


Deeper Deep Learning and

Semantic Segmentation



Today’s outline

• What do more recent deep learning architectures look like?

– VGG Net

– Google Inception architectures

– ResNet



Recap: Convolutional Network, AlexNet



Recap: Convolutional Network Interpretation

1

Object detectors emerge within CNN trained to classify 

scenes, without any object supervision!



Beyond AlexNet



VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the “VGG” networks. 

“Perceptual Loss” in generative deep learning refers to these networks

150k citations as of 10/14/2025







“VGG” networks are commonly used as the basis for “Perceptual Loss”.

The images on the right are as close as possible to all images on the left in various feature spaces.

Understanding and Simplifying Perceptual Distances. Dan Amir and Yair Weiss. CVPR 2021
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Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich

2015

This is the “Inception” architecture or “GoogLeNet”

*The architecture blocks are called “Inception” modules

and the collection of them into a particular net is “GoogLeNet”

70k citations as of 10/14/2025





Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million









ConvNet Depth
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Surely it would be ridiculous to go any 
deeper…



Deep Residual Learning  
for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, JianSun
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Cited by 290k papers as of 10/14/2025
Nearing the most cited paper ever



https://www.nature.com/articles/d41586-025-01125-9





Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

ResNet @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

• ImageNet Classification: “Ultra-deep” 152-layer nets

• ImageNet Detection: 16% better than 2nd

• ImageNet Localization: 27% better than 2nd

• COCO Detection: 11% better than 2nd

• COCO Segmentation: 12% better than 2nd

*improvements are relative numbers



Revolution of Depth
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Revolution of Depth

34

58
66

86

HOG, DPM AlexNet  
(RCNN)

VGG  
(RCNN)

ResNet  
(Faster RCNN)*

PASCAL VOC 2007 Object Detection mAP (%)

shallow
8 layers

16 layers

101 layers

*w/ other improvements & moredata

Engines of

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

visual recognition



Revolution of Depth

11x11 conv, 96, /4, pool/2

5x5 conv, 256, pool/2

3x3 conv, 384

3x3 conv, 384

3x3 conv, 256, pool/2

fc, 4096

fc, 4096
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

AlexNet, 8layers
(ILSVRC 2012)



Revolution of Depth
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AlexNet, 8layers
(ILSVRC 2012)
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VGG, 19 layers
(ILSVRC 2014)

i npu t

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
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(ILSVRC 2014)



AlexNet, 8layers
(ILSVRC 2012)

ResNet, 152 layers
(ILSVRC 2015)
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

VGG, 19 layers
(ILSVRC 2014)



Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

Is learning better networks
as simple as stacking more layers?



Simply stacking layers?
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• Plain nets: stacking 3x3 conv layers…
• 56-layer net has higher training error and test error than 20-layer net

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Simply stacking layers?
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• “Overly deep” plain nets have higher training error
• A general phenomenon, observed in many datasets

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

solid: test/val  
dashed: train
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a shallower  
model

(18 layers)

a deeper  
counterpart  
(34 layers)
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“extra”  
layers

• Richer solutionspace

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

• A deeper model should not have higher  
training error

• A solution by construction:
• original layers: copied froma  

learned shallower model
• extra layers: set as identity
• at least the same training error

• Optimization difficulties: solvers cannot  
find the solution when going deeper…



Deep Residual Learning

• Plain net

any two  
stacked layers

𝑥

weight layer

weight layer

relu

relu
𝐻(𝑥)

𝐻 𝑥 is any desired mapping,  

hope the 2 weight layers fit𝐻(𝑥)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



Deep Residual Learning

• Residual net 𝐻 𝑥 is any desired mapping,  

hope the 2 weight layers fit𝐻(𝑥) 

hope the 2 weight layers fit 𝐹(𝑥)  

let 𝐻 𝑥 = 𝐹 𝑥 + 𝑥

weight layer

weight layer

relu

𝑥

identity

𝑥

𝐻 𝑥 = 𝐹 𝑥 + 𝑥
relu

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

𝐹(𝑥)



Deep Residual Learning

• 𝐹 𝑥 is a residual mapping w.r.t. identity

• If identity wereoptimal,  
easy to set weights as 0

• If optimal mapping iscloser to identity,  
easier to find small fluctuations

weight layer

weight layer

relu

𝑥

identity

𝑥

𝐻 𝑥 = 𝐹 𝑥 + 𝑥
relu

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

𝐹(𝑥)



Network “Design”

• Keep it simple

• Our basic design (VGG-style)

• all 3x3 conv (almost)

• spatial size /2 => # filters x2
• Simple design; justdeep!
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Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

plain net ResNet



CIFAR-10 experiments
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• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



ImageNet experiments
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• Deep ResNets can be trained without difficulties
• Deeper ResNets have lower training error, and also lower test error

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



ImageNet experiments

7.4

6.7

6.1
5.7

4

5

6

7

8

ResNet-34ResNet-152 ResNet-101 ResNet-50

10-crop testing, top-5 val error (%)

this model has

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

lower time complexity
than VGG-16/19

• Deeper ResNets have lower error



Beyond classification

A treasure from ImageNet is on learning features.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv2015.



“Features matter.” (quote [Girshick et al. 2014], the R-CNN paper)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.

task 2nd-place  
winner

ResNets margin
(relative)

ImageNet Localization (top-5 error) 27%

ImageNet Detection (mAP@.5) 16%

COCO Detection (mAP@.5:.95) 11%

COCO Segmentation (mAP@.5:.95) 25.1 28.2 12%

• Our results are all based on ResNet-101
• Our features are well transferrable

12.0 9.0

53.6 absolute 62.1
8.5% better!

33.5 37.3



Object Detection (brief)

• Simply “Faster R-CNN + ResNet”

image

CNN

feature map

Region Proposal Net

proposals

classifier

RoI pooling

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.  
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Faster R-CNN  
baseline

mAP@.5 mAP@.5:.95

VGG-16 41.5 21.5

ResNet-101 48.4 27.2

COCO detection results  

(ResNet has 28% relative gain)



Our results on MS COCO

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.  
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

*the original image is fromthe COCO dataset



Why does ResNet work so well?

• The architecture is somehow easier 
to optimize.

• The authors argue it probably isn’t 
because it solves the “vanishing 
gradient” problem.

• While the gradients might not be 
“vanishing” in “plain” nets, they 
don’t seem as stable and 
trustworthy, according to follow up 
work, e.g. 

Visualizing the Loss Landscape of 

Neural Nets. Hao Li, Zheng Xu , Gavin 

Taylor, Christoph Studer, Tom Goldstein. 

NeurIPS 2018.



Semantic Segmentation



Project 4









Measuring Performance: Intersection over Union

Figure source: http://cs230.stanford.edu/section/8/

Applies to segmentations, as well



Figure source: https://www.pinterest.com/pin/457959855830667185/



Figure source: https://www.gettyimages.com/photos/moss-rock?phrase=moss%20rock&sort=mostpopular



Classification 
Semantic

Segmentation
Object 

Detection

Instance 

Segmentation

CAT GRASS, CAT, 

TREE, SKY
DOG, DOG, CAT DOG, DOG, CAT

No spatial 

extent

Multiple 

Objects

No objects, just 

pixels

Tasks: Semantic Segmentation

58

Slide Credit: Justin Johnson and David Fouhey



“tabby cat”

a classification network

Fully Convolutional Networks for Semantic Segmentation.

Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015



becoming fully convolutional

Note: “Fully Convolutional” and “Fully Connected” aren’t the same thing. 

They’re almost opposites, in fact.



becoming fully convolutional



upsampling output



end-to-end, pixels-to-pixels network



Convolutions

:

D x H x W

Scores:

C x H x W

argmax

Predictions:

H x W

Design a network as a bunch of 

convolutional layers to  make predictions for 

pixels all at once!

Loss function: Per-Pixel cross-entropy

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Fully Convolutional Network

Input:

3 x H x W

64

Slide Credit: Justin Johnson and David Fouhey

Conv Conv Conv Conv



Conv Conv Conv Conv argmax

Design a network as a bunch of 

convolutional layers to  make predictions for 

pixels all at once!

Problem #1: Effective 

receptive field size is linear 

in number of conv layers: 

With L 3x3 conv layers, 

receptive field is 1+2L

Fully Convolutional Network

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Input:

3 x H x W

65

Slide Credit: Justin Johnson and David Fouhey



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf



Dilated Convolution

Figure source: https://github.com/vdumoulin/conv_arithmetic



Input:

3 x H x W

Conv Conv Conv Conv argmax

Design a network as a bunch of 

convolutional layers to  make predictions for 

pixels all at once!

Problem #1: Effective 

receptive field size is linear 

in number of conv layers: 

With L 3x3 conv layers, 

receptive field is 1+2L

Problem #2: Convolution 

on high res images is 

expensive!

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Fully Convolutional Network

72

Slide Credit: Justin Johnson and David Fouhey



Design network as a bunch of convolutional layers, 

with downsampling and upsampling inside the 

network!

High-res:

D1 x H/2 x W/2
High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, 

CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Prediction

s:

H x W

Input:

3 x H x W

Fully Convolutional Network

Downsampling:

Pooling, strided 

convolution

Upsampling:

???

73

Slide Credit: Justin Johnson and David Fouhey



In-Network Upsampling: “Unpooling”

1

3

2

4

1

1

1

1
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3
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4

4
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Input 

C x 2 x 2

Output

C x 4 x 4

Nearest Neighbor

1

3

2

4

1

0

0

0

2

0
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0

3

0

0

0

4

0

0

0

Input 

C x 2 x 2

Output

C x 4 x 4

Bed of Nails
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Slide Credit: Justin Johnson and David Fouhey



Upsampling: Bilinear Interpolation

Input: C x 2 x 2 Output: C x 4 x 4

1 2

3 4

1.0

0

1.2

5

1.7

5

2.0

0

1.5

0

1.7

5

2.2

5

2.5

0

2.5

0

2.7

5

3.2

5

3.5

0

3.0

0

3.2

5

3.7

5

4.0

0

Use two closest neighbors in x and y to 

construct linear approximations
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Slide Credit: Justin Johnson and David Fouhey



Upsampling: Transpose Convolution

Sometimes called 

“Deconvolution” but that 

is a problematic name

I like the term 

“broadcast” convolution

In this case, the filter is 

4x4 and the outer 

boundary of the output 

is unused

A guide to convolution arithmetic for deep learning

Vincent Dumoulin, Francesco Visin



Upsampling: Transpose Convolution

Sometimes called 

“Deconvolution” but that 

is a problematic name

I like the term 

“broadcast” convolution



Design network as a bunch of convolutional layers, 

with downsampling and upsampling inside the 

network!

High-res:

D1 x H/2 x W/2
High-res:

D1 x H/2 x W/2

Med-res:

D2 x H/4 x W/4

Med-res:

D2 x H/4 x W/4

Low-res:

D3 x H/4 x W/4

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, 

CVPR 2015

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Prediction

s:

H x W

Input:

3 x H x W

Fully Convolutional Network

Downsampling:

Pooling, strided 

convolution

Upsampling:

???

78

Slide Credit: Justin Johnson and David Fouhey



PSPNet



PSPNet uses a ResNet backbone

● 50, 101, or 152 Layers

● 50 Layers is already quite deep!





Pyramid Scene Parsing Network

82“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Framework overview of PSPNet

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

83“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Regular feature extractor

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

84“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Context modeling: pyramid pooling module

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

85“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]

Convolutional classifier for pixel-wise prediction

Slide Credit: Hengshuang Zhao and Jiaya Jia



Pyramid Pooling Module

86PPM: spatial illustration
Slide Credit: Hengshuang Zhao and Jiaya Jia



ImageNet Scene Parsing Challenge

87

detailed performance analysis consistent improvement over network depth

PSPNet: 1st place among totally 75 submissions worldwide.

Slide Credit: Hengshuang Zhao and Jiaya Jia



Result on PASCAL VOC 2012

88

Slide Credit: Hengshuang Zhao and Jiaya Jia



Result on Cityscapes

89

Slide Credit: Hengshuang Zhao and Jiaya Jia



91



PSPNet paper

https://arxiv.org/pdf/1612.01105



MSeg: A Composite Dataset for 
Multi-Domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener, 

James Hays, Vladlen Koltun



https://www.youtube.com/watch?v=8wqNX7_4vAE



Which dataset to train on?

Driving: Cityscapes, Mapillary Vistas, CamVid, KITTI, VIPER, Indian Driving Dataset, Berkeley Driving Dataset, 

WildDash, …

Indoors: NYU, SUN RGBD, ScanNet, InteriorNet, ...

Multi-domain: COCO, ADE20K, PASCAL VOC, ...

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020



Methodology:
Dataset mixing and zero-shot transfer

● Perform a training/test split at the level of datasets

● Train on many diverse datasets

● Test on datasets that were never seen during training

● Zero-shot cross-dataset transfer is a proxy for generality and robustness in the real world





Class Frequency MSeg proportion per dataset

…







Generality and Robustness



Accuracy on MSeg training datasets



Accuracy on MSeg test datasets







“Bird’s eye” Semantic Segmentation for Robots

TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation

Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqi Li, Nolan Wagener, Matthew Schmittle, JoonHo Lee, 

Wentao Yuan, Zoey Chen, Samuel Deng, Greg Okopal, Dieter Fox, Byron Boots, Amirreza Shaban
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