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Chromostereopsis is a visual illusion whereby the impression of depth is conveyed in two-
dimensional color images, usually of red—blue or red—green colors, but can also be
perceived with red—grey or blue—grey images.!'![?] Such illusions have been reported for

over a century and have generally been attributed to some form of chromatic aberration.[]
(4151061171

Chromatic aberration results from the differential refraction of light depending on its
wavelength, causing some light rays to converge before others in the eye (longitudinal
chromatic aberration or LCA) and/or to be located on non-corresponding locations of the

two eyes during binocular viewing (transverse chromatic aberration or TCA).

Chromostereopsis is usually observed using a target with red and blue bars and an
achromatic background. Positive chromostereopsis is exhibited when the red bars are
perceived in front of the blue and negative chromostereopsis is exhibited when the red bars
are perceived behind the blue.l?! Several models have been proposed to explain this effect
which is often attributed to longitudinal and/or transverse chromatic aberrations.[°]
However, some work attributes most of the stereoptic effect to transverse chromatic
aberrations in combination with cortical factors.!151l7]

It has been proposed that chromostereopsis could have evolutionary implications in the
development of eyespots in certain butterfly species.
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Object Detectors Emerge in Deep Scene CNNs

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba. 2014



CNN for Object Recognition

Large-scale image classification result on ImageNet
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Figure from Olga Russakovsky ECCV'14 workshop



How Objects are Represented in CNN?
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DrawCNN: visualizing the units' connections



How Objects are Represented in CNN?

Deconvolution

Strong activation image

Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for
accu-rate object detection and semantic segmentation. CVPR 2014

Back-propagation

bell pepper lemon husky
Simonyan, K. et al. Deep inside convolutional networks: Visualising image classification

models and saliency maps. ICLR workshop, 2014



Another CNN interpretation method: Simplifying
Scenes While Maintaining Classifier Decision

Figure 2: Each pair of images shows the original image (left) and a simplified image (nght) that gets
classified by the Places-CNN as the same scene category as the original image. From top to bottom,
the four rows show different scene categories: bedroom, auditorium, art gallery, and dining room.



Scene Recognition

Given an image, predict which place we are in.

Harbor



Learning to Recognize Scenes

Ibedroom

-

mountain

Possible internal representations:

- Objects (scene parts?)
- Scene attributes

- Object parts

- Textures




Scene recognition [edit]

The parahippocampal place area (PPA) is a sub-region of the parahippocampal
cortex that lies medially in the inferior temporo-occipital cortex. PPA plays an
important role in the encoding and recognition of environmental scenes (rather
than faces). fMRI studies indicate that this region of the brain becomes highly
active when human subjects view topographical scene stimuli such as images of
landscapes, cityscapes, or rooms (i.e. images of "places"). Furthermore, according
to work by Pierre Mégevand et al. in 2014, stimulation of the region via intracranial
electrodes yields intense topographical visual hallucinations of places and
situations.[*! The region was first described by Russell Epstein and Nancy
Kanwisher in 1998 at MIT,[°! see also other similar reports by Geoffrey Aguirrel®I’]
and Alumit Ishai.[®]

Damage to the PPA (for example, due to stroke) often leads to a syndrome in
which patients cannot visually recognize scenes even though they can recognize
the individual objects in the scenes (such as people, furniture, etc.). The PPA is
often considered the complement of the fusiform face area (FFA), a nearby cortical
region that responds strongly whenever faces are viewed, and that is believed to
be important for face recognition.
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CNN for Scene Recognition
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Places Database: 7 million images from 400 scene categories
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scene category
Places-CNN: AlexNet CNN on 2.5 million images from 205 scene categories.

Places 205 SUN 205
Places-CNN 50.0% 66.2%
ImageNet CNN feature+SVM  40.8% 49.6%

Zhou, et al. NIPS, 2014.



ImageNet CNN and Places CNN

II Same architecture: AlexNet

Places CNN for Scene Classification
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Data-Driven Approach to Study CNN

Neuroscientists study brain stimulus presented

on TV screen
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Estimating the Receptive Fields

discrepancy maps for top 10 images

..-...---- receptive field

sliding- WmeW stimuli calibrated discrepancy maps



Estimating the Receptive Fields

Estimated receptive fields Actual size of RF is much smaller than the theoretic size

pool1 conv3 pool5




Estimating the Receptive Fields

Estimated receptive fields Actual size of RF is much smaller than the theoretic size

pool1 conv3 pool5

Segmentation using the RF of Units
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Annotating the Semantics of Units

Top ranked segmented images are cropped and sent to Amazon Turk for annotation.
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Word/Short description:
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Annotating the Semantics of Units

Pool5, unit 76; Label: ocean; Type: scene; Precision: 93%
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Annotating the Semantics of Units

Pool5, unit 13; Label: Lamps; Type: n: 84%
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Annotating the Semantics of Units

Pool5, unit 77; Label:legs; Type: object part Precision: 96%
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Annotating the Semantics of Units

Pool5, unit 112; Label: pool table; Type: object; Precision: 70%

SEENIET S




Annotating the Semantics of Units

Pool5, unit 22; Label: dinner table; Type: scene; Precision: 60%




Wedding-cake style YA 4 languages -
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From Wikipedia, the free encyclopedia

In architecture, a wedding-cake style is an informal reference to buildings with many distinct
tiers, each set back from the one below, resulting in a shape like a wedding cake, and may also
apply to buildings that are richly ornamented, as if made in sugar icing.
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¢ |n Italy, the Monument to Vittorio Emanuele Il is in wedding cake style.

e The British wedding-cake style was created by Sir Christopher Wren, who often placed a

steeple at the top of a series of classically detailed diminishing lower stages as with St.
Paul's Cathedral.
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Zoning Resolution,[l a former zoning code which forced buildings to reduce their shadows aee
sl FLEES ECEL TR
at street level by employing setbacks, resulting in a ziggurat profile.?l Many iconic New York [ 28 150 D A o 70
buildings in the Art Deco style were desighed to comply with these zoning regulations, and
those designs were highly influential on building projects in other cities. The wedding cake
. . 120 Wall Street in New
design subsequently became a common feature of many Art Deco buildings around the

York, a skyscraper from 1930,
world. The dome of the United States Capitol in Washington, D.C. is also described as being

is an archetype of wedding-
of wedding-cake style. cake architecture.
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¢ |n the United States, the style has been predominant in New York City, thanks to the 1916
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¢ |In Russia, the wedding-cake style supercharged with boldly scaled classical detailing is a
typical feature of Stalinist architecture.



Distribution of Semantic Types at Each Layer
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Object detectors emerge within CNN trained to classify
scenes, without any object supervision!



Histogram of

ImageNet-CNN (59/256
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Histogram of Emerged Objects in Pool5

i Places-CNN (151/256)
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Wrap up

There are many ways to visualize what a neural network
has learned

Networks learn smaller receptive fields than the
“theoretical” receptive field.

As you go deeper in the network, the hidden activations
correspond more to high-level semantic concepts

Object detectors emerge inside a CNN trained to
classify scenes, without any object supervision.
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