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Recap
Big Data

— The Unreasonable Effectiveness of Data
— Scene Completion
— lm2gps

Crowdsourcing
— “Wisdom of the Crowds” / consensus
— Find good annotators through grading
— Pricing affects throughput but not quality
— User interface and instructions matter a lot



Today’s Lecture

* Four methods for “unsupervised” deep learning
— Context Prediction. Doersch et al. ICCV 2015
— Colorful Image Colorization. Zhang et al. ECCV 2016
— SimCLR. Chen et al. ICML 2020
— Masked Autoencoders. He et al. CVPR 2022

* Big picture: do we need big, labeled datasets like ImageNet to
make deep learning worthwhile? Can we learn from something
else?



But how do
you make this
‘Electricity’?



( But how do \
vou make this
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The Gelato Bet

"If, by the first day of autumn
(Sept 23) of 2015, a method
will exist that can match or
beat the performance of R-
CNN on Pascal VOC detection,
without the use of any extra,
human annotations (e.g.
ImageNet) as pre-training,
Mr. Malik promises to buy Mr.
Efros one (1) gelato”




R-CNN: Regions with CNN features

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

Figure 1: Object detection system overview. Our system (1)
takes an input 1mage, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each

region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For



Unsupervised Visual Representation Learning by
Context Prediction

Carl Doersch, Alexei A. Efros, and Abhinav Gupta

ICCV 2015



ImageNet + Deep Learning

» Beagle

Image Retrieval
Detection (RCNN)
Segmentation (FCN)
- Depth Estimation




ImageNet + Deep Learning
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Geometry? Boundaries?



Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013 (Word2Vec)]

gimmicks and appliances, the toasters and







Semantics from a non-semantic task




Relative Position Task

D <& 8 possible locations
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Patch Embedding

Nearest Nelghbors

o

CNN Note: connects across instances!




Architecture

Softmax loss
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Avoiding Trivial Shortcuts

Include a gap

Jitter the patch locations




A Not-So “Trivial” Shortcut
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tion

Chromatic Aberra




romatic Aberration




What is learned?

Random Initialization ImageNet AlexNet
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Still don’t capture everything

Ours Random Initialization ImageNet AIexNet
g N

You don’t always need to learn!

Ours Random Inltlallzatlon ImageNet AlexNet




Pre-Training for R-CNN

1 warped region

aeroplane? no.

person? yes.

1. Input 2. Extract region 3. Compute 4. Classify
Image proposals (~2k) CNN features regions

!

Pre-train on relative-position task, w/o labels

tvmonitor? no.

[Girshick et al. 2014]



% Average Precision

VOC 2007 Performance

(pretraining for R-CNN)

No Rescaling
Krahenblhl et al. 2015

68.6
VGG + Krahenbuhl et al.

671.7 [Krdhenbihl, Doersch, Donahue &

Darrell, “Data-dependent

568 Initializations of CNNs”, 2015]

54.2
51.1
46.3 45 6

40.7 42.4

ImageNet Labels Ours No Pretraining



Clever ideas to keep in mind

 “Pretext” tasks to train networks

* Avoiding shortcuts in learning by
— Dropping out modalities
— Randomizing patch offsets
— Including gaps in patch offsets



So, do we need semantic labels?



Colorful Image Colorization
Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros

richzhang.github.io/colorization
ECCV 2016



http://richzhang.github.io/colorization




Ansel Adams, Yosemite Valley Bridge — Our Result
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Grayscale image: L channel Color information: ab channels
X € RAXWx! Y € RFXWx2

[ L | ab |




Semantics? Higher-level

Grayscale image: L c abstraction? ncatenate (L,ab)
X € R**W (X,Y)
1]

‘ L "’%ﬂ—ugﬁ 'V‘ ab ‘4— supervisory

signal




Inherent Ambiguity

Grayscale



Inherent Ambiguity

Our Output Ground Truth



Better Loss Function

Colors in ab space
(continuous)

* Regression with L2 loss inadequate 19|
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Better Loss Function

Colors in ab space
(discrete)

* Regression with L2 loss inadequate 10T
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Better Loss Function

* Regression with L2 loss inadequate
~ 1 ~
La(Y,Y) = 9 hz:HYh,w - Yh,w”%

* Use multinomial classification
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Better Loss Function

log,, probability

* Regression with L2 loss inadequate Hls'lcograrln over ab \

~ 1 ~
La(Y,Y) = 9 ZHYh,w - Yh,w”%
h,w
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* Use multinomial classification :
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* Class rebalancing to encourage
learning of rare colors
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Hertzmann et al. In SIGGRAPH, 2001.

Non-
param

far Welsh et al. In TOG, 2002.
v Irony et al. In Eurographics, 2005.
Liu et al. In TOG, 2008.
Chia et al. In ACM 2011.
Gupta et al. In ACM, 2012.

Input gray image

Input objects Internet objects Diverse variety of colorized results
‘ Input background ‘ Internet backgrounds

User input Candidate image selection Image colorization

Parametric

Hand-engineered Features

Input grayscale image Refined Chrominance Refmed color image Ground truth color

Input grayscale image Joint bilateral filtering

Feature descriptors

L2 Regression

Input layer Three hidden layers Output layer Chrommance values Color image

Deshpande et al. Chengetal. In ICCV 2015.

‘ -

Charpiat et al. In ECCV 2008.

Classification

!
OR

Deep Networks

Colonization

L4 Mid-Level Features Networ e % Hxw
Network
Hw = i
|- _,é«f¢&\* 20,60% Formal Gar
12x112 =77 S X Classification | 16.13%Arch
56x36  28x28 —— " Network 4 Y
7 cal Gar
Predicied labels
Global Features Network

Dahl. Jan 2016. Ilzuka et al. In SIGGRAPH, 2016.

VGG-16-Gray Hypercolumn Hue Ground-truth
7

(fc7) conv?
(fc6) conve
conv5.3

convll

Input: Grayscale Image Output: Color Image

Larsson et al. In ECCV 2016. [Concurrent]

-——————l———————



Network Architecture

convl conv2 conv3 conv4 conv5 fcé fc7

lightness 64 ab color
128
256 512
] s12 409 4096 " J
14 1 1 4/
56 28
- 112
| 224
224 313 f b \

X 7 %
Z € [0,1)1xWxQ Y




Network Architecture

convl conv2 conv3 conv4 conv5 convé conv? conv8
a trous [1])/dilated [2] a trous/dilated

lightness 64 ab color
128
256 256
512 512 512 512 /
| i i il ) N,
56 28 28 28 2 " 56
112
313 f - \

X = Y
Z € [0,1]7xWxQ Y

[1] Chen et al. In arXiv, 2016.
[2] Yu and Koltun. In ICLR,
2016



Grounpufruth L2 Regression Class w/ Rebalancing




ilure Cases
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Evaluation

Visual Quality

Per-pixel accuracy

Quantitative



Evaluation

‘ Visual Quality ‘ Representation Learning

Quantitative .
Perceptual realism

Task & dataset generalization

PASCAL classification, detection, segmentation

Qualitative Hidden unit activations
Legacy grayscale photos




Evaluation

‘ Visual Quality ‘ Representation Learning

Quantitative .
Perceptual realism

Task & dataset generalization

PASCAL classification, detection, segmentation

Qualitative Hidden unit activations
Legacy grayscale photos




Perceptual Realism / Amazon
Mechanical Turk Test






Fake, 0% fooled







Fake, 55% fooled







Fake, 58% fooled




from Reddit /u/SherySantucci



Recolorized by Reddit ColorizeBot



Photo taken by
Reddit /u/Timteroo,
/o Mural from street

- ‘;; artist Eduardo Kobra




Recolorized
by Reddit
ColorizeBot




Perceptual Realism
Test
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Predicting Labels from Data

Supervised
training

Learned feature

‘ Data x ‘—» —>‘ Label y ‘

hierarchy

ImageNet ImageNet
images labels



Predicting Data from Data

Supervised Learned feature
training Xo \\ 1 hierarchy - ‘ Labely ‘
ImageNet ImageNet
images labels
Unsupervised/
Self-supervised | x, \ ‘ — Learr.med feature NG ‘ \ X,
hierarchy

training



Autoencoders

m i
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Hinton & Salakhutdinov.
Science 2006.

Denoising Autoencoders

¥

Vincent et al. ICML 2008.

5 Soo00)

Isola et al. ICLR Worlghog 2016.
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Cross-Channel Encoder

convl conv2 conv3 conv4d convs convé conv?7 conv8
lightness a trous [1]/dilated [2] ab color

256
38 38 25 4096 4096

| i i f il
17 17 17 17

33

: |
Hidden Unit Activations
X Zhou et al. In ICLR, 2015. 7. € [0, 1]TXWxQ

[1] Chen et al. In arXiv, 2016.
[2] Yu and Koltun. In ICLR,
2016



Task Generalization: ILSVRC linear classification

convl conv2 conv3 conv4d conv5

lightness

192

T 1000 T 1000 T1ooo 11000 T1ooo
Class Supervision

Are semantic classes linearly separable
in the learned feature space?



Task Generalization: ILSVRC linear classification
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Task Generalization: ILSVRC linear classification
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Task Generalization: ILSVRC linear classification

I

¥—2YY Gauss
[= [> Kraehenbuehl et al.

60 I— Pathak et al.
_' ' Doersch et al. R T P

Donahue et al. . : :
ours :
50_ __.___.___.__. PR —

AOL.

Top-1 Class Accuracy (%)

20l |
10} . 1

convl conv?2 conv3 convd convb
Layer



trees

water




flowers



Dataset & Task Generalization on
PASCAL VOC

Does the feature representation
transfer to other datasets and tasks?

Outputs: beX

f-z;__ \‘ 3 kJ | |.;:1y.7";fl\f-l } 4—’ g Deep S softmax regressor
] \ s 15 _ConvNet .
A ‘—:3 l\g— s \[5‘? I pooling T}:C e
‘\M i | 1 : \i-.;w i ““ 0 S iy
H t "': o — e projection J H
JM Biro T B " Conv Rol feature

| feature map VEctOr eI

[ ] [ ] [ ] [ ]
Classification Detection

Segmentation
FCNs. Long et al. In CVPR, 2015.

Krahenbihl et al. In ICLR, 2016. Fast R-CNN. Girshick. In ICCV, 2015.



Dataset & Task Generalization on PASCAL VOC

ImageNet
Labels

% from Gaussian to

Gaussian
Initialization

100%

ImageNet labels

0%

O Autoencoder O Wang & Gupta

Krahenbihl et al. [J Doersch et al.
] Agrawal et al. [J ponahue et al.
] Pathak et al. ] ours

Classification

Detection Segmentation






The Gelato Bet, Resolved

"If, by the first day of autumn
(Sept 23) of 2015, a method
will exist that can match or
beat the performance of R-
CNN on Pascal VOC detection,
without the use of any extra,
human annotations (e.g.
ImageNet) as pre-training,
Mr. Malik promises to buy Mr.
Efros one (1) gelato”




Clever ideas to keep in mind

* Turn a regression task into a classification task
* Fight back against class imbalance

— Loss functions that emphasize rare classes
— Replay rare classes more during training



A Simple Framework for Contrastive Learning of Visual Representations

1

Ting Chen! Simon Kornblith! Mohammad Norouzi' Geoffrey Hinton '

SImCLR, IMCL 2020
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Figure 7. Linear evaluation of models with varied depth and width.
Models in blue dots are ours trained for 100 epochs, models in red
stars are ours trained for 1000 epochs, and models in green crosses
are supervised ResNets trained for 90 epochs’ (He et al., 2016).



Maximize agreement
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(a) Original (b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°,180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering




Masked Autoencoders Are Scalable Vision Learners

Kaiming He*" Xinlei Chen* Saining Xie Yanghao Li Piotr Dollar Ross Girshick

*equal technical contribution fproject lead

Facebook AI Research (FAIR)

CVPR 2022
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Figure 2. Example results on ImageNet validation images. For each triplet, we show the masked image (left), our MAE reconstruction’
(middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.
TAs no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible
patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method’s behavior.



Figure 3. Example results on COCO validation images, using an MAE trained on ImageNet (the same model weights as in Figure 2).
Observe the reconstructions on the two right-most examples, which, although different from the ground truth, are semantically plausible.



original mask 75% mask 85% mask 95%

Figure 4. Reconstructions of ImageNet validation images using
an MAE pre-trained with a masking ratio of 75% but applied on
inputs with higher masking ratios. The predictions differ plausibly
from the original images, showing that the method can generalize.
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APbOX ‘,§\l,):1’1;z\ﬁv.
method pre-train data ViT-B  ViT-L Vil-B  ViT-L

supervised INIK w/labels  47.9 49.3 42.9 43.9
MoCov3  INIK 47.9 49.3 42.7 44.0
BEiT INTK+DALLE 49.8 53.3 44 4 47.1
MAE INIK 50.3 3.3 44.9 47.2

Table 4. COCO object detection and segmentation using a ViT
Mask R-CNN baseline. All entries are based on our implementa-
tion. Self-supervised entries use IN1K data without labels. Mask
AP follows a similar trend as box AP.



Conclusion

 With the right “pretext” tasks and architectures, we are pretty
close to matching supervised performance with self-supervised
approaches. But it takes some work (longer training, bigger
models, precise hyperparameter tuning)

 SImCLR and Masked AutoEncoder only train on ImageNet

images. But couldn’t you use a lot more data if you don’t need
human labels?

 The gelato bet was just a bit premature
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