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Deeper Deep Learning and
Semantic Segmentation



Today's outline

* What do more recent deep learning architectures look like?
— VGG Net
— Google Inception architectures
— ResNet



Recap: Convolutional Network, AlexNet

Layer 3 Layer 4 Layer 5



Recap: Convolutional Network Interpretation
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Object detectors emerge within CNN trained to classify
scenes, without any object supervision!



Beyond AlexNet



VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-
SCALE IMAGE RECOGNITION

Karen Simonyan & Andrew Zisserman 2015

These are the “VGG” networks.
“Perceptual Loss” in generative deep learning refers to these networks

150k citations as of 10/14/2025



ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128

conv3-128

conv3-128
conv3-128

conv3i-128
conv3i-128

conv3i-128
convi-128

conv3-128
conv3-128

maxpool

conv3-256
conv3-256

conv3-256
conv3-256

conv3-256
conv3-256

conv3i-256
conv3i-256
convl-256

conv3-256
conv3-256
conv3-256

conv3-256
conv3-256
conv3-256
conv3-256

maxpool

conv3i-512
convi-512

conv3-512
conv3-512

conv3-512
convi-512

conv3i-S512
conv3i-512
convl-512

conv3-512
convi-512
conv3-512

conv3-512
conv3-512
conv3-512
conv3-512

maxpool

convi-512
conv3i-512

convi-512
conv3-512

conv3-512
conv3-512

conv3i-S512
conv3i-S512

convi-S512
convi3-S512

conv3-512
conv3-512

convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max
Table 2: Number of parameters (in millions).
Network ALA-LRN B C D E
Number of parameters 133 133 | 134 | 138 | 144




Table 7: Comparison with the state of the art in ILSVRC classification. Our method 1s denoted
as “VGG”. Only the results obtained without outside training data are reported.

Method top-1 val. error (%) | top-5 val. error (%) | top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) 24.7 7.5 7.3
GoogLeNet (Szegedy et al., 2014) (1 net) - 7.9
GooglLeNet (Szegedy et al., 2014) (7 nets) - 6.7

MSRA (He et al., 2014) (11 nets) - - 8.1
MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7
Clarifai (Russakovsky et al., 2014) (1 net) - - 12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
OverFeat (Sermanet et al., 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al., 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -




(A)

L2 VGG VGG S-CNN MMD
Trained Random Random

Samples Mean Image

“VGG” networks are commonly used as the basis for “Perceptual Loss”.
The images on the right are as close as possible to all images on the left in various feature spaces.

Understanding and Simplifying Perceptual Distances. Dan Amir and Yair Weiss. CVPR 2021



Generative Image Dynamics
Zhengqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski https://generative-dynamics.github.io/

Google Research
CVPR 2024 Best Paper Award

Abstract

We present an approach to modeling an image-space prior on scene motion. Our prior is learned
from a collection of motion trajectories extracted from real video sequences depicting natural,
oscillatory dynamics such as trees, flowers, candles, and clothes swaying in the wind. We model this
dense, long-term motion prior in the Fourier domain:given a single image, our trained model uses a
frequency-coordinated diffusion sampling process to predict a spectral volume, which can be
converted into a motion texture that spans an entire video. Along with an image-based rendering
module, these trajectories can be used for a number of downstream applications, such as turning still
images into seamlessly looping videos, or allowing users to realistically interact with objects in real

pictures by interpreting the spectral volumes as image-space modal bases, which approximate object
dynamics.


https://generative-dynamics.github.io/
https://generative-dynamics.github.io/
https://generative-dynamics.github.io/

Generative Image Dynamics

Zhengaqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski https://generative-dynamics.github.io/
Google Research

CVPR 2024 Best Paper Award

We jointly train the feature extractor and synthesis net-
works with start and target frames (/, /;) randomly sampled
from real videos, using the estimated flow field from [ to
I; to warp encoded features from I, and supervising predic-
S¢ tions I ¢ against I; with a VGG perceptual loss [49].

v aof

N

.

Input still picture

Interactive dynamics


https://generative-dynamics.github.io/
https://generative-dynamics.github.io/
https://generative-dynamics.github.io/

Going Deeper with Convolutions

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich
2015

This is the “Inception” architecture or “GoogLeNet”

*The architecture blocks are called “Inception” modules
and the collection of them into a particular net is “GoogLeNet”

70k citations as of 10/14/2025
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(b) Inception module with dimensionality reduction




type pa;;:ggize/ Olslg)eut depth | #1x1 ig:ci #3x3 féijci #5%5 523; params ops
convolution TXT/2 112x112x64 1 2.7K 34M
max pool 3x3/2 56x56x64 0

convolution 3x3/1 56 x56x192 2 64 192 112K | 360M
max pool 3x3/2 28x28x192 0

inception (3a) 28 x28x 256 2 64 96 128 16 32 32 159K | 128M
inception (3b) 28 %28 x480 2 128 128 192 32 96 64 380K | 304M
max pool 3x3/2 14x14x480 0

inception (4a) 14x14%x512 2 192 96 208 16 48 64 364K 73M
inception (4b) 14x14x512 2 160 112 224 24 64 64 437K 88M
inception (4c) 14x14x512 2 128 128 256 24 64 64 463K | 100M
inception (4d) 14x14x528 2 112 144 288 32 64 64 580K | 119M
inception (4e) 14x14x832 2 256 160 320 32 128 128 840K | 170M
max pool 3x3/2 TxTx832 0

inception (5a) TXTx832 2 256 160 320 32 128 128 | 1072K | 54M
inception (5b) TxT7x1024 2 384 192 384 48 128 128 | 1388K | 7IM
avg pool TxT7/1 1x1x1024 0

dropout (40%) 1x1x1024 0

linear 1x1x1000 | 1000K IM
softmax 1x1x1000 0

Only 6.8 million parameters. AlexNet ~60 million, VGG up to 138 million
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Team Year | Place | Error Uses external
(top-5) data

SuperVision || 2012 | 1st 16.4% no
SuperVision || 2012 | Ist 15.3% Imagenet 22k
Clarifai 2013 | 1Ist 11.7% no
Clarifai 2013 | 1Ist 11.2% Imagenet 22k
MSRA 2014 | 3rd 7.35% no
VGG 2014 | 2nd 7.32% no
GoogLeNet || 2014 | 1st 6.67% no

Table 2: Classification performance.
Number Number Cost Top-5 compared
of models || of Crops error to base
1 1 1 10.07% | base
1 10 10 9.15% -0.92%
1 144 144 7.89% -2.18%
7 1 7 8.09% -1.98%
7 10 70 7.62% -2.45%
7 144 1008 6.67% -3.45%




ConvNet Depth 28.2

25.8

16.4

11.7

22 layers 19 layers

6.7 7.3

ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



Surely it would be ridiculous to go any
deeper...



Deep Residual Learning
for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqging Ren, JianSun

|mWWWWWWWWWWWWWWWWWWWWWWWWMWWW@WWWMWWWWWWWWWWWWWWWW|

Cited by 290k papers as of 10/14/2025
Nearing the most cited paper ever



Top ten most-cited works of the twenty-first century

Rank
(median)

Citation

Deep residual learning for image recognition (2016, preprint
2015)

Analysis of relative gene expression data using real-time
quantitative PCR and the 2722 method (2001)

Using thematic analysis in psychology (2006)

Diagnostic and Statistical Manual of Mental Disorders, DSM-5
(2013)

A short history of SHELX (2007)

Random forests (2001)

Attention is all you need (2017)

ImageNet classification with deep convolutional neural
networks (2017)

Times cited (range
across databases)

103,756-254,074

149,953-185,480

100,327-230,391

98,312-367,800

76,523-99,470

31,809-146,508

56,201-150,832

46,860-137,997

https://www.nature.com/articles/d41586-025-01125-9



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Publication

Nature
The New England Journal of Medicine

Science

IEEE/CVF Conference on Computer Vision and Pattern Recognition

The Lancet

Advanced Materials

Nature Communications

Cell

International Conference on Learning Representations
Neural Information Processing Systems

JAMA

Chemical Reviews

Proceedings of the National Academy of Sciences
Angewandte Chemie

Chemical Society Reviews

Journal of the American Chemical Society

IEEE/CVF International Conference on Computer Vision
Nucleic Acids Research

International Conference on Machine Learning

h5-index h5-median
444 667
432 780
401 614
389 627
354 635
312 418
307 428
300 505
286 533
278 436
267 425
265 444
256 364
245 332
244 386
242 344
239 415
238 550
237 421



ResNet @ [LSVRC & COCO 2015 Competitions

1st places in all five main tracks

* ImageNet Classification: “Ultra-deep” 152-layer nets
* ImageNet Detection: 16% better than 2nd

* ImageNet Localization: 27% better than 2nd
* COCO Detection: 11% better than 2nd
* COCO Segmentation: 12% better than 2nd

*improvements are relative numbers



Revolution of Depth 282
{152 Iayers} '

\ 16.4

\ 11.7
22 layers 19 Iayers

‘67

3.57 I I 8 layers 8 layers

ILSVRC'15 ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12  ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



Revolution of Depth

-

-

Engines of
visual recognition

~

J

Discriminatively trained part-based models

IR a

101 layers

58

16 layers

e
-
-

VGG ResNet
(RCNN) (Faster RCNN)*

ject Detection mAP (%)

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, "Object Detection

with Discriminatively Trained Part-Based Models," PAMI 2009

*w/ other improvements & moredata



Revolution of Depth

AlexNet, 8layers 11x11 conv, 96, /4, pool/2

(ILSVRC 2012) \ 4
5x5 conv, 256, pool/2

\

3x3 conyv, 384

\

3x3 conyv, 384

\

3x3 conv, 256, pool/2

\

fc, 4096

\

fc, 4096

\

fc, 1000




Revolution of Depth

==
m
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Revolution of Depth

AlexNet, 8layers
(ILSVRC 2012)

—

VGG, 19 layers
(ILSVRC 2014)

|

ResNet, 152 layers
(ILSVRC 2015)
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s learning better networks
as simple as stacking more layers?



Simply stacking layers?

CIFAR-10
train error (%) test error (%)
20r 201
56-layer
56-layer
101 10
20-layer
20-layer

s —
iter. (1le4) iter. (1e4)

Plain nets: stacking 3x3 conv layers...
56-layer net has higher training error and test error than 20-layer net



Simply stacking layers?

CIFAR-10 ImageNet-1000
! Ty A WS
56-layer \-\_LW__1
/ 44-layer “ _

S 32-layer <
: ! 20-layer 2 40 Lﬁ M[?’Zl'layer

== plain-2 30 i

plain-3] ;
-] - 1. plain-18 _
0._p}a$:4‘ | | | . . solid: test/val | =piainc3s | | | | 18-layer
’ 1 2 e (led) ) . ° dashed:train 0 10 20 30 40 50

iter. (1e4)

“Overly deep” plain nets have higher training error
A general phenomenon, observed in many datasets



a shallower

model

(18 layers)

7x7 conv, 64, /2

3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64

3x3 ,128
3x3 v, 128
b4
3x3 conv, 256, /2
3x3 conv, 256
3x3 convy, 256
3x3 conv, 256
Y
3x3 cony, 512, /2
3x3 conv, 512
3x3 cony, 512
3x3 conv, 512

7x7 conv, 64, /2
3x3 conv, 64
w
3x3 conv, 64
3
3x3 conv, 64
w
ke,
3x3 conv, 128, /2
w

3x3 conv, 128
3x3 conv, 128
“axtra” ez
I aye rs 3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 cony, 256
3x3 conv, 256
r
3x3 conv, 512, /2
3x3 conv, 512
3x3 conv, 512
ol
3x3 conv, 512
n

a deeper
counterpart
(34 layers)

* Richer solutionspace

A deeper model should not have higher
training error

e A solution by construction:
e original layers: copied froma
learned shallower model
* extra layers: set as identity
* atleast the same training error

* Optimization difficulties: solvers cannot
find the solution when going deeper...




Deep Residual Learning

* Plain net H(x) is any desired mapping,
X l hope the 2 weight layers fit H(x)
weight layer
any two
stacked layers v relu

weight layer

relu
H(x) 'l'



Deep Residual Learning

e Residual net

X

weight layer

F(x)

lrelu

weight layer

Hx)=F(x)+x

identity
X

H(x) is any desired mapping,
| he 2 waicht | it H e
hope the 2 weight layers fit F(x)
let H(x) = F(x) + x



Deep Residual Learning

* F(x)is a residual mapping w.rt. identity

weight layer

F(x)

relu

Y

weight layer

Hx)=F(x)+x

identity
X

* |f identity wereoptimal,
easy to set weights as 0

* If optimal mapping iscloser to identity,
easier to find small fluctuations



Network “Design”
e Keep it simple

* Our basic design (VGG-style)
e all 3x3 conv (almost)

* spatial size /2 => # filters x2
e Simple design; justdeep!

plain net
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ResNet



CIFAR-10 experiments

CIFAR-10 plain nets

2
56-layer
/ 44-layer
s 32-layer
4 20-layer
i plain-2
plain-3]
_plain—44 bold: test
plain-54 . .
% i p 3 n s 3 thin: train

iter. (1e4)

CIFAR-10 ResNets

20

error (%)

ResNet-20
ResNet-32
ResNet-44
== ResNet-56

= ResNet-11(

iter. (1e4)

 Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error

20-layer
32-layer
44-layer
56-layer
110-layer



ImageNet experiments

60

ImageNet plainnets

RANEAY. SN

50

40

error (%)

k____\’_‘% /34-Iayer

=

30

T solid: test

am- .

—glain-34 dashed: train ]_8-|ayer
10 20 30 20 50

200

iter. (1e4)

601

50

error (%)

ImageNet ResNets

40

30

200

18-layer
ResNet-18 M \
—ResNet-34| . . . 34-layer
10 20 30 40 50
iter. (1e4)

 Deep ResNets can be trained without difficulties
* Deeper ResNets have lower training error, and also lower test error



ImageNet experiments

this model has
lower time complexity
than VGG-16/19

|

ResNet-152

: I

Deeper ResNets have lower error

ResNet-101 ResNet-50
10-crop testing, top-5 val error (%)

ResNet-34

()}

w



Beyond classification

A treasure from ImageNet is on learning features.

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv2015.



”Features matter. ” (quote [Girshick et al. 2014], the R-CNN paper)

2nd- place margin
winner (relative)

ImageNet Localization (wps erron) 12.0 27%

ImageNet Detection mares) 53.6 absolute g 1 16%
8.5% better!

COCO Detection (mare@.s:95) 33. 7.3 11%

COCO Segmentation mare.s.9s) 25.1 28.2 12%

e Qur results are all based on ResNet-101
e Qur features are well transferrable

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.



classifier

Object Detection (brief)

Rolpooling

e Simply “Faster R-CNN + ResNet” proposals g 4
vk 4
f~7

baseline

VGG-16 41.5 21.5
ResNet-101 48.4 27.2 o

feature map

COCO detection results
(ResNet has 28% relative gain) CNN

Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.
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*the original imageis fromthe COCO dataset
Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. CVPR 2016.
Shaoging Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Why does ResNet work so well?

* The architecture is somehow easier We argue that this optimization difficulty is unlikely to
to optimize. be caused by vanishing gradients. These plain networks are
trained with BN [16], which ensures forward propagated

* The authors argue it prObabW isn’t signals to have non-zero variances. We also verify that the
because it solves the “vanishin g backward propagated gradients exhibit healthy norms with

. ) BN. So neither forward nor backward signals vanish. In
gradient” problem.

* While the gradients might not be
“vanishing” in “plain” nets, they
don’t seem as stable and
trustworthy, according to follow up
work, e.g.

Visualizing the Loss Landscape of
Neural NetS. HaO LI: Zheng XU ’ GaVin (a) without skip connections (b) with skip connections
Taylor’ ChflStOph StUder’ Tom Goldstein. Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter

NeurlPS 2018. normalization scheme is used to enable comparisons of sharpness/flatness between the two figures.




Semantic Segmentation



Project 4

Dataset

The dataset to be used in this assignment is the Camvid dataset, a small dataset of 701 images for self-driving
perception. It was first introduced in 2008 by researchers at the University of Cambridge [1]. You can read
more about it at the original dataset page or in the paper describing it. The images have a typical size of
around 720 by 960 pixels. We'll downsample them for training though since even at 240 x 320 px, most of
the scene detail is still recognizable.

Today there are much larger semantic segmentation datasets for self-driving, like Cityscapes, WildDashV?2,
Audi A2D2, but they are too large to work with for a homework assignment.

The original Camvid dataset has 32 ground truth semantic categories, but most evaluate on just an 11-
class subset, so we’ll do the same. These 11 classes are ‘Building’, ‘Tree’, ‘Sky’, ‘Car’, ‘SignSymbol’, ‘Road’,
‘Pedestrian’, ‘Fence’, ‘Column_Pole’, Sidewalk’, ‘Bicyclist’. A sample collection of the Camvid images can
be found below:

(a) Image A, RGB (b) Image A, Ground Truth (c) Image B, RGB (d) Image B, Ground Truth

Figure 2: Example scenes from the Camvid dataset. The RGB image is shown on the left, and the corre-
sponding ground truth “label map” is shown on the right.

1 Implementation

For this project, the majority of the details will be provided into two separate Jupyter notebooks. The first,
proj4_local.ipynb includes unit tests to help guide you with local implementation. After finishing that,
upload proj4_colab. ipynb to Colabh. Next, zip up the files for Colab with our seript zip_for_colab.py, and
upload these to your Colab environment.

We will be implementing the PSPNet [3] architecture. You can read the original paper here. This net-
work uses a ResNet [2] backbone, but uses dilution to increase the receptive field, and aggregates context
over different portions of the image with a *Pyramid Pooling Module” (PPM).

[ T —fonv—0O 7
—*lconv|— 4
B I -
f J] —= [CONV|— | @
| —[CNN] —[PO0L]—— {‘ ﬂ |z
3
=

. e
i i —slcony i
: CONCAT
L ] 1

(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

Figure 3: PSPNet architecture. The Pyramid Pooling Module (PPM) splits the H x W feature map into
KxK grids. Here, 1 x1,2x2, 3x 3, and 6 x 6 grids are formed, and features are average-pooled within each
grid cell. Afterwards, the 1 x 1, 2 x 2, 3 x 3, and 6 % 6 grids are upsampled back to the original H x W
feature map resolution, and are stacked together along the channel dimension.

You can read more about dilated convolution in the Dilated Residual Network here, which PSPNet takes
some ideas from. Also, you can watch a helpful animation about dilated convolution here.

No padding, no stride, dilation No padding, no stride, dilation No padding, no stride, dilation
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Measuring Performance: Intersection over Union

D Ground truth

Prediction
o —asat
. loU = 22 of overlap
] | i area of union
R

romses 903

Overlap

Applies to segmentations, as well

Figure source: http://cs230.stanford.edu/section/8/



Figure source: https://www.pinterest.com/pin/457959855830667185/
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Figure source: https://www.gettyimages.com/photos/moss-rock?phrase=moss%20rock&sort=mostpopular
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Tasks: Semantic Segmentation

Semantic
Segmentation

GRASS, :
 TREE,SKY ,
~"
No objects, just Multiple
pixels Objects

Slide Credit; Justin Johnson and David Fouhey



a classification network

convolution fully connected

n L /// sabby cat

227 x 227 55 x 55 27 x 27 13 x13

Fully Convolutional Networks for Semantic Segmentation.
Jon Long, Evan Shelhamer, Trevor Darrell. CVPR 2015



becoming fully convolutional

convolution

. 220

227 x 227 55 x 55 27 x 27 13 x 13 1x1

Note: “Fully Convolutional” and “Fully Connected” aren’t the same thing.
They’re almost opposites, in fact.



becoming fully convolutional

convolution

DD P

HxW H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32



upsampling output

convolution

H/4 x W/4  H/8 x W/8

DD

H/16 x W/16 H/32 x W/32




end-to-end, pixels-to-pixels network

convolution

HxW H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 HxW
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Fully Convolutional Network

Design a network as a bunch of
convolutional layers to make predictions for
pixels all at once!

y -

Conv argmax

Scores: Predictions:
Convolutions CxHxW HxW

D x HxW Loss function: Per-Pixel cross-entropy

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Slide Credit: Justin Johnson and David Fouhey
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Fully Convolutional Network

Design a network as a bunch of
convolutional layers to make predictions for
pixels all at once!

A 44 £ A

. N Conv Cony Conv Conv argmax

Input:  proplem #1: Effective
3XHXW rocentive field size is linear
in number of conv layers:
With L 3x3 conv layers,
receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Slide Credit: Justin Johnson and David Fouhey



Receptive field

Input L1 L2
3x3 CNN (s=1) 3x3 max-pool 3x3 CNN (s=1)

Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf

L3

3x3 max-pool

L4




Receptive field

Input L1 L2
3x3 CNN (s=1) 3x3 max-pool 3x3 CNN (s=1)

Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf

L3

3x3 max-pool

L4




Receptive field

Input L1 L2
3x3 CNN (5=1) 3x3 max-pool 3x3 CNN (s=1)

Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf

L3

3x3 max-pool

L4




Receptive field

Input L1 L2
3x3 CNN (s=1) 3x3 max-pool 3x3 CNN (s=1)

—

Slide Credit: Frank Dellaert https://dellaert.github.io/19F-4476/resources/receptiveField.pdf

L3

3x3 max-pool

L4




Dilated Convolution

& & &

No padding, no stride, dilation No padding, no stride, dilation No padding, no stride, dilation

Figure source: https://github.com/vdumoulin/conv_arithmetic
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Fully Convolutional Network

Design a network as a bunch of
convolutional layers to make predictions for
pixels all at once!

A 44 £ A

Conv Conv Conv argmax

Problem #1: Effective

receptive field size is linear Problem #2: Convolution
in number of conv layers: on high res images is
With L 3x3 conv layers, expensive!

receptive field is 1+2L

Long et al, “Fully convolutional networks for semantic segmentation”, CVPR 2015

Slide Credit: Justin Johnson and David Fouhey
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Fully Convolutional Network

Design network as a bunch of convolutional layers,
with downsampling and upsampling inside the
network!

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4

\ ‘l’w' \_* s,

e L A i ':;’_.

In Ut' | _/ Low-res: i

put: _ D; x H/4 x W/4 .
3xHxW High-res: High-res: Prediction
Dy x H/2 x W/2 D, x H/2 x W/2 s
Downsampling: . HxW
. : Upsampling:

Pooling, strided 0no
convolution o

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”,
CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Justin Johnson and David Fouhey
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In-Network Upsampling: “Unpooling”

Bed of Nails Nearest Neighbor
110120
112 00100 112
—
3|4 3101410 3|4
00100
Input Output Input Output
Cx2x2 Cx4x4 Cx2x2 Cx4x4

Slide Credit: Justin Johnson and David Fouhey
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Upsampling: Bilinear Interpolation

1.0 112 |17 | 20
0 5 5 0
1 2 1.5 | 1.7 | 22 | 2.5
0 5 5 0
25 | 27 | 3.2 | 3.5
3 4 0|5 |5 |0
30| 32| 3.7 | 4.0
0 5 5 0
Input: C x 2 x 2 Output: Cx4 x4

foy =Y foymax(0,1 — |z — i) max(0,1 — [y = j) & {|z] —1,...,[z] + 1}

0y

Use two closest neighbors in x and y to
construct linear approximations

Slide Credit: Justin Johnson and David Fouhey

Jedlvl =1,

Syl + 1}



Upsampling: Transpose Convolution

Sometimes called
“Deconvolution” but that
IS a problematic name

| like the term
“broadcast” convolution

In this case, the filter is A\ 4
4x4 and the outer

boundary of the output

IS unused

A guide to convolution arithmetic for deep learning
Vincent Dumoulin, Francesco Visin



Upsampling: Transpose Convolution

Transposed Convolutions

‘Smart" upsampling
Input array Multnphcatmn _F_'_Iter array-,

Sometimes called

A transposed convolution
is used to create an
. . ” 12 - n output array larger than
Deconvolution” but that 3 4 the input array
IS a problematic name o Output array
|
| X
| like the term |\
“broadcast” convolution ‘

Transposed convolutions
have hyperparameters,
such as filter size,
padding, and stride,
depending on the goal

Zefs{)Guides. .
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Fully Convolutional Network

Design network as a bunch of convolutional layers,
with downsampling and upsampling inside the
network!

Med-res: Med-res:
D, x H/4 x W/4 D, x H/4 x W/4

% gfié 5
Input: -

/ Low-res: L

, _ D;x H/4 x W/4 L
3xHxW High-res: High-res: Prediction
Dy x H/2 x W/2 D, x H/2 x W/2 S
Downsampling: . HxW
. . Upsampling:
Pooling, strided
. ?77?

convolution

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”,
CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

Slide Credit: Justin Johnson and David Fouhey



PSPNet



PSPNet uses a ResNet backbone

e 50, 101, or 152 Layers
e 50 Layers is already quite deep!

3.2. Pyramid Pooling Module

With above analysis, in what follows, we introduce the
pyramid pooling module, which empirically proves to be an
effective global contextual prior.

In a deep neural network, the size of receptive field can
roughly indicates how much we use context information.
Although theoretically the receptive field of ResNet [ 3] is
already larger than the input image, it is shown by Zhou et
al. [42] that the empirical receptive field of CNN is much
smaller than the theoretical one especially on high-level lay-
ers. This makes many networks not sufficiently incorporate




256-d

1x1, 64

irehl

3x3, 64

irehl

1x1, 256

relu

Figure 4. Illustration of auxiliary loss in ResNet101. Each blue
box denotes a residue block. The auxiliary loss is added after the
res4b22 residue block.



Pyramid Scene Parsing Network

- T —jconvi—0O ]
N —>|coNv|—
S s
: N ™ =
L — —>|CONV[— | 2 :
CNN|— —|POOL|—— ) }j Tz —CONV

) c |

- 3]

N\ —»/CONV

W\ CONCAT

(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

Framework overview of PSPNet

“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation] 82

Slide Credit;: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

CNN

(a) Input Image

> [POOL

—»—

N\ —|CONV|— }j

P S S S i
VA R

!

v
HTINVSdN

-

—|CONV

CONCAT

(b) Feature Map

(¢) Pyramid Pooling Module

Regular feature extractor

“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation]
Slide Credit;: Hengshuang Zhao and Jiaya Jia

CONYV

(d) Final Prediction
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Pyramid Scene Parsing Network

T —lconvil— ) n
N —[conv]— &
CNN|[—> - POOL—>— \ R ) N ] | pp—
: — = :
—>|CONV
CONCAT
(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

Context modeling: pyramid pooling module

“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation] 84
Slide Credit;: Hengshuang Zhao and Jiaya Jia



Pyramid Scene Parsing Network

T —lconvil— ) n

N —>|conv|—
. Y N —
D — —|conv|— | Z
? =

N 3]

—>|CONV
CONCAT
(a) Input Image (b) Feature Map (¢) Pyramid Pooling Module (d) Final Prediction

Convolutional classifier for pixel-wise prediction

“Pyramid Scene Parsing Network”, Zhao et al. CVPR 2017 [15,000+ citation] 85
Slide Credit;: Hengshuang Zhao and Jiaya Jia



Pyramid Pooling Module

Z

Same Spatial Size as Input Feature Map //
Representation /7

Processing : :

Conv Feature Map / /

PPM: spatial illustration
Slide Credit;: Hengshuang Zhao and Jiaya Jia
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ImageNet Scene Parsing Challenge

Method Mean IoU(%)  Pixel Acc.(%)
FCN [ 7] 29.39 71.32
SegNet [ '] 21.64 71.00
DilatedNet [ 1] 32.31 73.55
CascadeNet 34.90 74.52

esNet50-Baseline 34.28 .
ResNet50+DA 35.82 77.07
ResNet50+DA+AL 37.23 78.01
ResNet50+DA+AL+PSP 41.68 80.04
4381 30.88
ResNet269+DA+AL+PSP+MS 44.94 81.69

detailed performance analysis

62.5

62

61.5

61

60.5

60

62.35

—
61.71
61.30
60.86 I
50 101 152 269

consistent improvement over network depth

PSPNet: 1st place among totally 75 submissions worldwide.

Slide Credit;: Hengshuang Zhao and Jiaya Jia
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Result on PASCAL VOC 2012

Method Iaero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv |mIoU

FCN [0] 76.8 34.2 689 494 603 753 7477 T77.6 214 625 468 71.8 639 76,5 739 452 724 374 709 55.1| 62.2
Zoom-out ['©] |85.6 373 832 62.5 66.0 85.1 80.7 849 27.2 732 57.5 781 79.2 81.1 77.1 53.6 740 492 71.7 63.3| 69.6
DeepLab [ '] 844 54.5 815 63.6 659 851 79.1 834 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 822 504 73.1 63.7| 71.6
CRF-RNN [11] [87.5 39.0 79.7 64.2 683 87.6 80.8 844 304 782 604 805 778 83.1 80.6 595 828 478 783 67.1| 72.0
DeconvNet [ '] [89.9 39.3 79.7 639 68.2 874 81.2 86.1 285 77.0 62.0 79.0 803 83.6 80.2 58.8 83.4 543 80.7 65.0| 72.5

GCRF [ (] 85,2 439 833 652 633 890 82.7 8.3 31.1 7935 633 8035 793 8535 8lO0 6035 8.3 520 773 65.1| 732
DPN [ 7] 87.7 59.4 784 649 70.3 893 835 8.1 31.7 799 62.6 819 80.0 835 823 605 832 534 779 65.0| 74.1
Piecewise [*0] {90.6 37.6 80.0 67.8 744 92.0 85.2 86.2 39.1 81.2 589 83.8 839 843 848 62.1 83.2 582 80.8 72.3| 75.3

PSPNet 91.8 95.2 89.9 959 39.3 90.5 945 88.8 89.6

CRF-RNNT [11]]190.4 55.3 88.7 684 69.8 883 824 851 326 785 644 796 819 864 81.8 58.6 824 535 774 70.1| 74.7
BoxSup' [7] 89.8 38.0 89.2 689 68.0 89.6 83.0 87.7 344 83.6 67.1 81.5 83.7 852 835 58.6 849 558 812 70.7| 75.2
Dilation8T [10] [91.7 39.6 87.8 63.1 71.8 89.7 829 89.8 372 84.0 63.0 833 89.0 838 851 568 87.6 560 802 64.7| 753
DPNT [7] 89.0 61.6 87.7 66.8 7477 912 843 87.6 36.5 863 66.1 844 878 856 854 63.6 873 613 794 664 | 77.5
Piecewise! [1(]] [94.1 40.7 84.1 67.8 75.9 934 843 884 425 86.4 647 854 89.0 858 860 67.5 902 63.8 80.9 73.0| 78.0
FCRNsT [14] 919 48.1 934 693 755 942 87.5 928 36.7 86.9 652 89.1 90.2 865 872 64.6 90.1 59.7 855 72.7| 79.1

LRRT [] 924 45.1 946 652 758 95.1 89.1 923 39.0 8.7 704 88.6 894 8.6 86.6 658 86.2 574 857 77.3| 79.3
DeepLab’ [] 926 604 91.6 634 763 950 884 92.6 327 885 67.6 89.6 92.1 87.0 874 633 883 60.0 86.8 74.5| 79.7
PSPNet! 95.8 72.7 95.0 78.9 844 947 92.0 95.7 43.1 91.0 80.3 91.3 96.3 923 901 715 944 669 88.8 82.0| 85.4
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Slide Credit;: Hengshuang Zhao and Jiaya Jia



Result on Cityscapes

Method road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck bus train mbike bike | mloU
CRF-RNN [11] 96.3 739 882 47.6 413 352 495 59.7 90.6 66.1 935 704 347 90.1 39.2 575 554 439 54.6| 62.5
FCN [70] 974 784 89.2 349 442 474 60.1 650 914 693 939 771 514 92,6 353 48.6 465 51.6 66.8| 65.3
SICNN+CRF [16] 196.3 76.8 88.8 40.0 454 50.1 633 69.6 90.6 67.1 922 77.6 559 90.1 39.2 513 444 544 66.1| 66.3
DPN [7] 97.5 785 89.5 404 459 51.1 568 653 915 694 945 775 542 925 445 534 499 521 64.8| 66.8
Dilation10 [11] 97.6 79.2 899 373 47.6 532 58.6 652 91.8 694 937 789 55.0 933 455 534 477 522 66.0]| 67.1
LRR [V] 977 79.9 90.7 444 48.6 58.6 68.2 72.0 925 693 947 816 60.0 94.0 43.6 56.8 47.2 548 69.7| 69.7
DeepLab [ /] 97.9 81.3 903 48.8 474 496 579 673 919 694 942 798 59.8 93.7 565 67.5 575 577 68.8| 70.4
Piecewise [ (/] 98.0 82.6 90.6 44.0 50.7 51.1 650 71.7 920 720 94.1 815 61.1 943 61.1 65.1 538 61.6 706 71.6
PSPNet 98.6 86.2 929 50.8 588 64.0 756 79.0 934 723 954 865 713 959 68.2 79.5 738 695 77.2| 784
LRR* [V] 97.9 81.5 914 505 527 594 668 7277 925 70.1 950 813 60.1 943 512 67.7 546 556 69.6] 71.8
PSPNet! 98.6 86.6 932 58.1 63.0 645 752 79.2 934 721 951 863 714 96.0 73.5 904 80.3 699 76.9( 80.2

89

Slide Credit;: Hengshuang Zhao and Jiaya Jia
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PSPNet paper

Pyramid Scene Parsing Network

Hengshuang Zhao'  Jianping Shi? Xiaojuan Qi Xiaogang Wang! Jiaya Jia®
'The Chinese University of Hong Kong  ?SenseTime Group Limited

{hszhao, xjgi, leojia}@cse.cuhk.edu.hk, xgwang@ee.cuhk.edu.hk, shijianping@sensetime.com

Abstract

Scene parsing is challenging for unrestricted open vo-
cabulary and diverse scenes. In this paper, we exploit the
capability of global context information by different-region-
based context aggregation through our pyramid pooling
module together with the proposed pyramid scene parsing
network (PSPNet). Our global prior representation is ef-
fective to produce good quality results on the scene parsing
task, while PSPNet provides a superior framework for pixel-
level prediction. The proposed approach achieves state-of-
the-art performance on various datasets. It came first in Im-
ageNet scene parsing challenge 2016, PASCAL VOC 2012
benchmark and Cityscapes benchmark. A single PSPNet
vields the new record of mloU accuracy 85.4% on PASCAL _ .
VOC 2012 and accuracy 80.2% on Cityscapes. (a) Image (b) Ground Truth

Figure 1. Illustration of complex scenes in ADE20K dataset.

15v2 [cs.CV] 27 Apr 2017

https://arxiv.org/pdf/1612.01105



MU

MSeg: A Composite Dataset for

t-Domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener,
James Hays, Vladlen Koltun






Which dataset to train on?

Driving: Cityscapes, Mapillary Vistas, CamVid, KITTI, VIPER, Indian Driving Dataset, Berkeley Driving Dataset,
WildDash, ...
Indoors: NYU, SUN RGBD, ScanNet, InteriorNet, ...

Multi-domain: COCO, ADE20K, PASCAL VOC, ...

John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020



Methodology:
Dataset mixing and zero-shot transfer

Perform a training/test split at the level of datasets

Train on many diverse datasets

Test on datasets that were never seen during training

Zero-shot cross-dataset transfer is a proxy for generality and robustness in the real world



Dataset name Origin domain # Images
Training & Validation
COCO 9] Everyday objects 123,287
+ COCO STUFF [4]
ADE20K [46] Everyday objects 22,210
MAPILLARY [25] Driving (Worldwide) 20,000
IDD [40] Driving (India) 7,974
BDD [43] Driving (United States) 8,000
CITYSCAPES [7] Driving (Germany) 3,475
SUN RGBD [36] Indoor 5,285
Test
PASCAL VOC [10] Everyday objects 1,449
PASCAL CONTEXT [24] Everyday objects 5,105
CAMVID [3] Driving (U.K.) 101
WILDDASH [44] Driving (Worldwide) 70
KITTI [11] Driving (Germany) 200
SCANNET-20 [8] Indoor 5,436
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Category with a similar name found in other datasets.

YES NO

4

Categories are equivalent Category is present in any
between datasets. other dataset's images.
YES NO

YES NO

Merge classes with Add the class to the
a common name. unified taxonomy.

Category is superset or subset of

another category in another dataset.

YES NO

\4 \4

Superset can be shattered Mark masks as
without drawing a new boundary. unlabeled.

YES NO

\4 \4

Merge into superset.

Shatter the superset.



Generality and Robustness



Train/Test COCO ADE20K Mapillary IDD BDD Cityscapes SUN A mean
COCO 52.7 19.1 28.4 31.1 449 46.9 29.6 32.4
ADE20K 14.6 45.6 24.2 26.8  40.7 44.3 36.0 28.7
Mapillary 7.0 6.2 53.0 50.6  959.3 71.9 0.3 1.7
IDD 3.2 3.0 24.6 649 424 48.0 0.4 2.3
BDD 3.8 4.2 23.2 32.3 634 o8.1 0.3 1.6
Cityscapes 3.4 3.1 22.1 30.1  44.1 77.5 0.2 1.2
SUN RGBD 3.4 7.0 1.1 1.0 2.2 2.6 43.0 2.1
MSeg-w/o relabeling 50.4 45.4 53.1 65.1 66.5 79.5 49.9 56.6
MSeg 50.7 45.7 53.1 65.3 68.5 80.4 50.3 57.1
Method Mean lIoU(%)  Pixel Acc.(%)
FCN [26] 29.39 71.32
SegNet [ ] 21.64 71.00
DilatedNet [10] 32.31 73.55
CascadeNet [ ] 34.90 74.52
ResNet50-Baseline 34.28 76.35
ResNet50+DA 35.82 77.07
ResNet50+DA+AL 37.23 78.01
ResNet50+DA+AL+PSP 41.68 80.04
ResNet269+DA+AL+PSP 43.81 80.88
ResNet269+DA+AL+PSP+MS 44.94 81.69

Accuracy on MSeg training datasets



Train/Test VOC Context CamVid WildDash KITTI ScanNet h. mean
COCO 73.4 43.3 H&.7 38.2 47.6 33.4 45.8
ADE20K 35.4 23.9 H2.6 38.0 41.6 42.9 36.9
Mapillary 22.5 13.6 82.1 55.4 67.7 2.1 9.3
IDD 14.6 0.5 72.1 41.2 51.0 1.6 0.5
BDD 14.4 7.1 70.7 H2.2 H4.5 1.4 6.1
Cityscapes 13.3 6.8 76.1 30.1 57.6 1.7 0.8
SUN RGBD 10.0 4.3 0.1 1.9 1.1 42.6 0.3
MSeg-1m 70.7 42.7 83.3 62.0 67.0 48.2 59.2
MSeg-1m-w/o relabeling 70.2  42.7 82.0 62.7 65.0  43.2 57.6
Oracle 77.8 45.8 78.8 — H&.4 62.3 —

Accuracy on MSeg test datasets
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MSeg: A Composite Dataset for
Multi-domain Semantic Segmentation

John Lambert*, Zhuang Liu*, Ozan Sener,
James Hays, Vladlen Koltun
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“Bird’s eye” Semantic Segmentation for Robots

TerrainNet: Visual Modeling of Complex Terrain for High-speed, Off-road Navigation
Xiangyun Meng, Nathan Hatch, Alexander Lambert, Anqi Li, Nolan Wagener, Matthew Schmittle, JoonHo Lee,
Wentao Yuan, Zoey Chen, Samuel Deng, Greg Okopal, Dieter Fox, Byron Boots, Amirreza Shaban
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