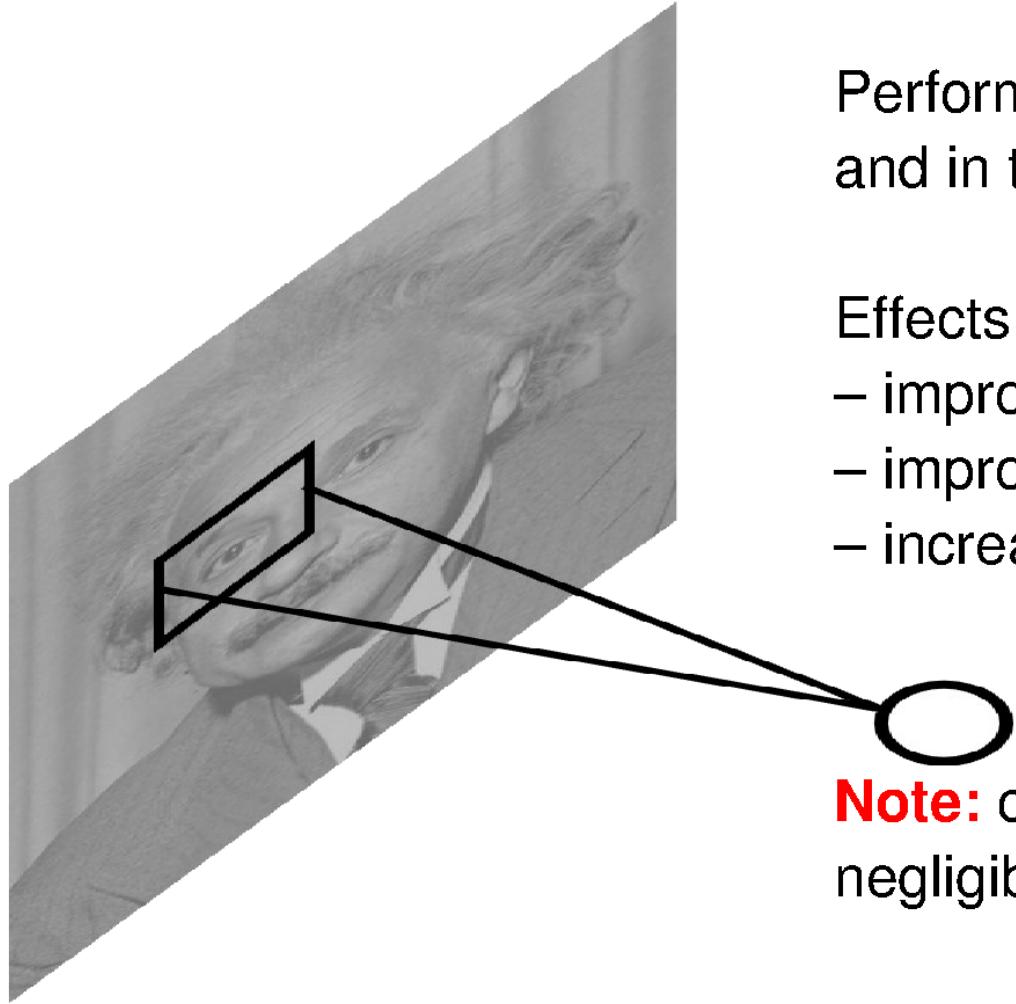
$$h^{i+1}(x, y) = \frac{h^i(x, y) - m^i(N(x, y))}{\sigma^i(N(x, y))}$$



We want the same response.

Local Contrast Normalization

$$h^{i+1}(x, y) = \frac{h^i(x, y) - m^i(N(x, y))}{\sigma^i(N(x, y))}$$



Performed also across features and in the higher layers..

Effects:

- improves invariance
- improves optimization
- increases sparsity

Note: computational cost is negligible w.r.t. conv. layer.

70

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

Sergey Ioffe, Christian Szegedy. 2015

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_1 \dots m\}$;

Parameters to be learned: γ, β

Output: $\{y_i = \text{BN}_{\gamma, \beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \quad // \text{mini-batch mean}$$

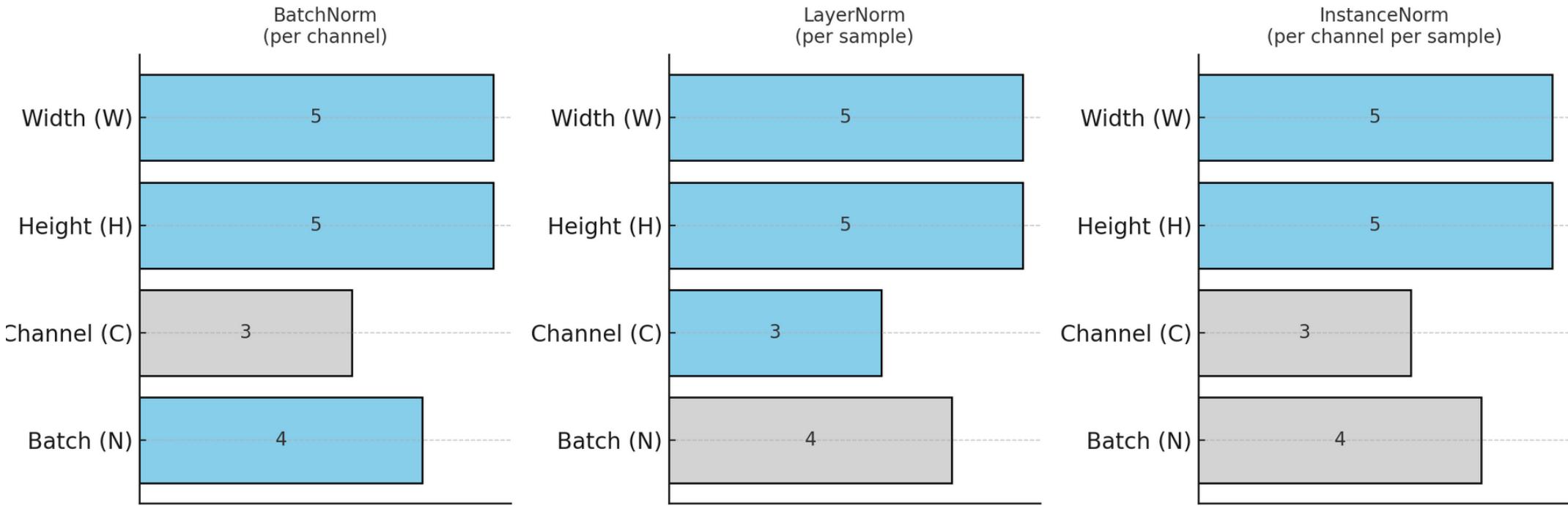
$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \quad // \text{mini-batch variance}$$

$$\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \quad // \text{normalize}$$

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) \quad // \text{scale and shift}$$

- Batch norm is what we will use for project 3
- Gamma and Beta are learned parameters
- The mean and variance are from the current mini-batch
- At test time we use the average of those values since our batch size could be 1
- This is global, per feature map, not local
- Each channel in each layer learns a Gamma and Beta

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

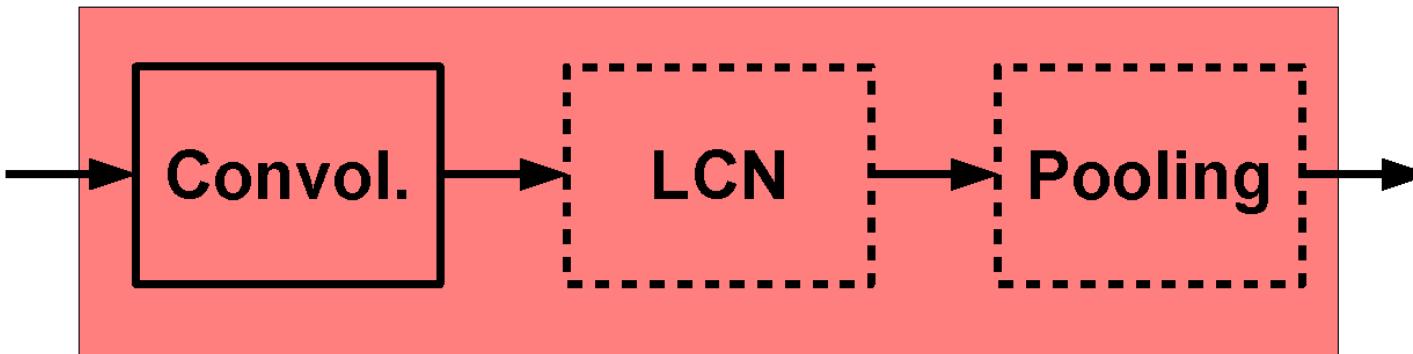
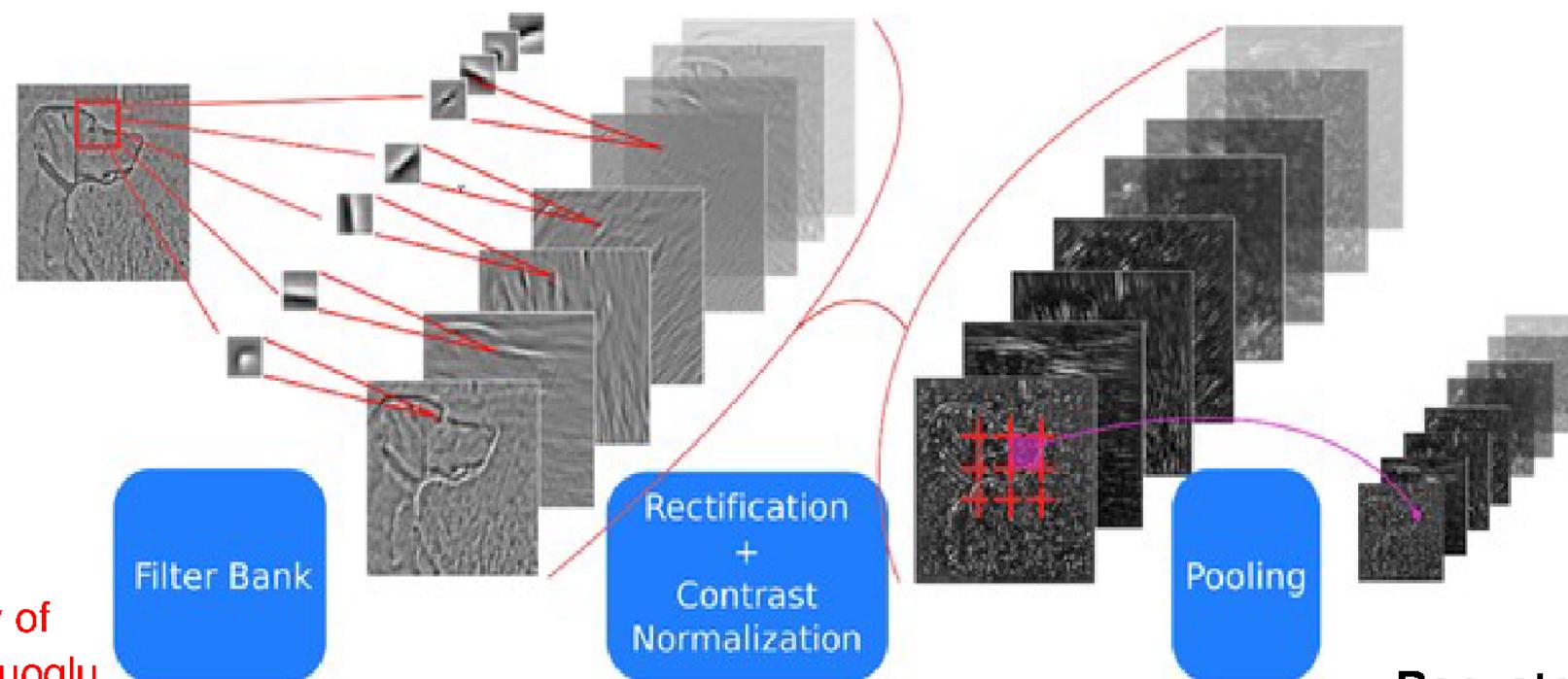


Comparison of how **BatchNorm**, **LayerNorm**, and **InstanceNorm** compute statistics across dimensions of a 4D convolutional tensor (N, C, H, W):

- **BatchNorm (left):** normalizes *per channel* using statistics across **Batch**, **Height**, and **Width**.
- **LayerNorm (middle):** normalizes *per sample* using statistics across **Channels**, **Height**, and **Width**.
- **InstanceNorm (right):** normalizes *per channel per sample* using statistics across **Height** and **Width** only.

ConvNets: Typical Stage

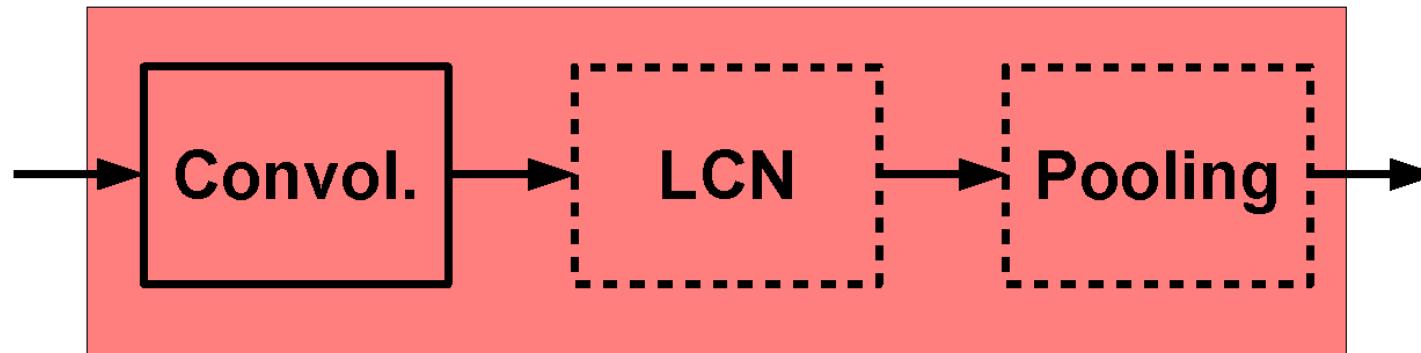
One stage (zoom)



courtesy of
K. Kavukcuoglu

ConvNets: Typical Stage

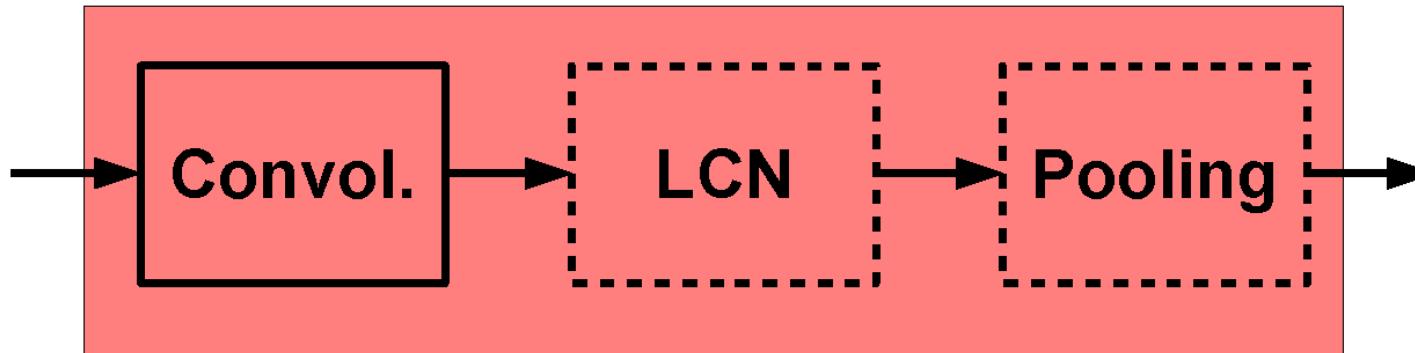
One stage (zoom)



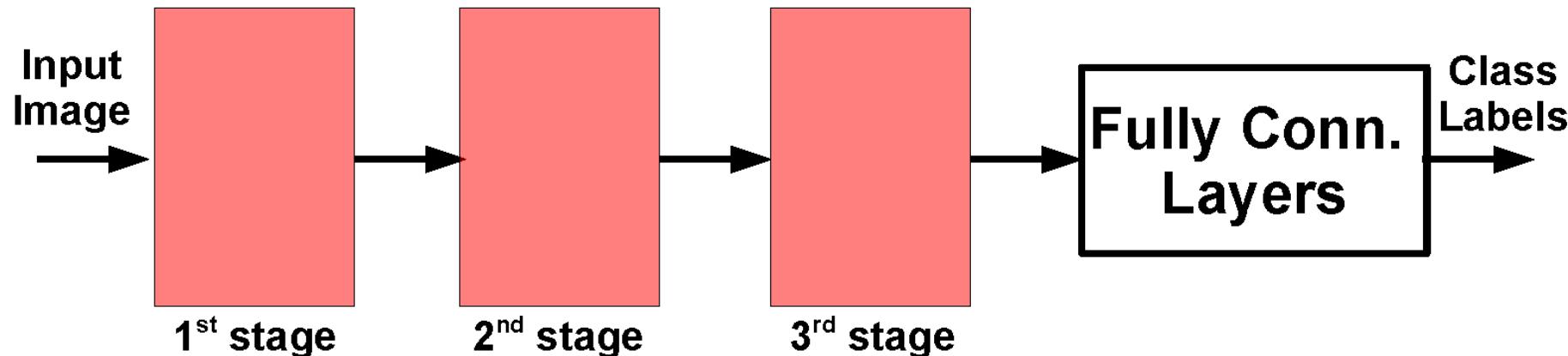
Conceptually similar to: SIFT, HoG, etc.

ConvNets: Typical Architecture

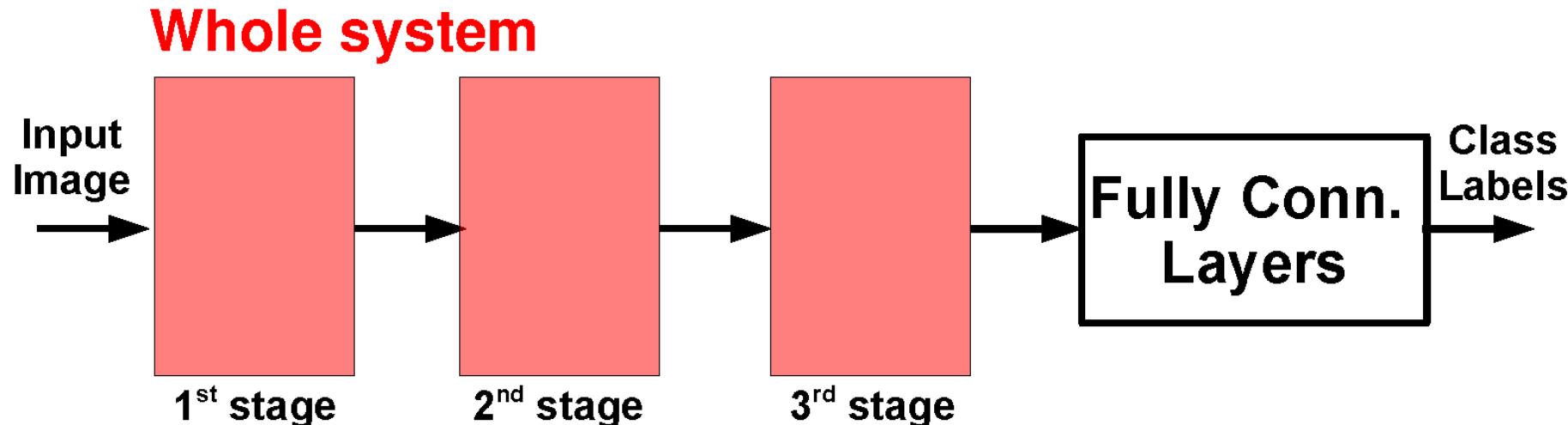
One stage (zoom)



Whole system



ConvNets: Typical Architecture



Conceptually similar to:

SIFT → K-Means → Pyramid Pooling → SVM

Lazebnik et al. "...Spatial Pyramid Matching..." CVPR 2006

SIFT → Fisher Vect. → Pooling → SVM

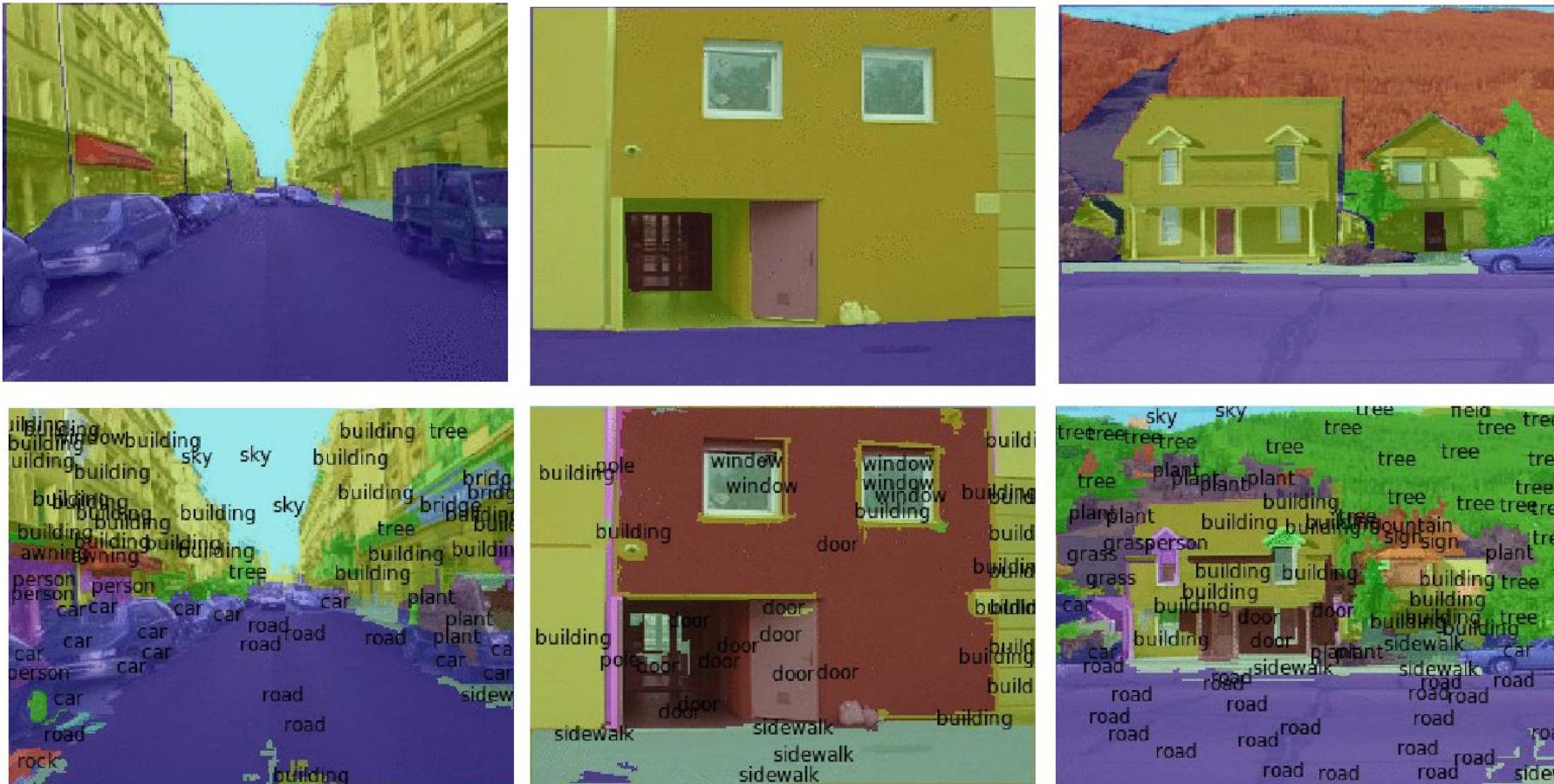
Sanchez et al. "Image classification with F.V.: Theory and practice" IJCV 2012

Outline

- Supervised Neural Networks
- Convolutional Neural Networks
- Examples
- Tips

CONV NETS: EXAMPLES

- Scene Parsing

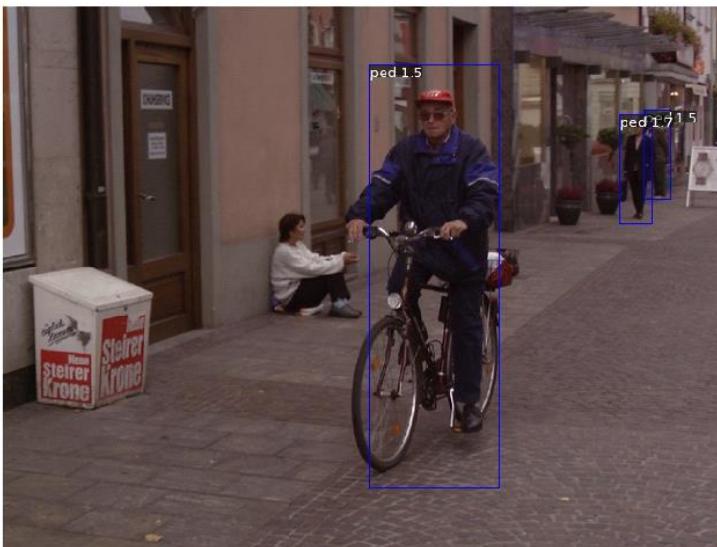
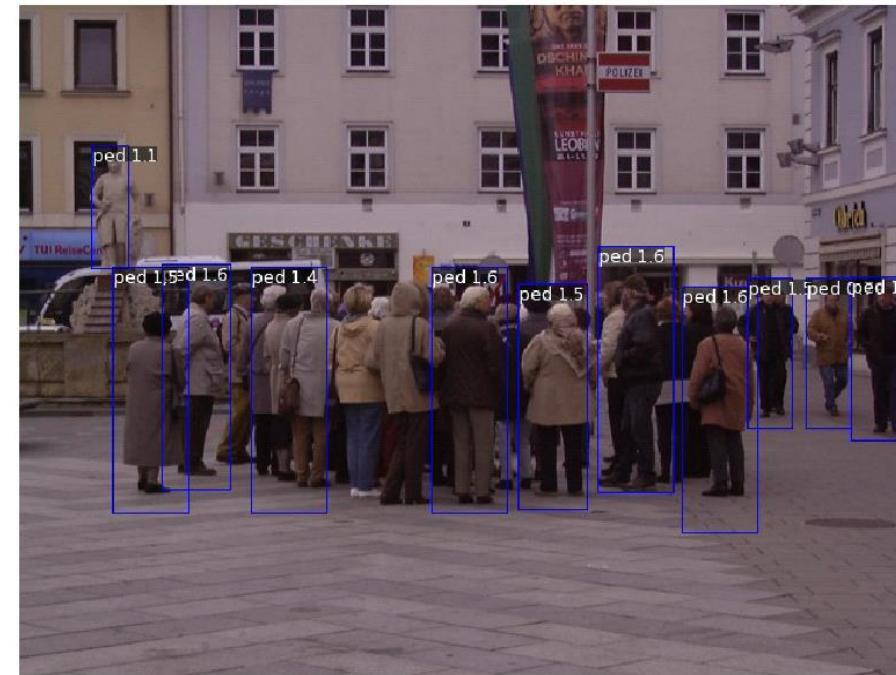


Farabet et al. "Learning hierarchical features for scene labeling" PAMI 2013

Pinheiro et al. "Recurrent CNN for scene parsing" arxiv 2013

CONV NETS: EXAMPLES

- Pedestrian detection

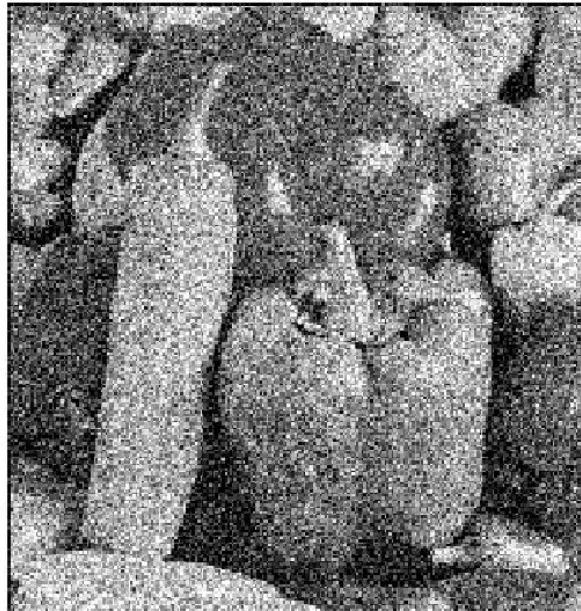


CONV NETS: EXAMPLES

- Denoising

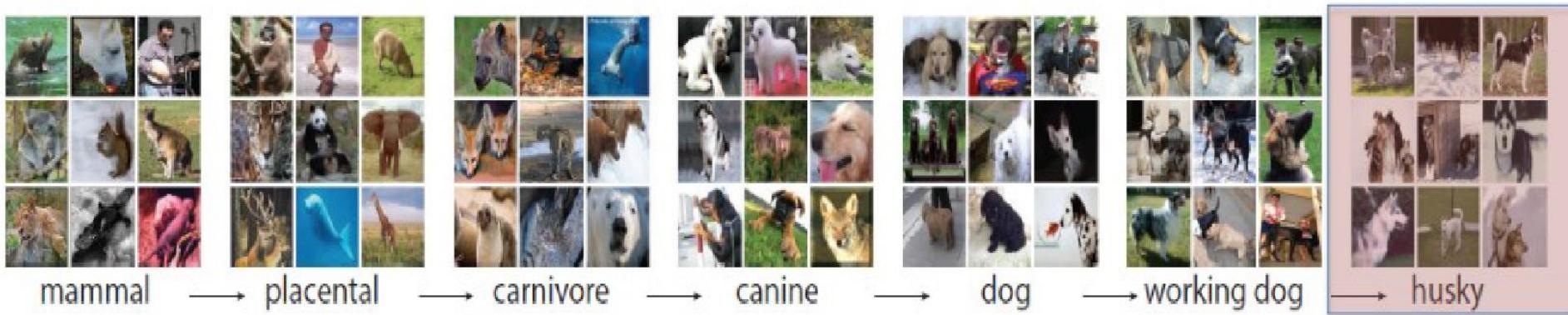
original

noised



denoised

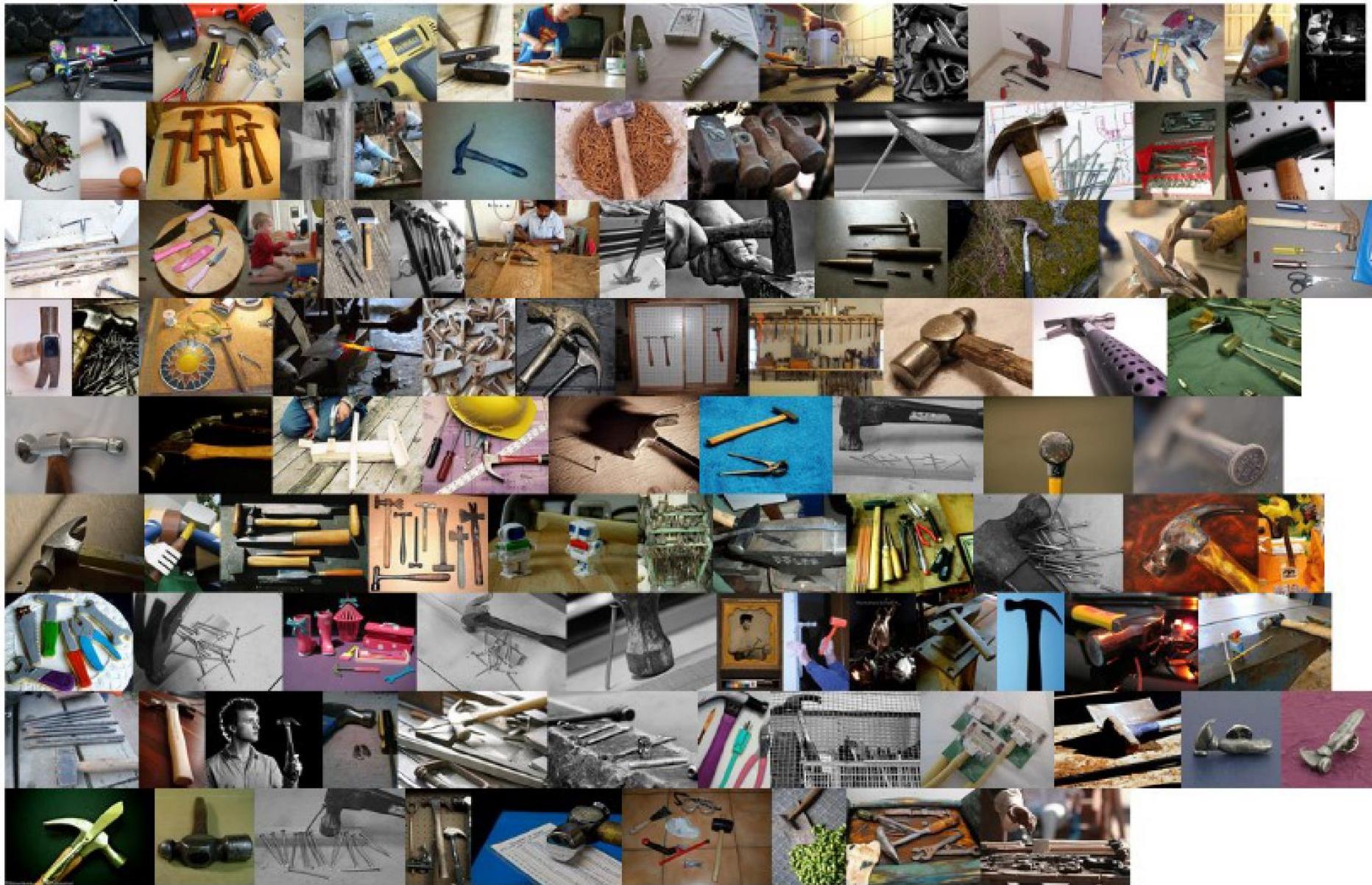
Dataset: ImageNet 2012



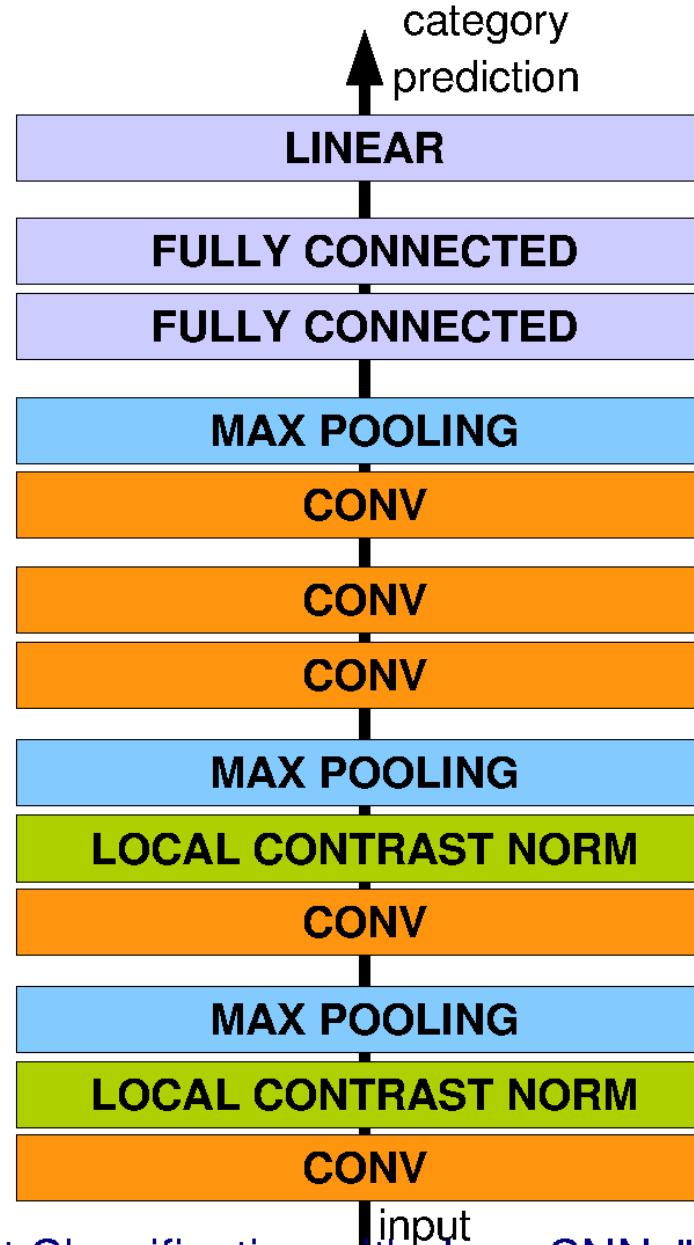
- [S: \(n\) Eskimo dog, husky](#) (breed of heavy-coated Arctic sled dog)
 - *direct hypernym / inherited hypernym / sister term*
- [S: \(p\) working dog](#) (any of several breeds of usually large powerful dogs bred to work as draft animals and guard and guide dogs)
- [S: \(n\) dog, domestic dog, *Canis familiaris*](#) (a member of the genus *Canis* (probably descended from the common wolf) that has been domesticated by man since prehistoric times; occurs in many breeds) "the dog barked all night"
- [S: \(n\) canine, canid](#) (any of various fissiped mammals with nonretractile claws and typically long muzzles)
- [S: \(n\) carnivore](#) (a terrestrial or aquatic flesh-eating mammal) "terrestrial carnivores have four or five clawed digits on each limb"
- [S: \(n\) placental, placental mammal, eutherian, eutherian mammal](#) (mammals having a placenta; all mammals except monotremes and marsupials)
- [S: \(n\) mammal, mammalian](#) (any warm-blooded vertebrate having the skin more or less covered with hair; young are born alive except for the small subclass of monotremes and nourished with milk)
 - [S: \(n\) vertebrate, craniate](#) (animals having a bony or cartilaginous skeleton with a segmented spinal column and a large brain enclosed in a skull or cranium)
 - [S: \(n\) chordate](#) (any animal of the phylum Chordata having a notochord or spinal column)
 - [S: \(n\) animal, animate being, beast, brute, creature, fauna](#) (a living organism characterized by voluntary movement)
 - [S: \(n\) organism, being](#) (a living thing that has (or can develop) the ability to act or function independently)
 - [S: \(n\) living thing, animate thing](#) (a living (or once living) entity)
 - [S: \(n\) whole, unit](#) (an assemblage of parts that is regarded as a single entity) "how big is that part compared to the whole?"; "the team is a unit"
 - [S: \(n\) object, physical object](#) (a tangible and visible entity, an entity that can cast a shadow) "it was full of rackets, balls and other objects"
 - [S: \(n\) physical entity](#) (an entity that has physical existence)
 - [S: \(n\) entity](#) (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

ImageNet

Examples of hammer:

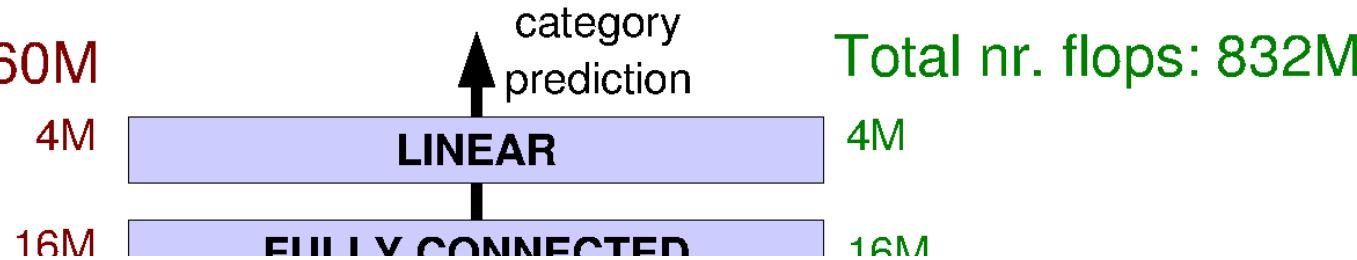


Architecture for Classification



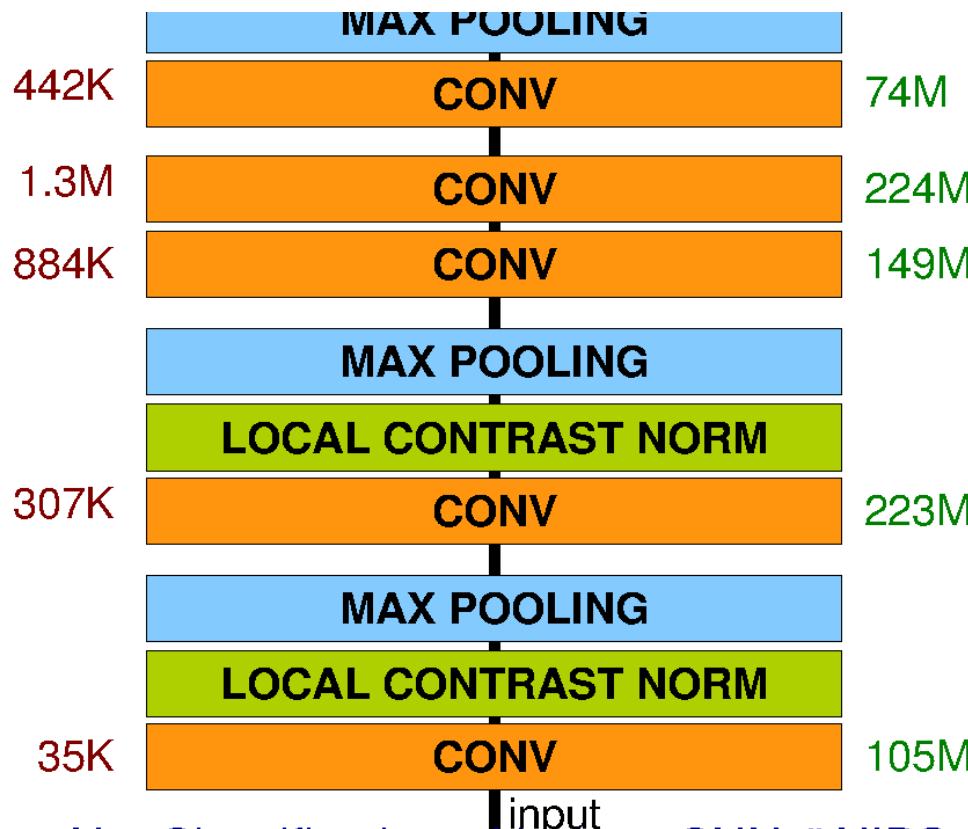
Architecture for Classification

Total nr. params: 60M



Total nr. flops: 832M

The first convolutional layer filters the $224 \times 224 \times 3$ input image with 96 kernels of size $11 \times 11 \times 3$ with a stride of 4 pixels (this is the distance between the receptive field centers of neighboring



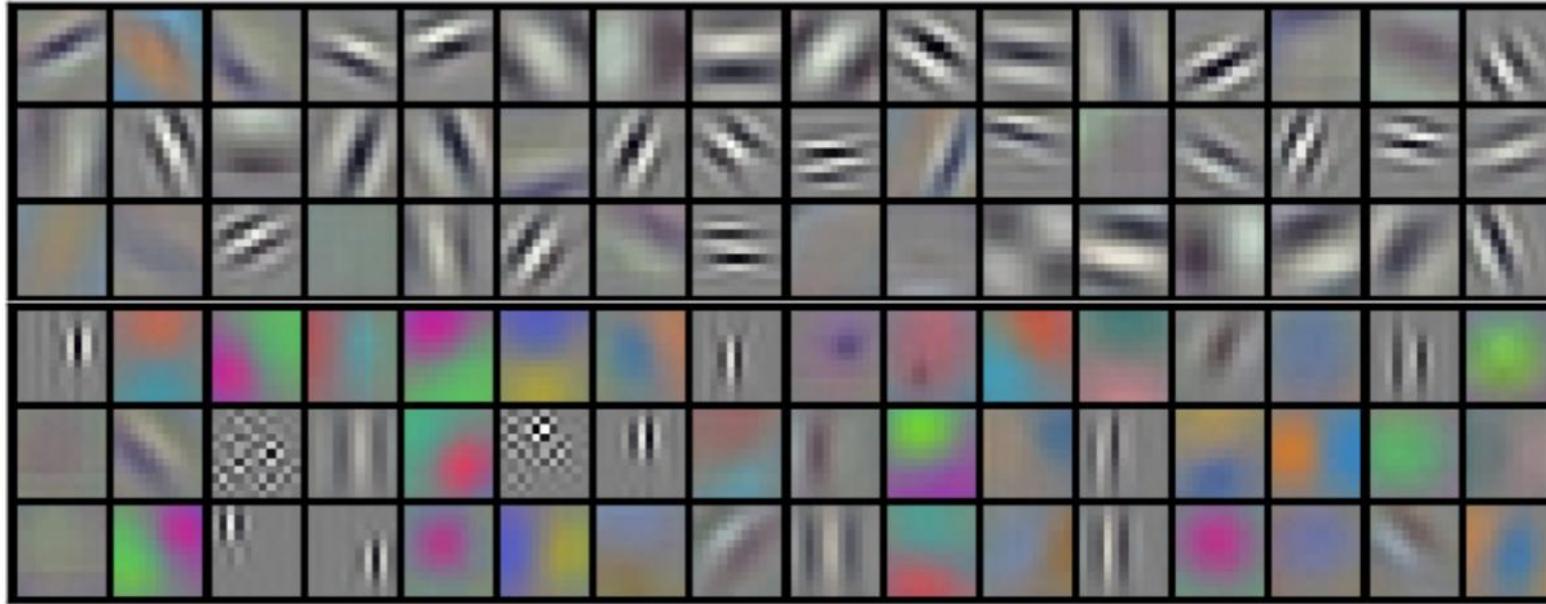


Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The top 48 kernels were learned on GPU 1 while the bottom 48 kernels were learned on GPU 2. See Section 6.1 for details.

Optimization

SGD with momentum:

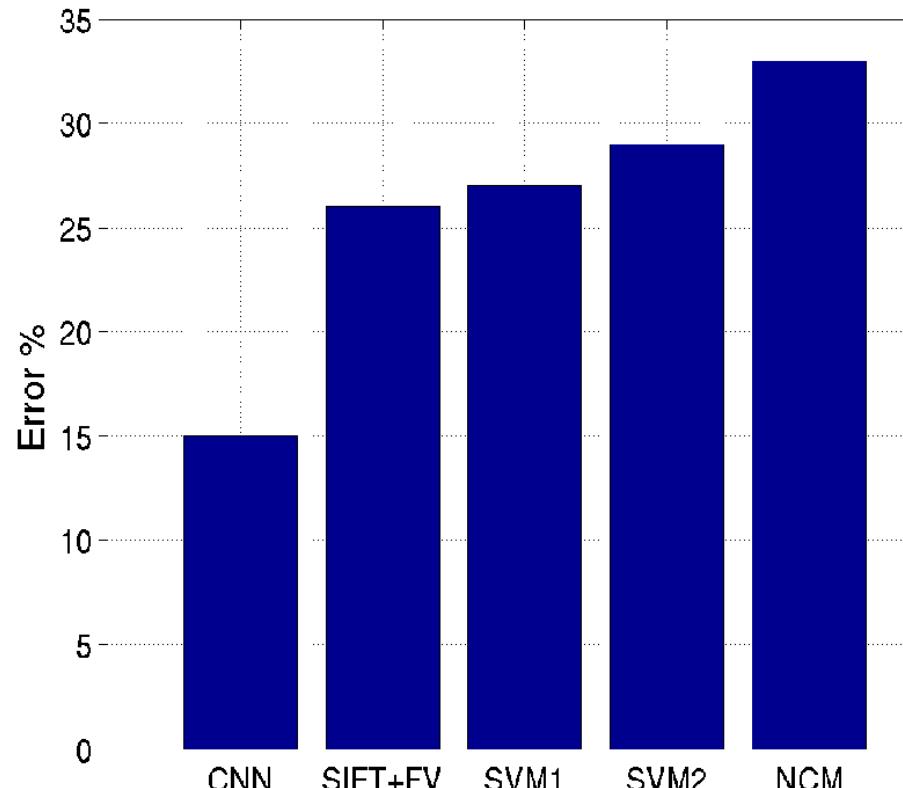
- Learning rate = 0.01
- Momentum = 0.9

Improving generalization by:

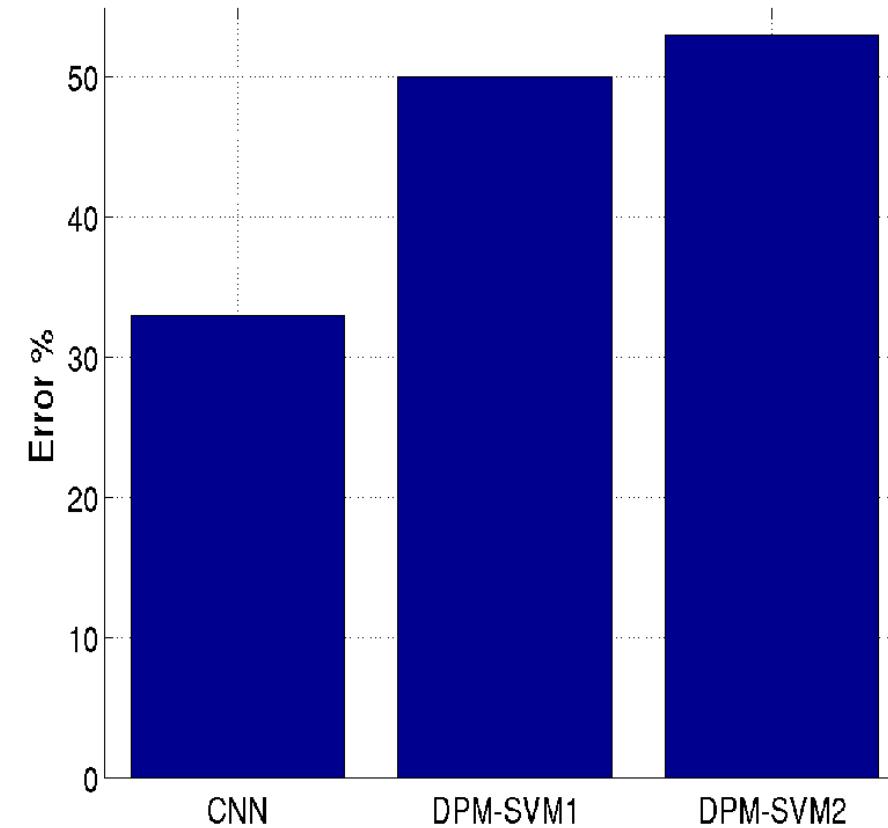
- Weight sharing (convolution)
- Input distortions
- Dropout = 0.5
- Weight decay = 0.0005

Results: ILSVRC 2012

TASK 1 - CLASSIFICATION



TASK 2 - DETECTION



mite

container ship

motor scooter

leopard

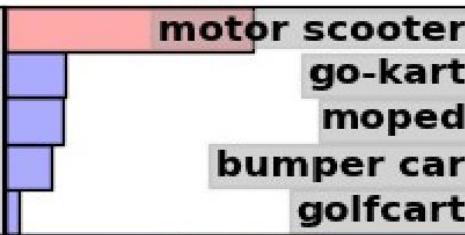
mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat

mite

container ship

motor scooter

leopard

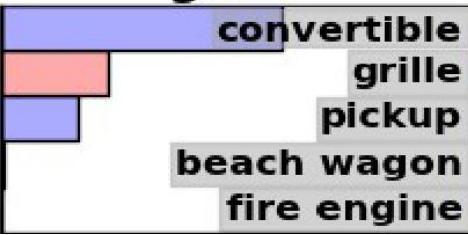
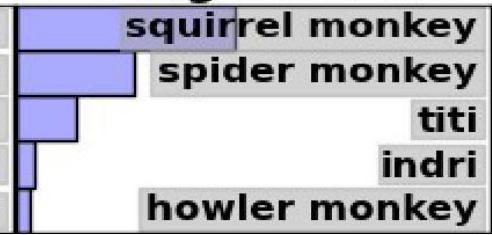


grille

mushroom

cherry

Madagascar cat



This all seems pretty complicated. Why are we using Neural Networks? James's rough assessment:

Learning method	Ease of configuration
Neural Network	1
Nearest Neighbor	10
Linear SVM	10
Non-linear SVM	5
Decision Tree or Random Forest	4

This all seems pretty complicated. Why are we using Neural Networks? James's rough assessment:

Learning method	Ease of configuration	Ease of interpretation
Neural Network	1	1
Nearest Neighbor	10	10
Linear SVM	10	9
Non-linear SVM	5	4
Decision Tree or Random Forest	4	4

This all seems pretty complicated. Why are we using Neural Networks? James's rough assessment:

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training
Neural Network	1	1	1
Nearest Neighbor	10	10	8
Linear SVM	10	9	10
Non-linear SVM	5	4	2
Decision Tree or Random Forest	4	4	4

This all seems pretty complicated. Why are we using Neural Networks? James's rough assessment:

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time
Neural Network	1	1	1	6
Nearest Neighbor	10	10	8	4
Linear SVM	10	9	10	10
Non-linear SVM	5	4	2	2
Decision Tree or Random Forest	4	4	4	8

This all seems pretty complicated. Why are we using Neural Networks? James's rough assessment:

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time	Accuracy w/ lots of data
Neural Network	1	1	1	6	10
Nearest Neighbor	10	10	8	4	7
Linear SVM	10	9	10	10	5
Non-linear SVM	5	4	2	2	8
Decision Tree or Random Forest	4	4	4	8	7

This all seems pretty complicated. Why are we using Neural Networks? James's rough assessment:

Learning method	Ease of configuration	Ease of interpretation	Speed / memory when training	Speed / memory at test time	Accuracy w/ lots of data
Neural Network	1	1	1	6	10
Nearest Neighbor	10	10	8	4	7
Linear SVM	10				
Non-linear SVM	5				
Decision Tree or Random Forest	4				

Representation design matters
more for all of these