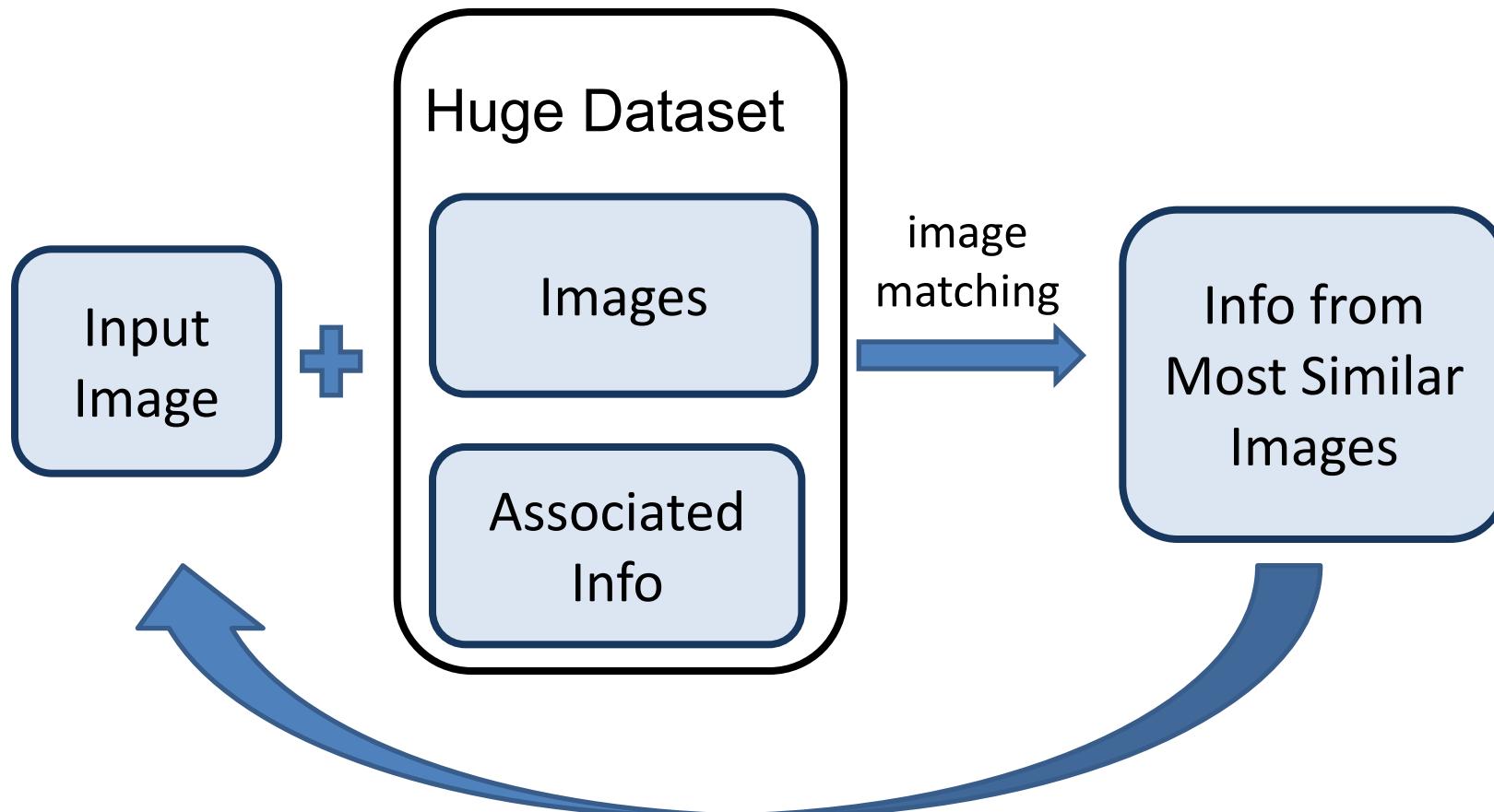


Outline

Opportunities of Scale: Data-driven methods

- The Unreasonable Effectiveness of Data
- Scene Completion
- Image Geolocation

General Principal



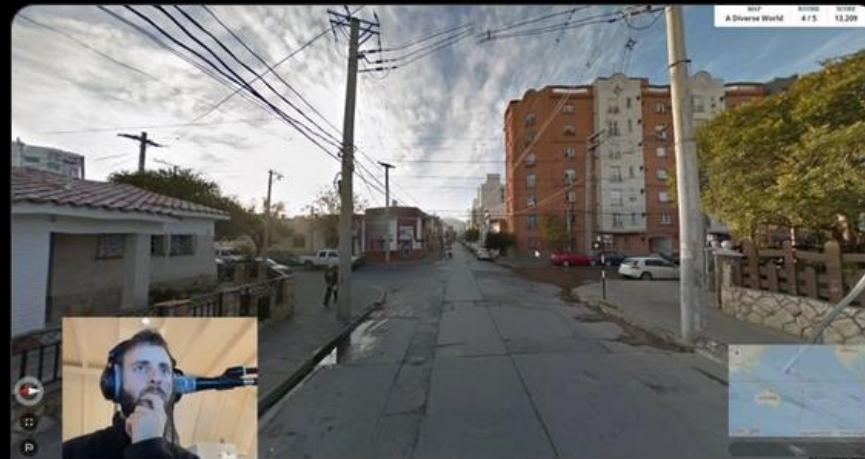
Hopefully, If you have enough images, the dataset will contain very similar images that you can find with simple matching methods.

Kosta Derpanis

@CSPProfKGD

...

This reminded me of [@jhhays](#) and Efros' large-scale image geolocalization work



This Geography Genius Can Figure Out Exactly Where a Photo Was Shot

Tom Davies (AKA GeoWizard) is a human photo geotagger. He can figure out exactly where an outdoor photo was shot by studying it carefully.

[petapixel.com](#)

11:08 PM · Mar 4, 2021 from Toronto, Ontario · Twitter for iPhone

3 Likes

<https://www.geoguessr.com/>

<https://www.youtube.com/c/GeoWizard/videos>

im2gps (Hays & Efros, CVPR 2008)

6 million geo-tagged Flickr images

<http://graphics.cs.cmu.edu/projects/im2gps/>

Where is this photo?

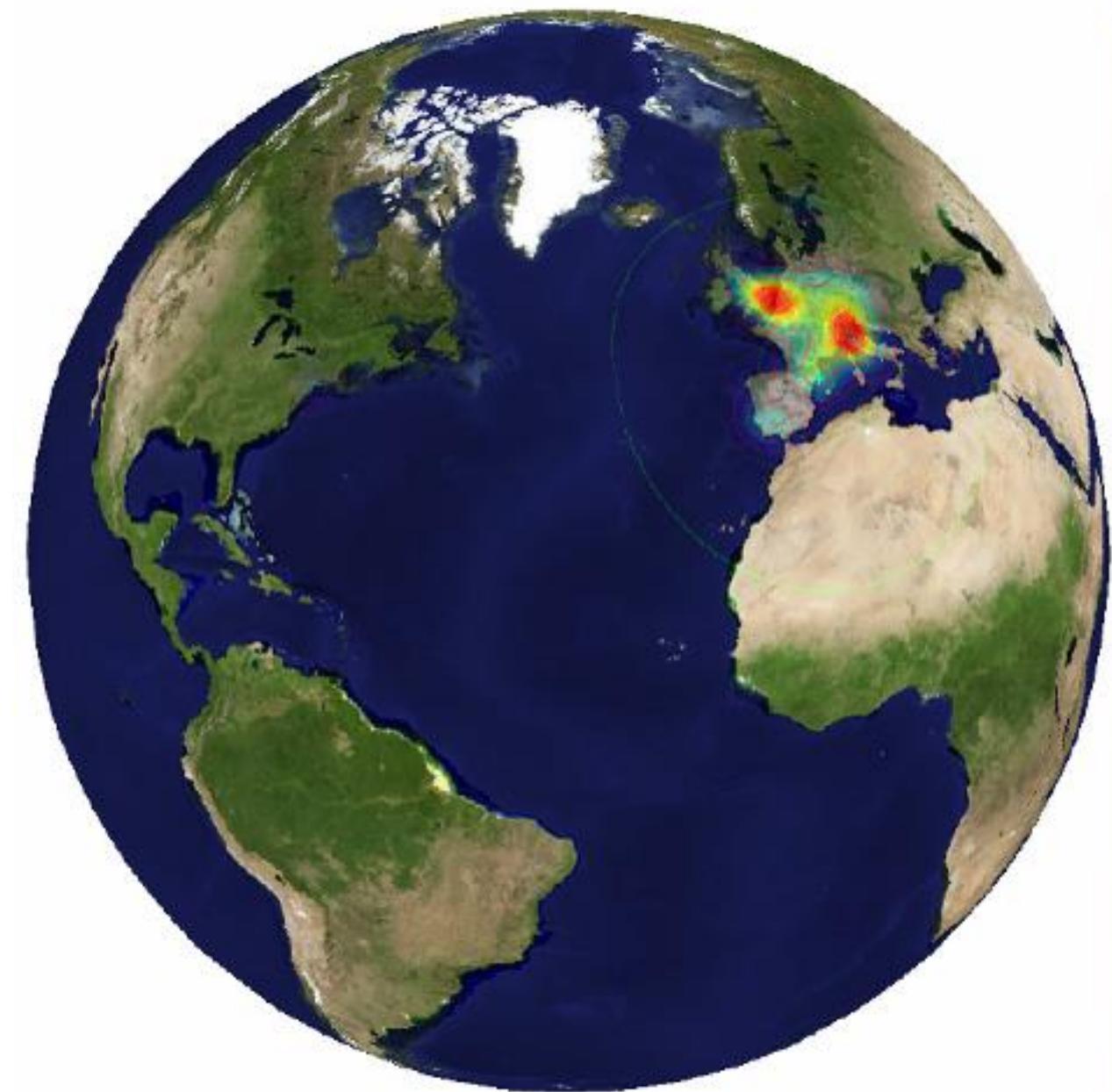
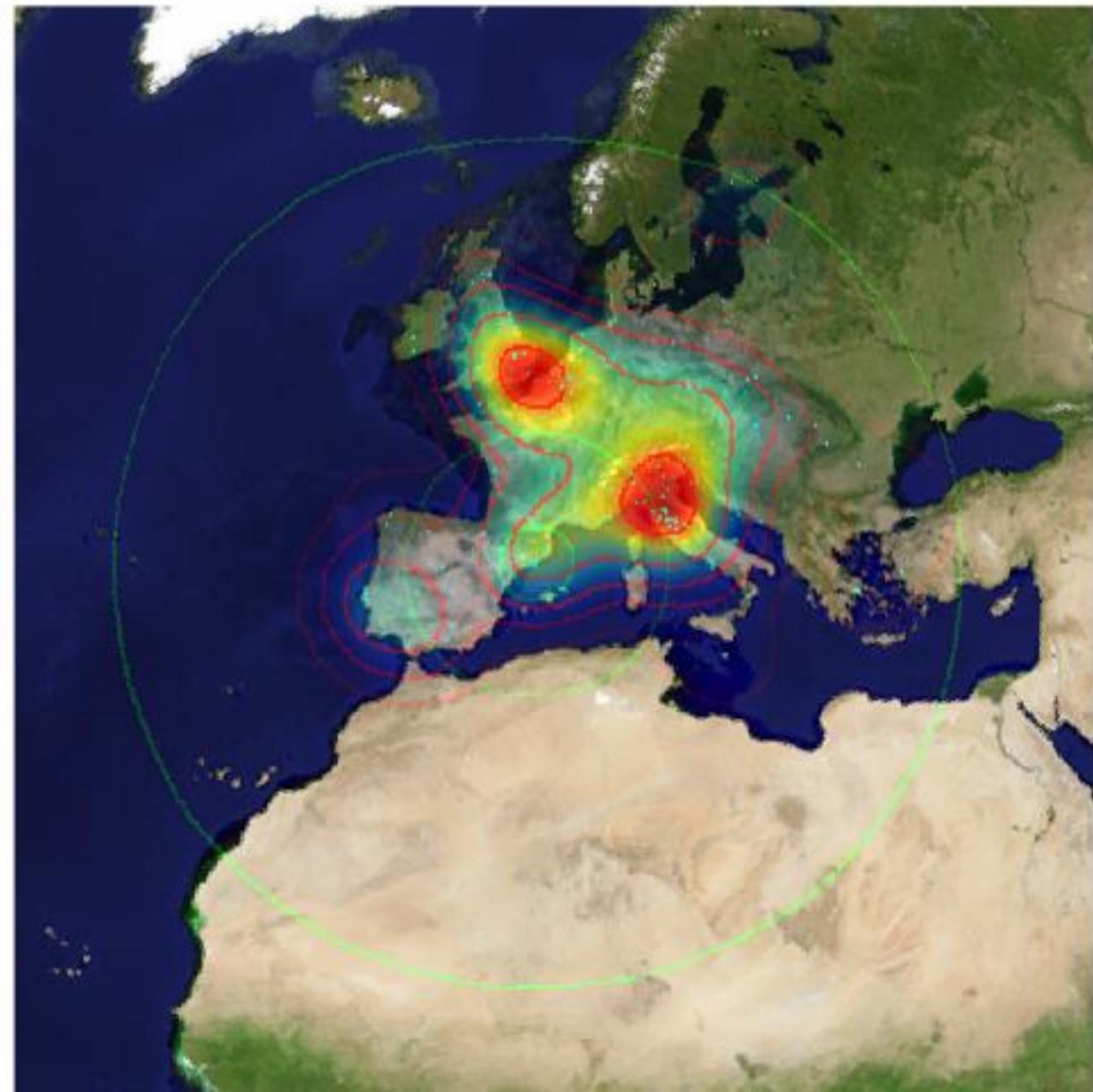


Nearest Neighbors according to gist + bag of SIFT + color histogram + a few others

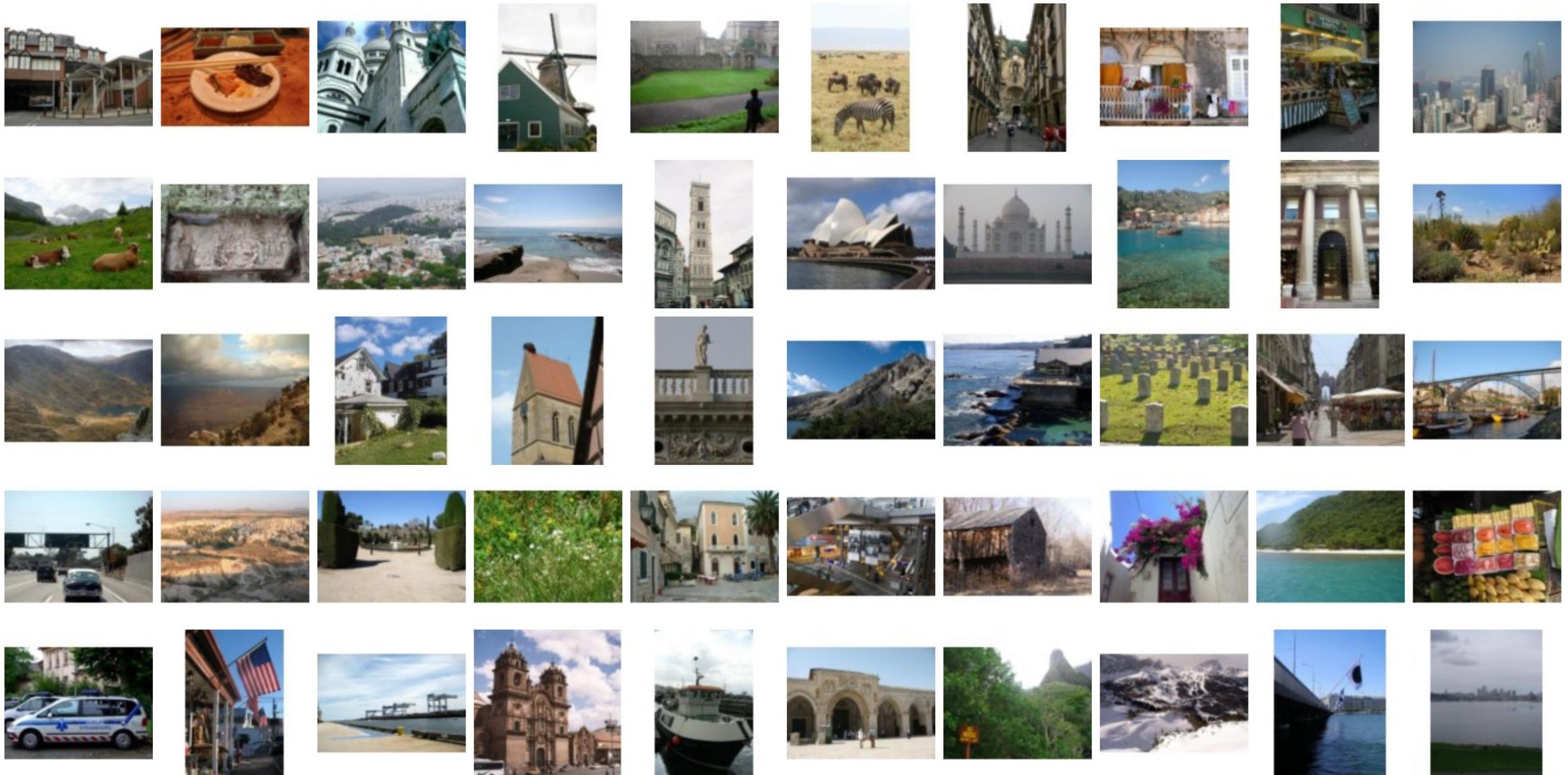


Where is this photo?

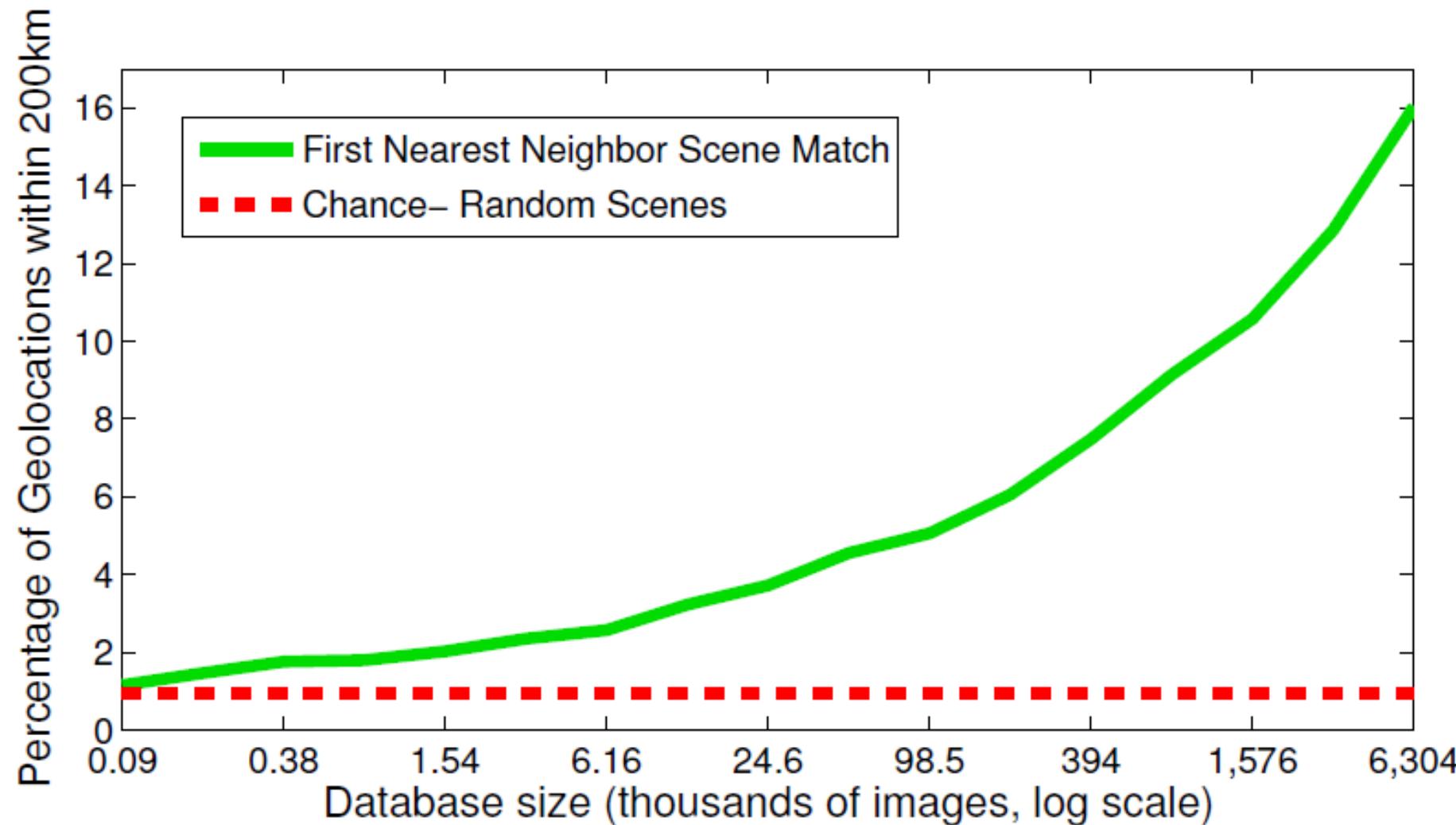
Nearest Neighbor Scenes



Test Set of 237 Touristy Photos



Effect of Dataset Size



PlaNet - Photo Geolocation with Convolutional Neural Networks

Tobias Weyand
Google

weyand@google.com

Ilya Kostrikov
RWTH Aachen University

ilya.kostrikov@rwth-aachen.de

James Philbin
Google

philbinj@gmail.com

Abstract

Is it possible to build a system to determine the location where a photo was taken using just its pixels? In general, the problem seems exceptionally difficult: it is trivial to construct situations where no location can be inferred. Yet images often contain informative cues such as landmarks, weather patterns, vegetation, road markings, and architectural details, which in combination may allow one to determine an approximate location and occasionally an exact location. Websites such as GeoGuessr and View from your Window suggest that humans are relatively good at integrating these cues to geolocate images, especially en masse. In computer vision, the photo geolocation problem is usually approached using image retrieval methods. In contrast, we pose the problem as one of classification by subdividing the surface of the earth into thousands of multi-scale geographic cells, and train a deep network using millions of geotagged images. While previous approaches only recognize landmarks or perform approximate matching using global image descriptors, our model is able to use and

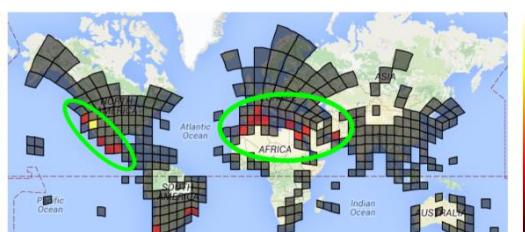
Photo CC-BY-NC by stevekc

Photo CC-BY-NC by edwin.11

Photo CC-BY-NC by jonathanph

(a)

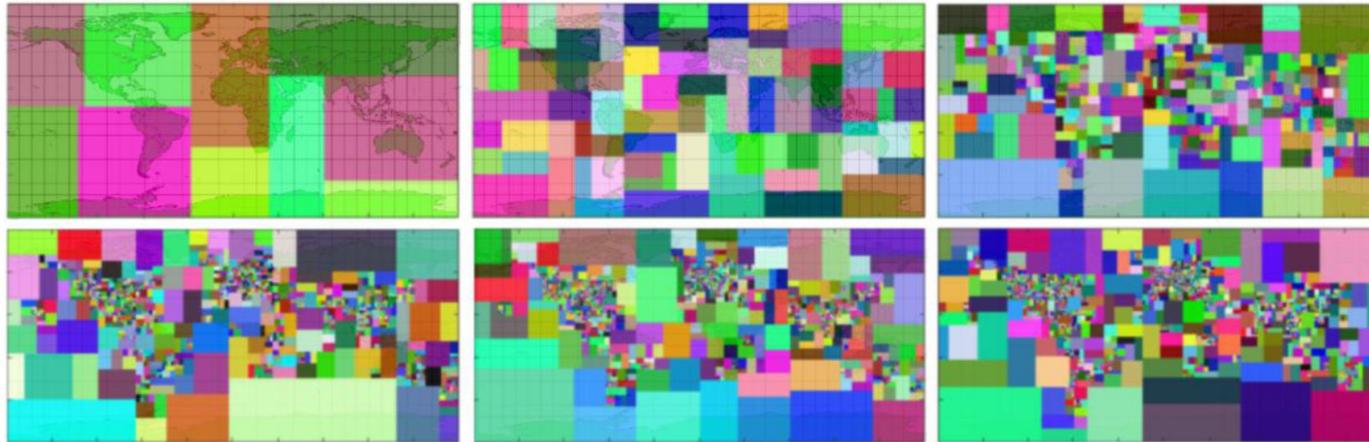
(b)



(c)

Revisiting IM2GPS in the Deep Learning Era.

Nam Vo, Nathan Jacobs, James Hays. ICCV 2017



	Threshold (km)	Street 1	City 25	Region 200	Country 750	Cont. 2500
	Human*			3.8	13.9	39.3
2008	Im2GPS [9]		12.0	15.0	23.0	47.0
2009	Im2GPS [10]	02.5	21.9	32.1	35.4	51.9
2016	PlaNet [36]	08.4	24.5	37.6	53.6	71.3
2017	[L] 7011C	06.8	21.9	34.6	49.4	63.7
2017	[L] kNN, $\sigma=4$	12.2	33.3	44.3	57.4	71.3
2017	... 28m database	14.4	33.3	47.7	61.6	73.4

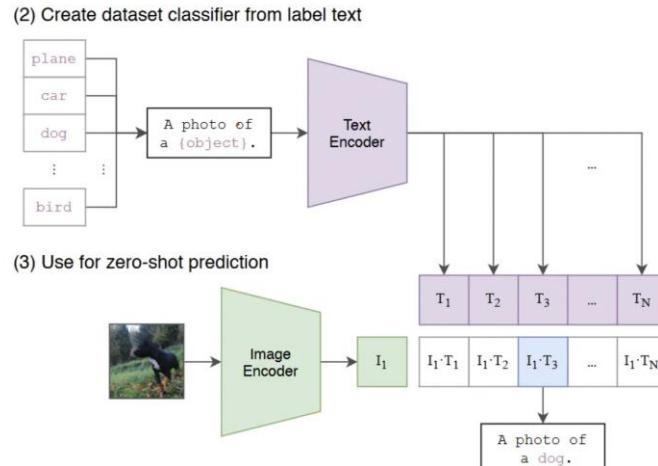
Geolocation Overview

- Bespoke Image Geolocation Approaches
 - Im2gps (2008)
 - PlaNet and im2gps revisited (2016 and 2017)
- Can Large Vision-Language Models geolocate images?
 - CLIP (2021)
 - GeoGuessr
 - Pigeon (2023)
- Can Large *Generative* Vision-Language Models geolocate images?

Are “Foundation” Models Good at Geolocation?

Learning Transferable Visual Models From Natural Language Supervision

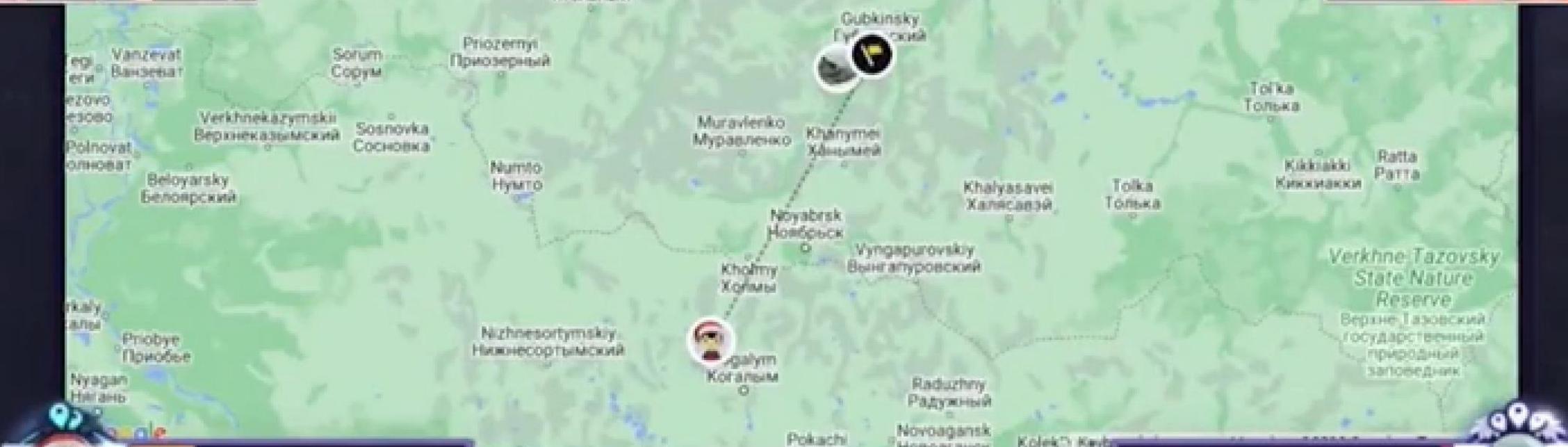
Alec Radford ^{* 1} Jong Wook Kim ^{* 1} Chris Hallacy ¹ Aditya Ramesh ¹ Gabriel Goh ¹ Sandhini Agarwal ¹
Girish Sastry ¹ Amanda Askell ¹ Pamela Mishkin ¹ Jack Clark ¹ Gretchen Krueger ¹ Ilya Sutskever ¹



	1km	25km	200km	750km	2500km
ISNs ^a	16.9	43.0	51.9	66.7	80.2
CPlaNet ^b	16.5	37.1	46.4	62.0	78.5
CLIP	13.9	32.9	43.0	62.0	79.3
Deep-Ret+ ^c	14.4	33.3	47.7	61.6	73.4
PlaNet ^d	8.4	24.5	37.6	53.6	71.3

OpenAI’s CLIP (2021) is strong using only 1 million reference images

ROUND 6 OF 10 - 3.5X DAMAGE



1251

TheFungusAmongUs

231 km

320

Consus

25 km

4282

ROUND 6 OF 10
x3.5

4916

Bannyu
Банный
Ob River

Tundrino
Тундрино

Ob River

Ob River

Peschanyi
Песчаный
Lyamina
Ляминка

Lyantor
Ляントор

Ob River

Saigatina
Сайгатина

Google

Bely Jar
Городское
поселение
Белый Яр

Surgut
Сургут

Rechnik
Речник

Shirokovo
Широково

Ozero Pil'tanlor
оз. Пильтанлор

Fedorovskii
Федоровский

Chernorechenskiy
Чернореченский

Ляントор

Ляントор

<https://www.plonkit.net/russia>

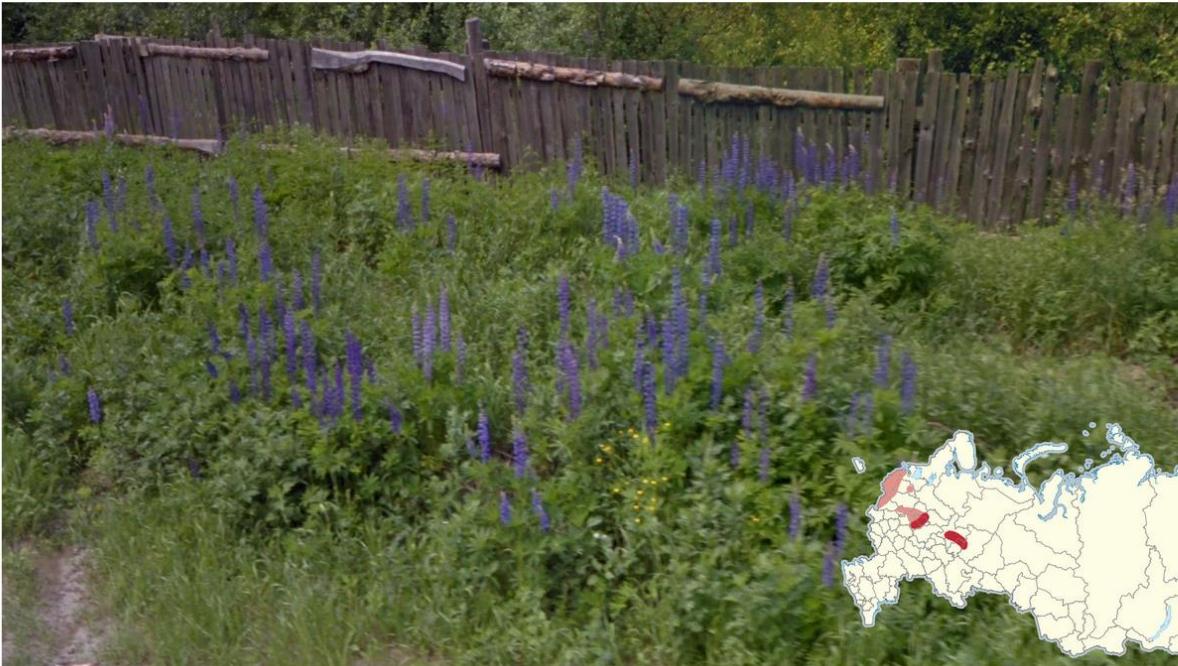
Sandy roadsides are common in Khanty-Mansi and Yamalo-Nenets and adjacent subjects, as well as areas around Nizhny Novgorod on the Volga river. Other notable areas are Karelia, Murmansk, and western Sakha. Beware, however, that sandy roadsides can less commonly be found near rivers in other regions.

Red soil is common in the highlighted areas, notably around Izhevsk and Perm, much of Arkhangelsk Oblast, Leningrad Oblast, and Pskov Oblast, and near Volgograd and Astrakhan. Note that this map is by no means exhaustive; red soil can be found almost anywhere in the country near water or iron mines.

Birches very close together, as well as forests consisting of **only birches**, are indicative of areas east of the Urals, most commonly between Chelyabinsk Oblast and Novosibirsk Oblast.

Siberian larches are one of the dominant tree species in much of eastern Russia, recognized by their unique **needle-like leaves**. Generally speaking, they become more prevalent the further east you go in the country, as well as at high elevations.

Sunflowers are common along the border with Ukraine as well as more eastern oblasts like Ulyanovsk, Samara, and northern Orenburg.



Blue-pod lupines appear very commonly in northern Vladimir Oblast, eastern Ivanovo Oblast, and southwestern Kostroma Oblast. It can also be found less commonly elsewhere in Kirov Oblast and towards the Baltics.

Grassy fields, with **bushy vegetation, in early spring**

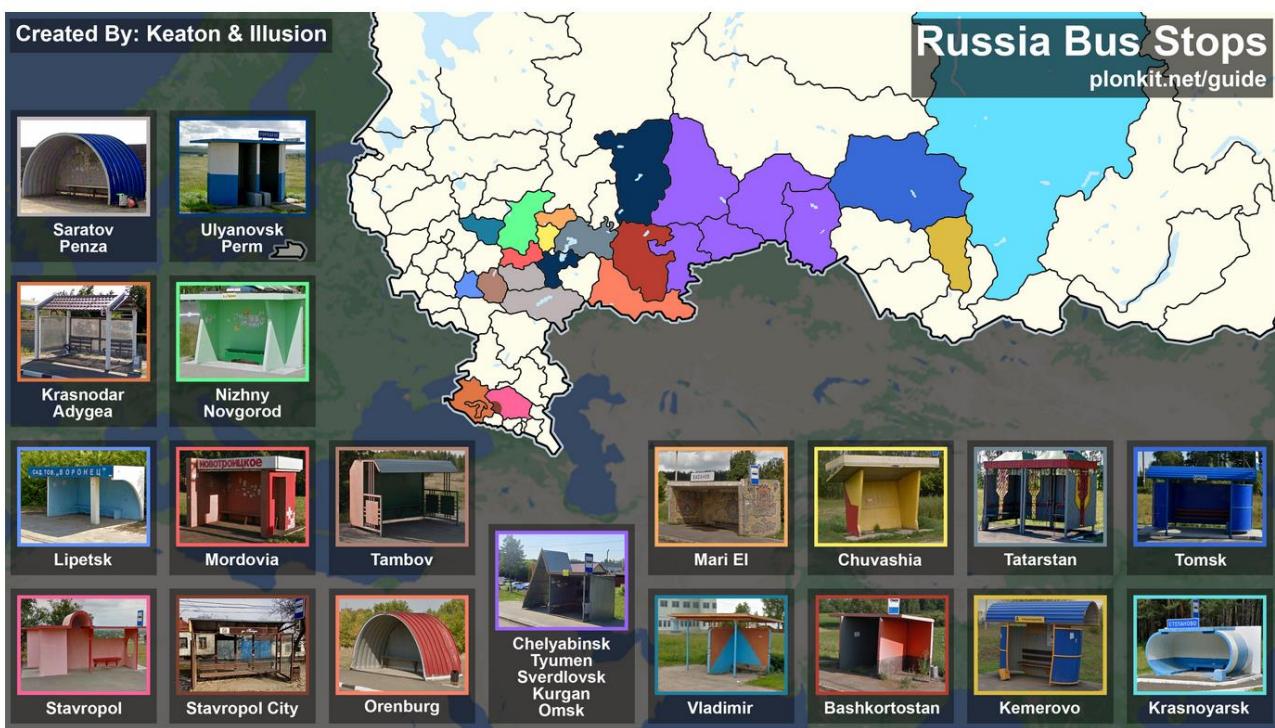
Generation 4 coverage is typical for Dagestan. The landscape can either be completely flat or mountainous. These flowers are also quite common in the Generation 4 Dagestan coverage.

The **Caucasus mountain range** is one of the largest mountain ranges in Russia. The tallest mountain in Russia, Mount Elbrus, can be found on the border of the Kabardino-Balkarian Republic and Karachay-Cherkessia.

This is a map of Russian **area codes**. Notably, area codes starting with 8 are in the west, codes starting with 3 are fairly central and codes starting with 4 are either east or around Moscow.



In Generation 3 coverage you will somewhat commonly find unblurred licence plates, featuring a **regional code** on the right side. The codes are generally ordered alphabetically within each type of federal subject, starting at republics and ending with autonomous okrugs. Therefore, the Republic of Adygea will be represented by 01, and the Amur Oblast by 28, both being the first alphabetical subjects of republics and oblasts respectively. If you encounter a three digit code, the second and third digit will form the regional code, in this case 123 becomes 23, for Krasnodar Krai. You may also find the codes written out on the back of trucks and vans.



Russia Bus Stops

plonkit.net/guide

These are the bus stops unique to specific federal subjects in Russia. Notably common and memorable ones include Krasnoyarsk Krai, Chuvashia, Tatarstan, and Mari El Republic.

Japanese-made cars with the **steering wheel on the right** become more common the further east you go, generally starting around Novosibirsk.

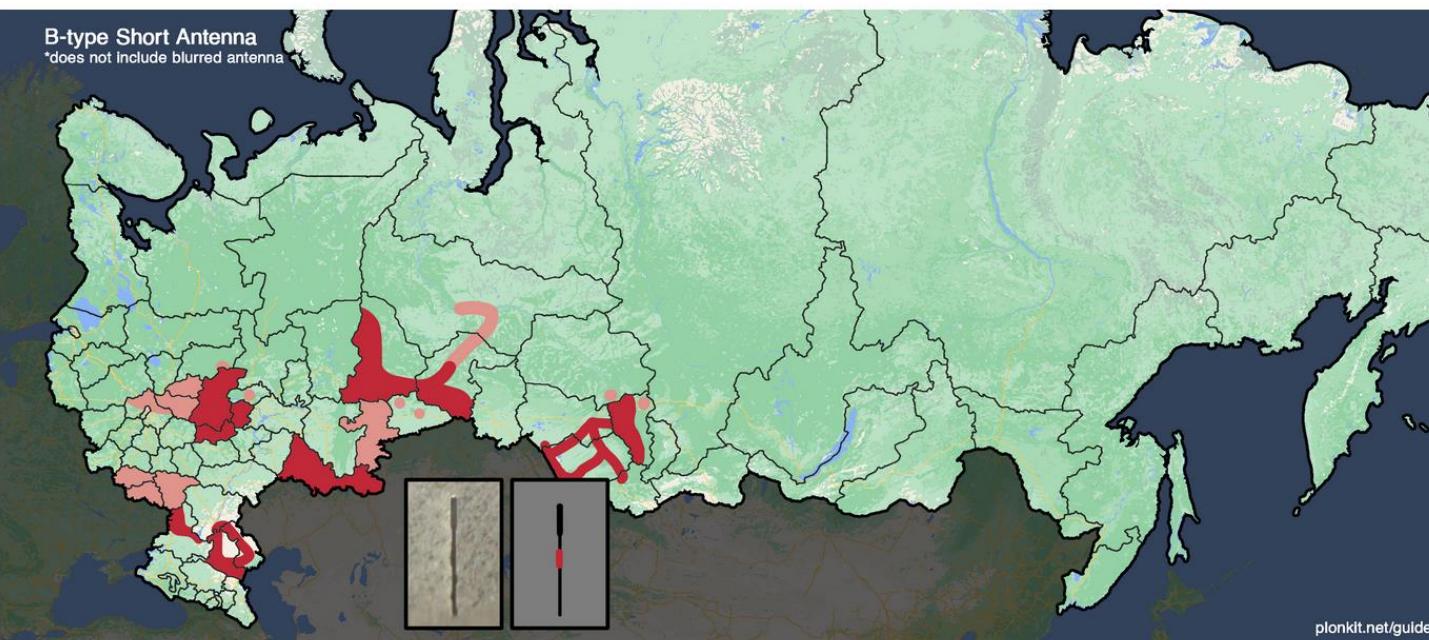
Buildings built almost entirely of **red brick** are mostly found south, but other notable exceptions include Magnitogorsk, Orsk, and Omsk.

While mosques can be found everywhere in Russia, they are by far most common in areas with a Muslim majority, mainly in much of south Russia as well as Tatarstan and Bashkortostan.

A-type Short Antenna
*does not include tilted

The A-type short antenna has its highest ridge on the right. Notable areas for this antenna are around Kaluga, Orenburg, and Krasnodar.

B-type Short Antenna
*does not include blurred antenna



The B-type short antenna has its highest ridge on the left. This antenna is wide-ranging, but it is most notably found near Nizhny Novgorod, Elista, and Yekaterinburg and Tyumen.

PIGEON: PREDICTING IMAGE GEOLOCATIONS

PREPRINT

Lukas Haas

Department of Computer Science
Stanford University
lukashaas@cs.stanford.edu

Michal Skreta

Department of Computer Science
Stanford University
michal.skreta@stanford.edu

Silas Alberti

Department of Electrical Engineering
Stanford University
salberti@stanford.edu

Chelsea Finn

Department of Computer Science
Stanford University
cbfinn@cs.stanford.edu

Benchmark	Method	Median Error km	Distance (%) @ km)				
			<i>Street</i> 1 km	<i>City</i> 25 km	<i>Region</i> 200 km	<i>Country</i> 750 km	<i>Continent</i> 2,500 km
IM2GPS (Hays & Efros, 2008)	PlaNet (Weyand et al., 2016)	> 200	8.4	24.5	37.6	53.6	71.3
	CPlaNet (Seo et al., 2018)	> 200	16.5	37.1	46.4	62.0	78.5
	ISNs(M, f^*, S_3) (Müller-Budack et al., 2018)	> 25	16.9	43.0	51.9	66.7	80.2
	Translocator (Pramanick et al., 2022)	> 25	19.9	48.1	64.6	75.6	86.7
	GeoDecoder (Clark et al., 2023)	~25	22.1	50.2	69.0	80.0	89.1
	PIGEOTTO (Ours)	70.5	14.8	40.9	63.3	82.3	91.1

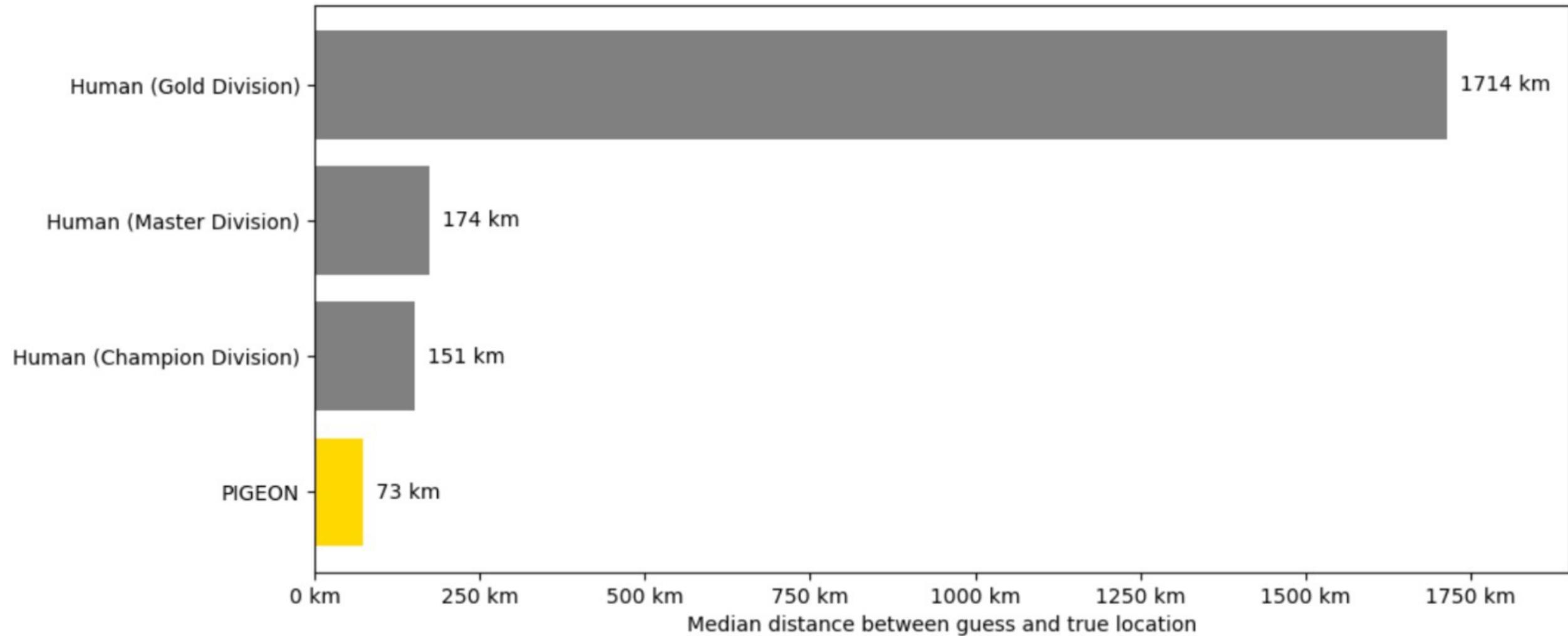


Figure 4: Geolocalization error of PIGEON against human players of various in-game skill levels across 458 multi-round matches. The Champion Division consists of the top 0.01% of players. PIGEON’s error is higher than in Table 1 because Geoguessr round difficulties are adjusted dynamically, increasing with every round.

ROUND 2

Let's try some GeoGuessr ourselves



The BEST GeoGuessr Game Of All Time - Grand Finals 25

GeoGuessr
100K subscribers

Subscribe

4.9K

Share

Ask

Download

...

https://youtu.be/9Wbau6wdKzI?si=Fa0r_OLiwjF75QG&t=3011

Outline

- Bespoke Image Geolocation Approaches
 - Im2gps (2008)
 - PlaNet and im2gps revisited (2016 and 2017)
- Can Large Vision-Language Models geolocate images?
 - CLIP (2021)
 - GeoGuessr
 - Pigeon (2023)
- Can Large *Generative* Vision-Language Models geolocate images?

GPT-4V System Card

Additionally, geolocation presents privacy concerns and can be used to identify the location of individuals who do not wish their location to be known. Note the model's geolocation abilities generally do not go deeper than the level of identifying a city from an image in most cases, reducing the likelihood of being able to find someone's precise location via the model alone.

“Least to Most” prompting of GPT-4V

Please provide your speculative guess for the location of the image at the country, city, neighborhood, and exact location levels. You must provide reasoning for why you have selected the value for each geographical level...

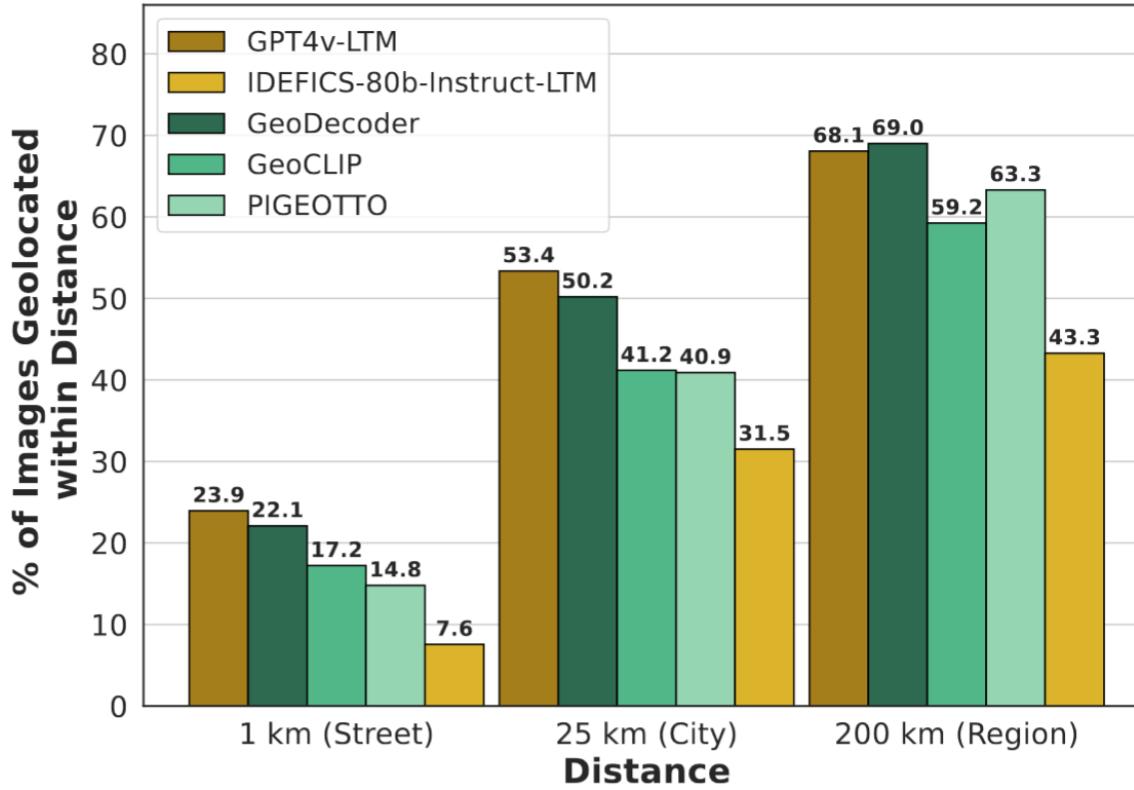
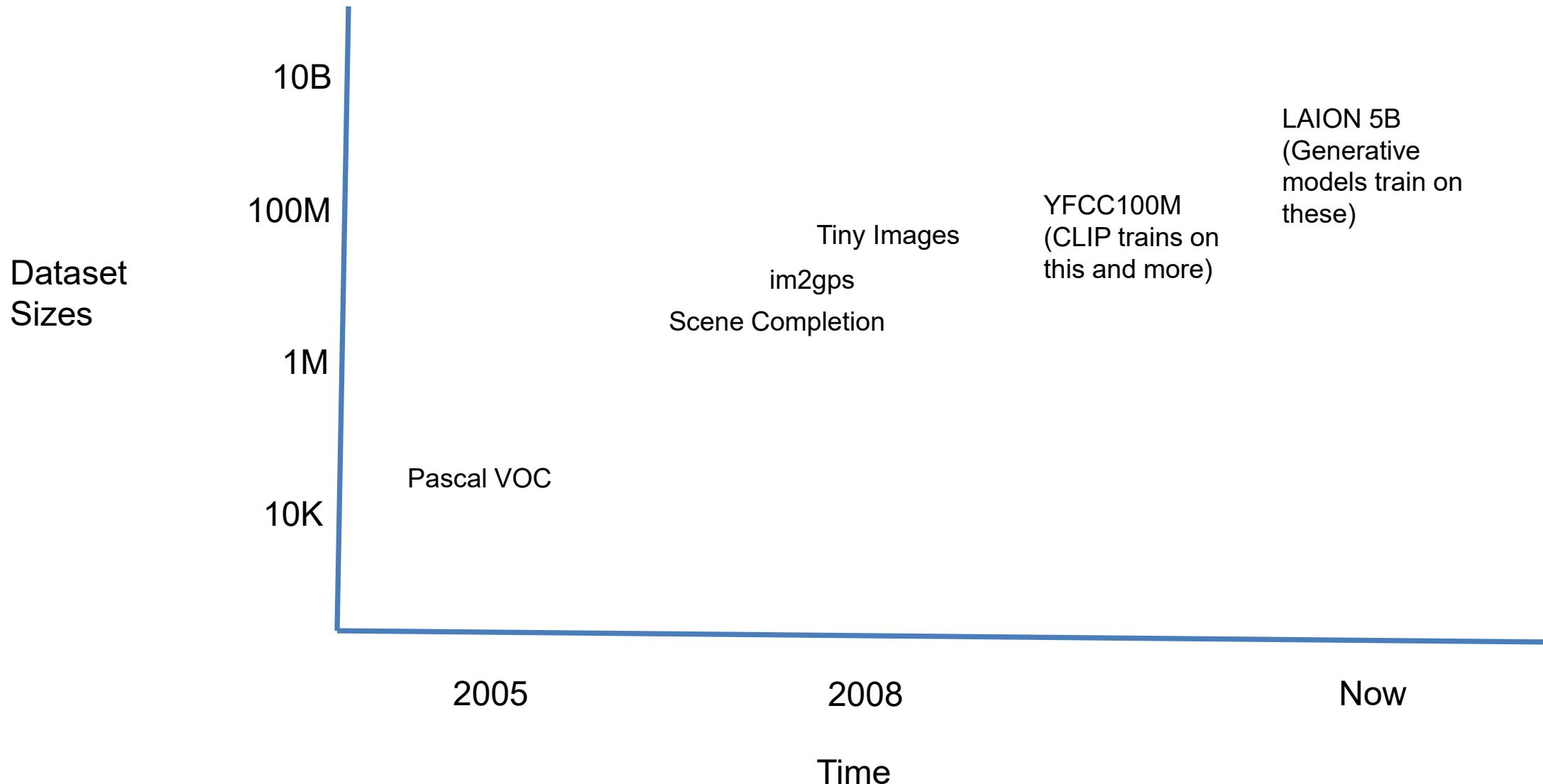


Figure 2: GPT-4v with geographical least-to-most (LTM) prompting performs well on the IM2GPS (Hays and Efros, 2008) benchmark compared to the state-of-the-art geolocation models GeoDecoder (Clark et al., 2023), GeoCLIP (Vivanco Cepeda et al., 2024), and PIGEOTTO (Haas et al., 2023). GPT-4v also has the lowest median distance error of 13 km.

Dataset Sizes through Time



Revisiting our Big Idea

- Do we need computer vision systems to have strong AI-like reasoning about our world?
 - For some tasks, yes. For most tasks, probably not.
- What if invariance / generalization isn't actually the core difficulty of computer vision?
 - Generalization is still a fundamental, hard task.
- What if we can perform high level reasoning with brute-force, data-driven algorithms?
 - Combinatorics tells us we can't naively brute force our way very far.

Summary

- With billions of images on the web, it's often possible to find a close nearest neighbor
- In such cases, we can shortcut hard problems by “looking up” the answer, stealing the labels from our nearest neighbor. For example, simple (or learned) associations can be used to synthesize background regions, colorize, or recognize objects
- But we can't really “brute force” computer vision. Still, it's nice to get an intuition for the size of “image space”.

