

16

~~“Unsupervised”~~ *Self Supervised* Deep Learning

James Hays
slides from Carl Doersch and Richard Zhang

Recap

Big Data

- The Unreasonable Effectiveness of Data
- Scene Completion
- Im2gps

Crowdsourcing

- “Wisdom of the Crowds” / consensus
- Find good annotators through grading
- Pricing affects throughput but not quality
- User interface and instructions matter a lot

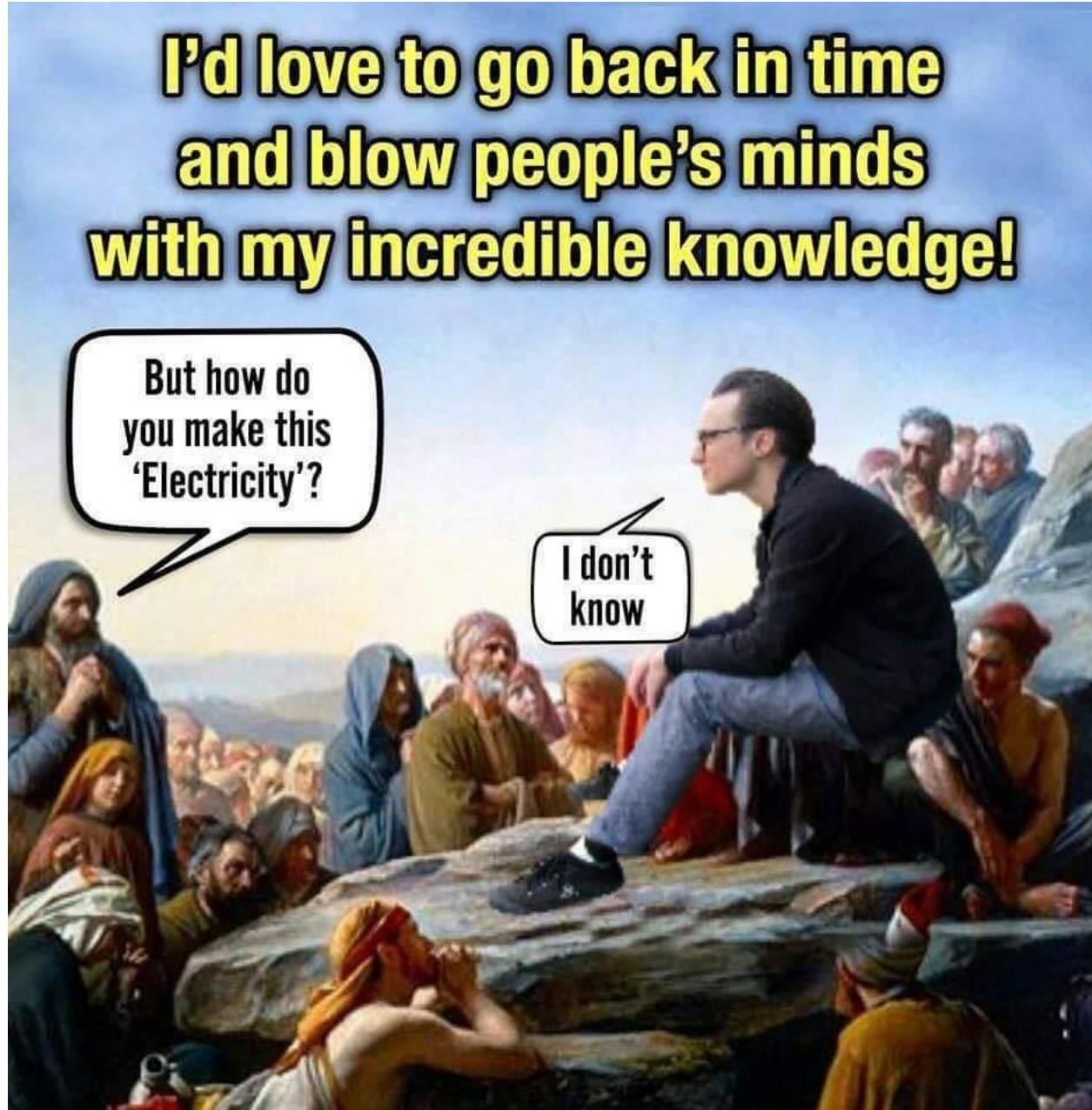
Today's Lecture

- Four methods for “unsupervised” deep learning
 - Context Prediction. Doersch et al. ICCV 2015
 - Colorful Image Colorization. Zhang et al. ECCV 2016
 - SimCLR. Chen et al. ICML 2020
 - Masked Autoencoders. He et al. CVPR 2022
- Big picture: do we need big, labeled datasets like ImageNet to make deep learning worthwhile? Can we learn from something else?

**I'd love to go back in time
and blow people's minds
with my incredible knowledge!**

But how do
you make this
'Electricity'?

I don't
know



**I'd love to go back in time
and blow people's minds
with my incredible knowledge!**

But how do
you make this

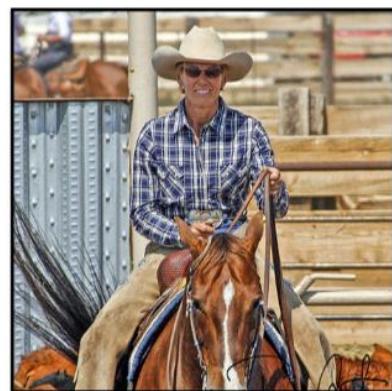
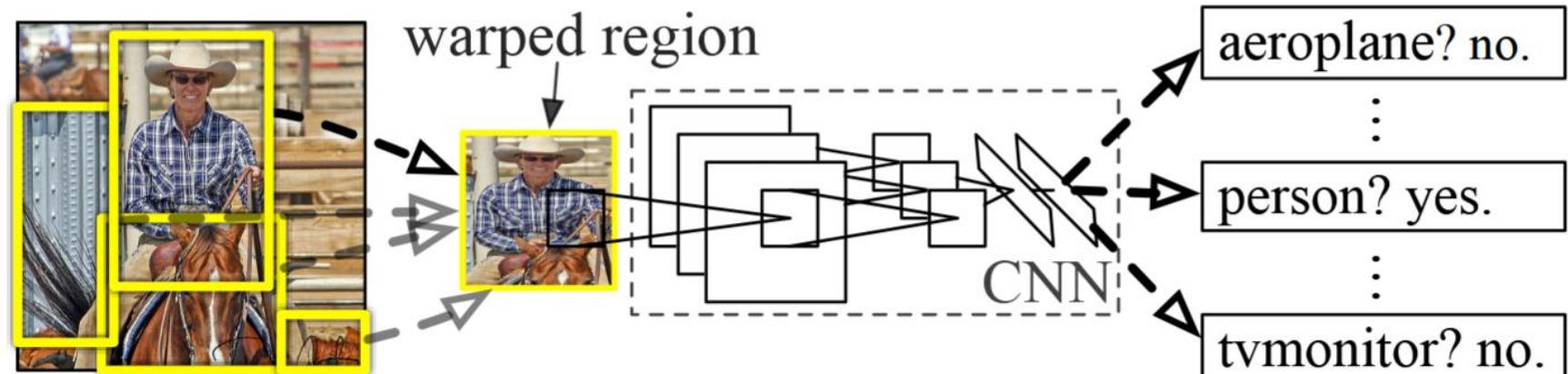
Large Pretrained Model?

I don't
know

The Gelato Bet

"If, by the first day of autumn (Sept 23) of 2015, a method will exist that can match or beat the performance of R-CNN on Pascal VOC detection, without the use of any extra, human annotations (e.g. ImageNet) as pre-training, Mr. Malik promises to buy Mr. Efros one (1) gelato"

R-CNN: *Regions with CNN features*



1. Input image

2. Extract region proposals (~2k)

3. Compute CNN features

4. Classify regions

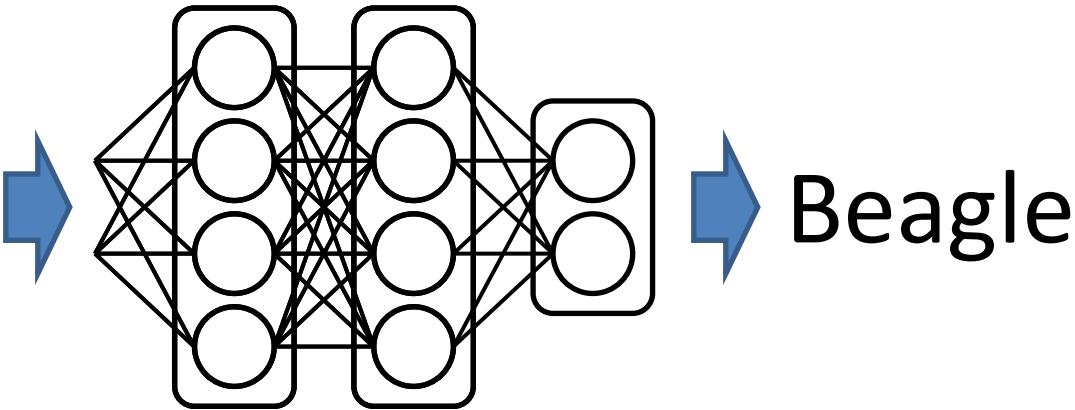
Figure 1: Object detection system overview. Our system (1) takes an input image, (2) extracts around 2000 bottom-up region proposals, (3) computes features for each proposal using a large convolutional neural network (CNN), and then (4) classifies each region using class-specific linear SVMs. R-CNN achieves a mean average precision (mAP) of **53.7%** on PASCAL VOC 2010. For

Unsupervised Visual Representation Learning by Context Prediction

Carl Doersch, Alexei A. Efros, and Abhinav Gupta

ICCV 2015

ImageNet + Deep Learning

A diagram illustrating a deep learning neural network architecture, identical to the one shown above. It consists of three layers of neurons, represented by circles. Every neuron in one layer is connected to every neuron in the layer above it. A large blue arrow points from the second image of the beagle to the first layer of the network. To the right of the network diagram, a list of applications is provided, each preceded by a blue arrow pointing to the right.

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- ...

ImageNet + Deep Learning



Materials?

Parts?

Pose?

Geometry?

Boundaries?

Do we even need this at this task? Labels?

Context as Supervision

[Collobert & Weston 2008; Mikolov et al. 2013 (Word2Vec)]

house, where the professor lived without his wife and child; or so he said jokingly sometimes: "Here's where I live. My house." His daughter often added, without resentment, for the visitor's information, "It started out to be for me, but it's really his." And she might reach in to bring forth an inch-high table lamp with fluted shade, or a blue dish the size of her little fingernail, marked "Kitty" and half full of eternal milk, but she was sure to replace these, after they had been admired, pretty near exactly where they had been. The little house was very orderly, and just big enough for all it contained, though to some tastes the bric-à-brac in the parlor might seem excessive. The daughter's preference was for the store-bought gimmicks and appliances, the toasters and carpet sweepers of Lilliput, but she knew that most adult visitors would

Deep
Net

Context Prediction for Images

?

?

?

?

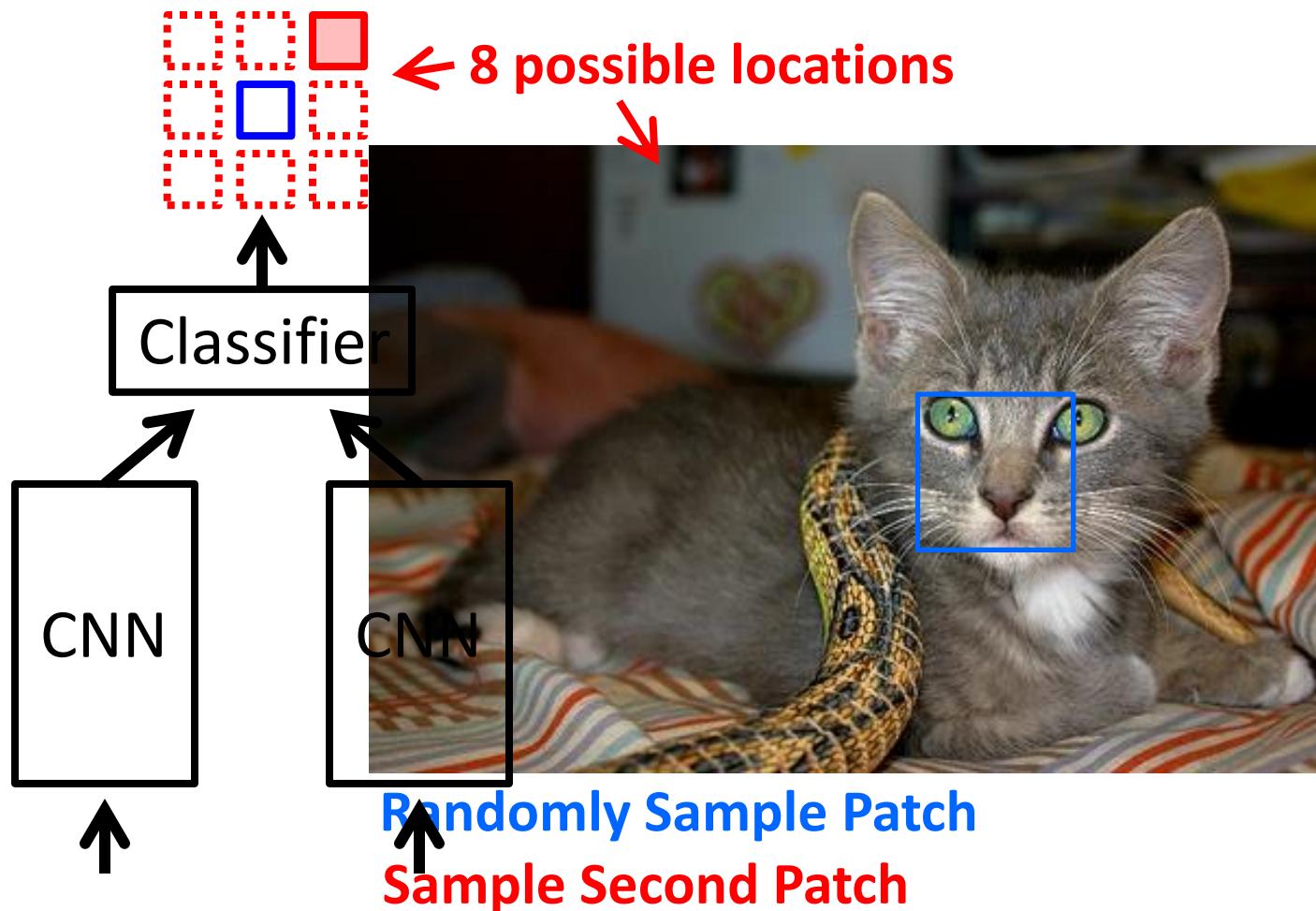
?

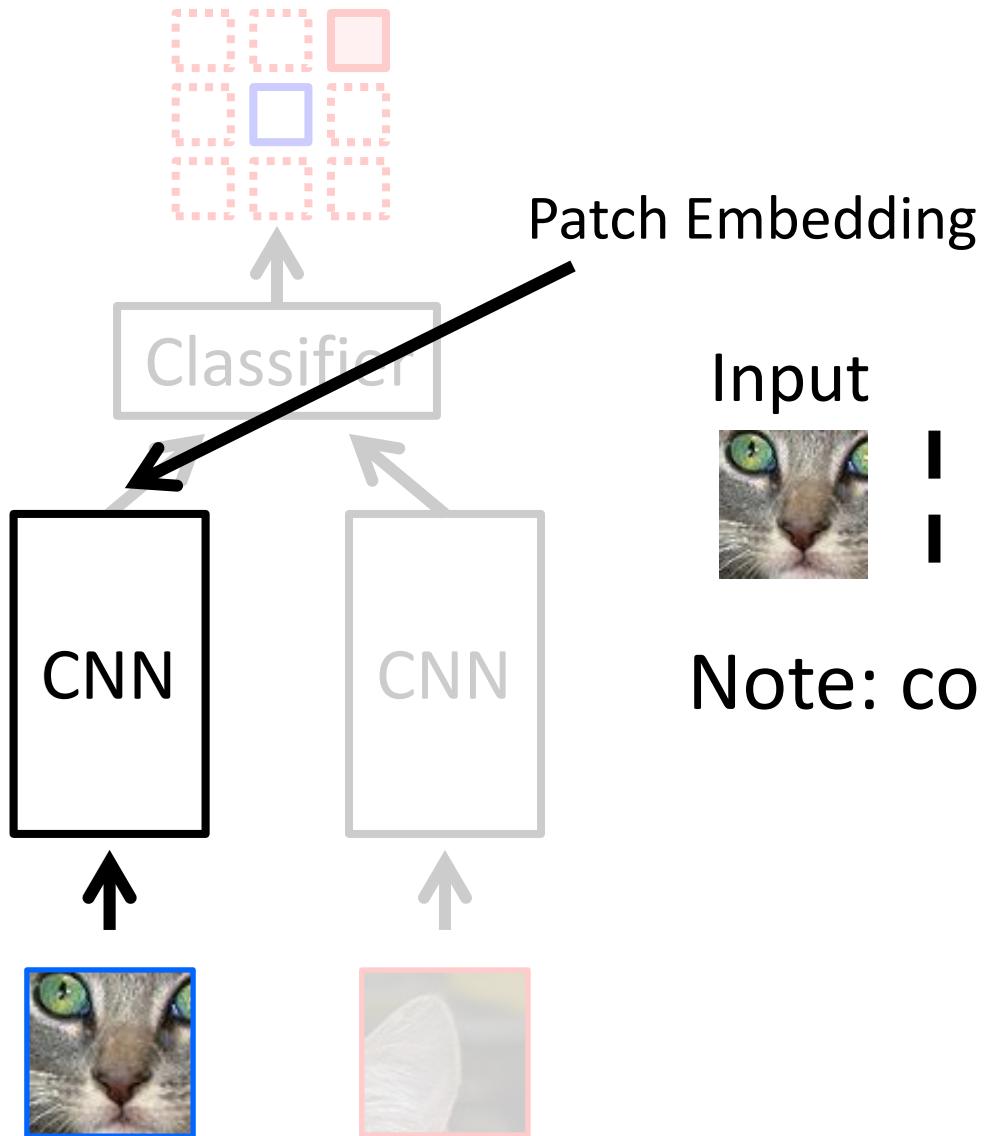
A

B

Semantics from a non-semantic task

Relative Position Task



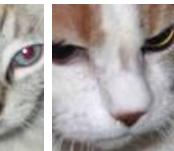


Patch Embedding

Input

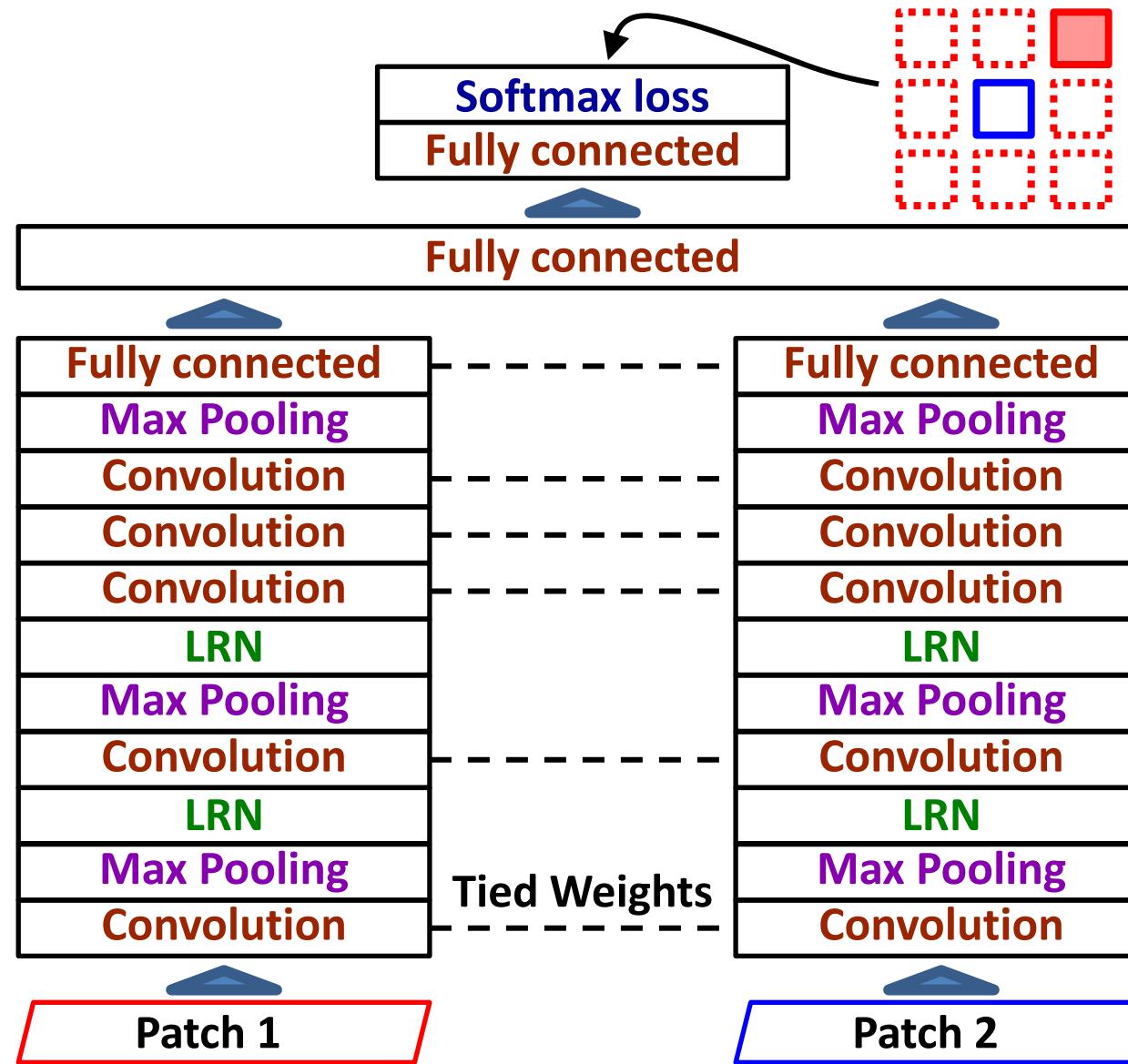
:

Nearest Neighbors

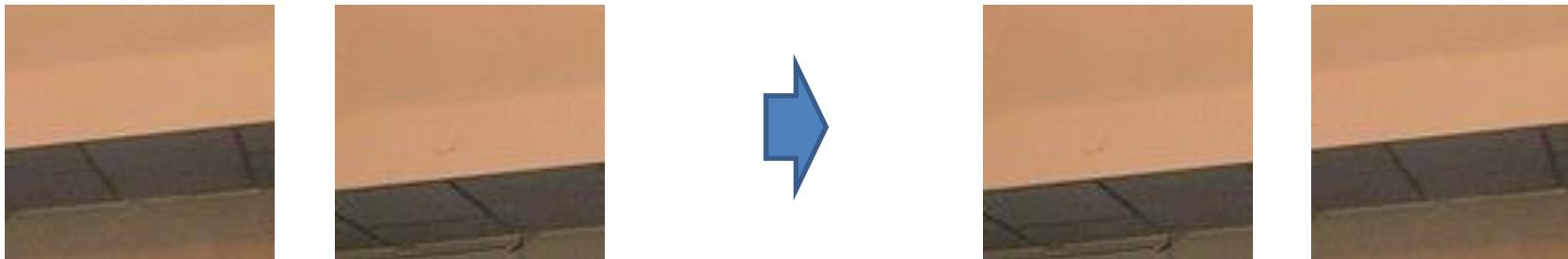
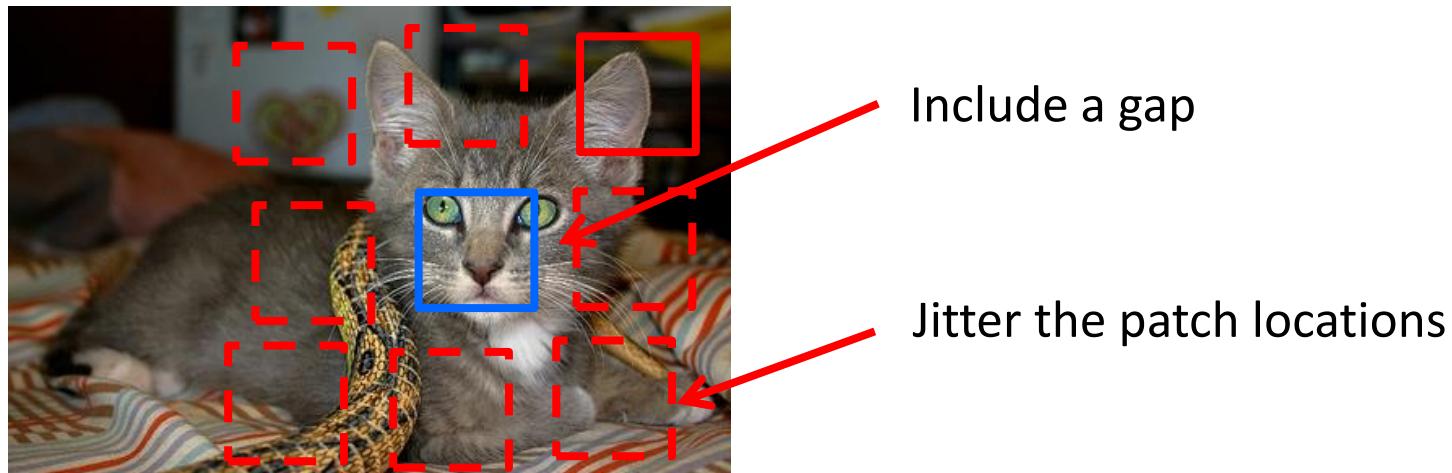


Note: connects *across* instances!

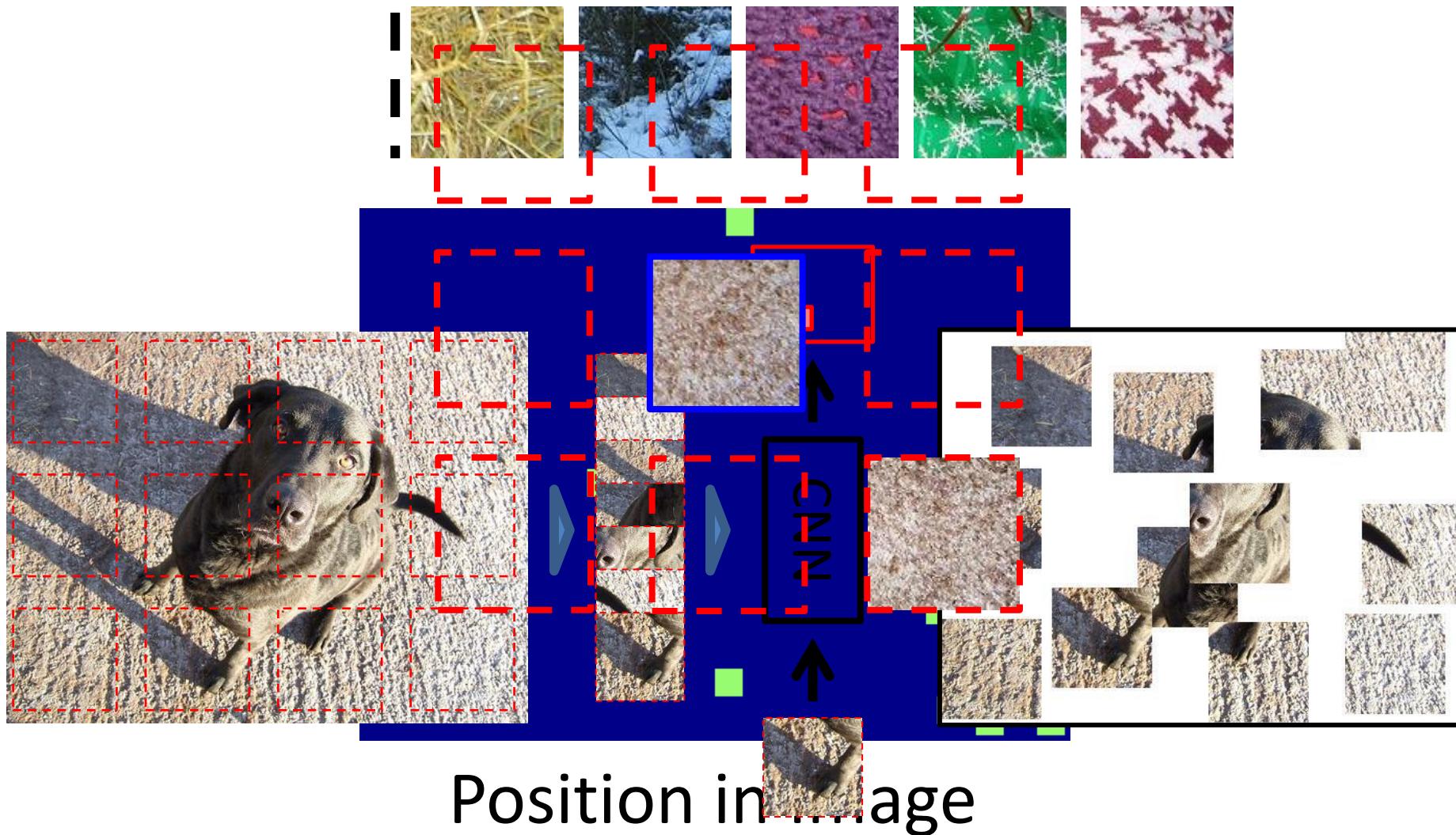
Architecture



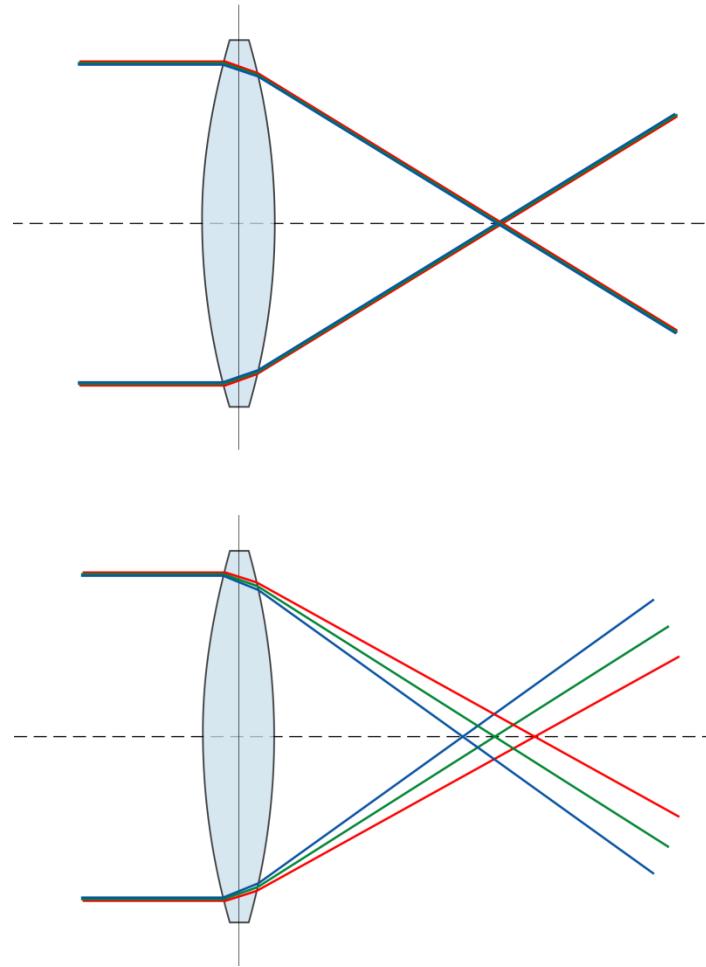
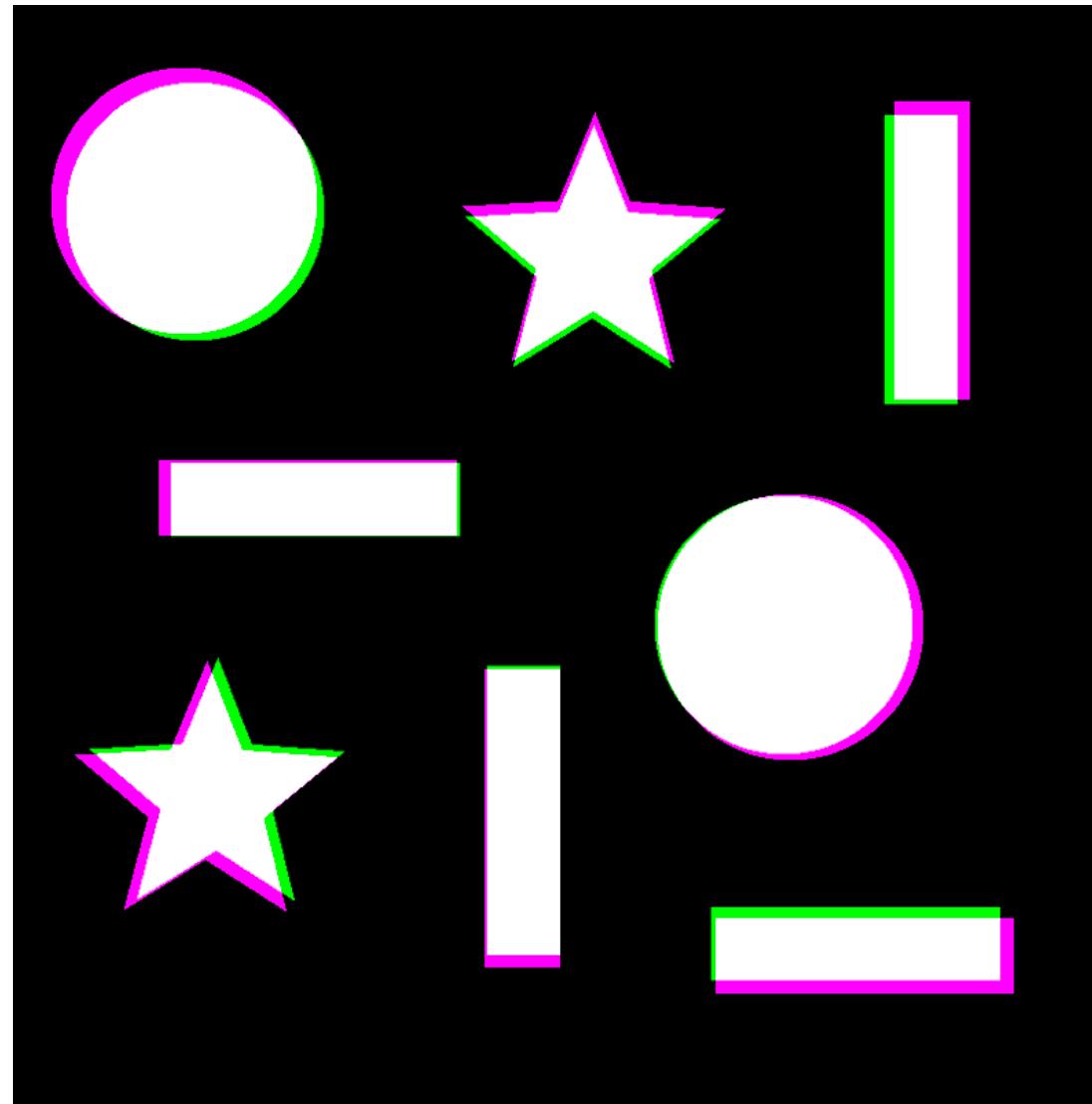
Avoiding Trivial Shortcuts



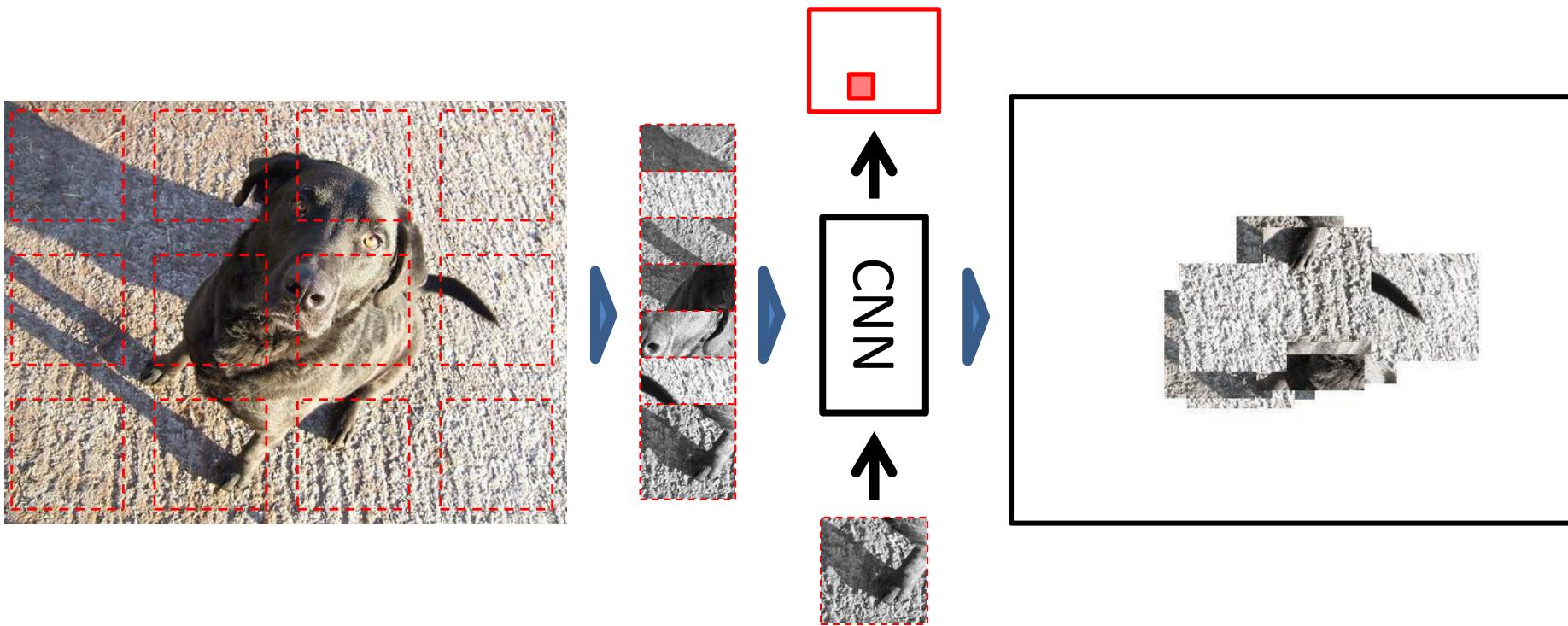
A Not-So “Trivial” Shortcut



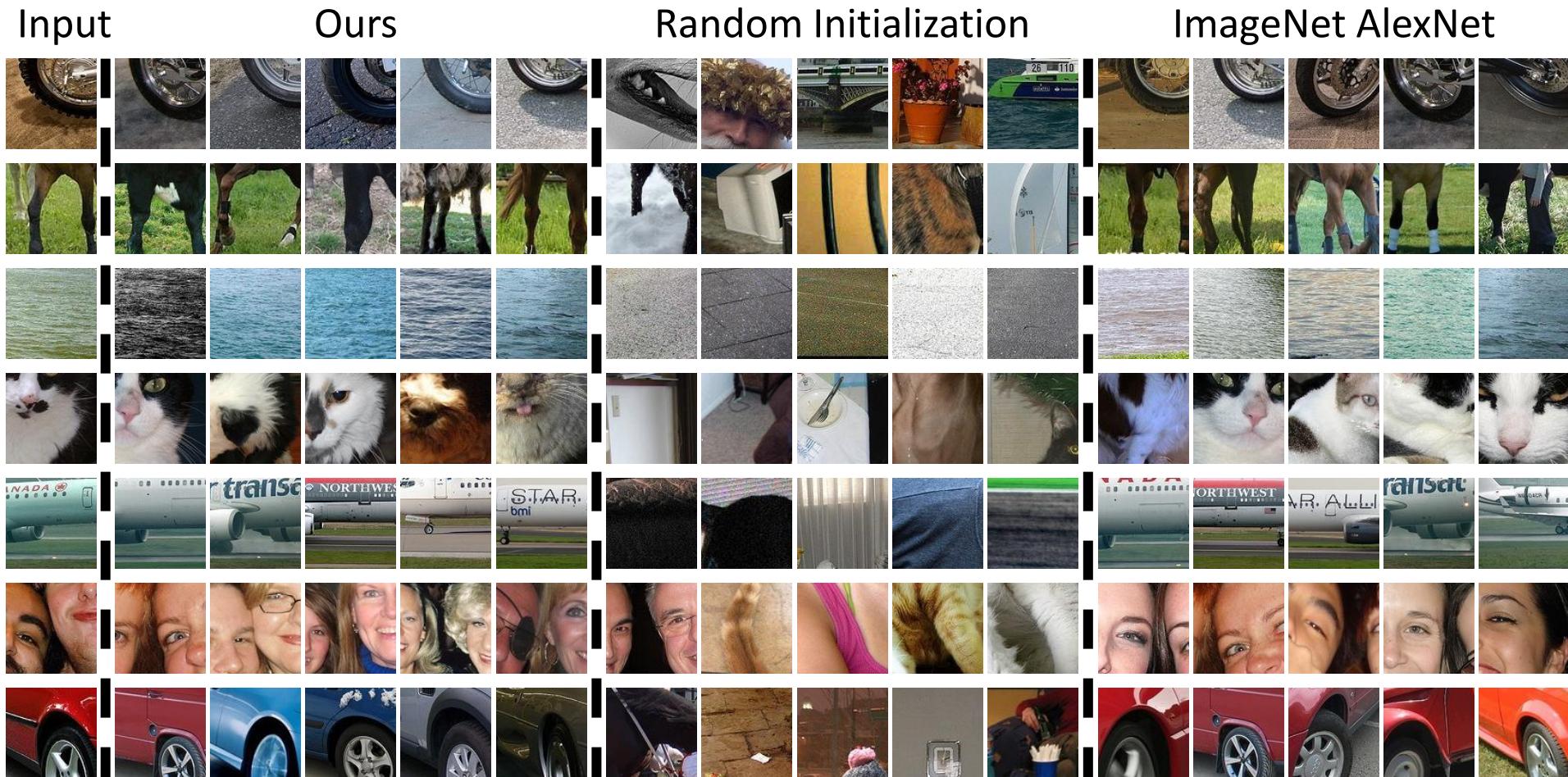
Chromatic Aberration



Chromatic Aberration



What is learned?

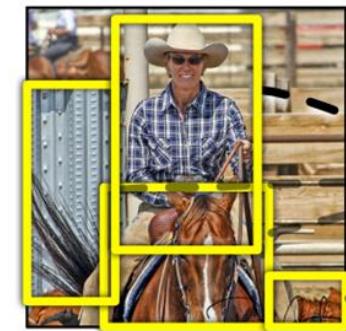


Still don't capture everything

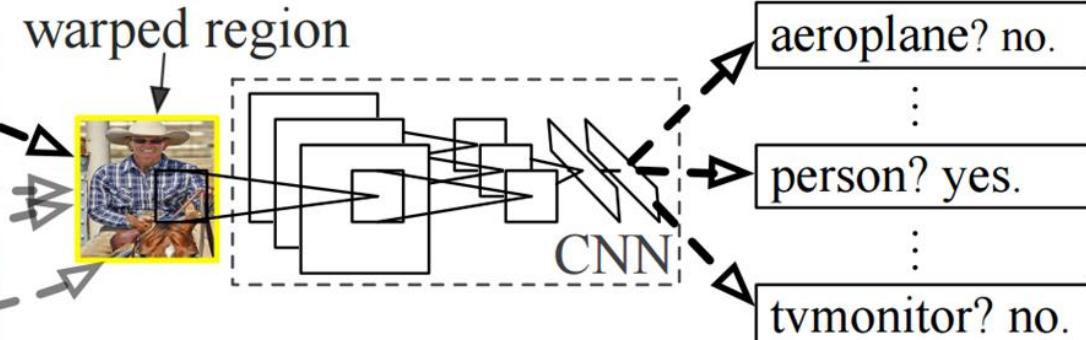
You don't always need to learn!

Pre-Training for R-CNN

1. Input image



2. Extract region proposals (~2k)



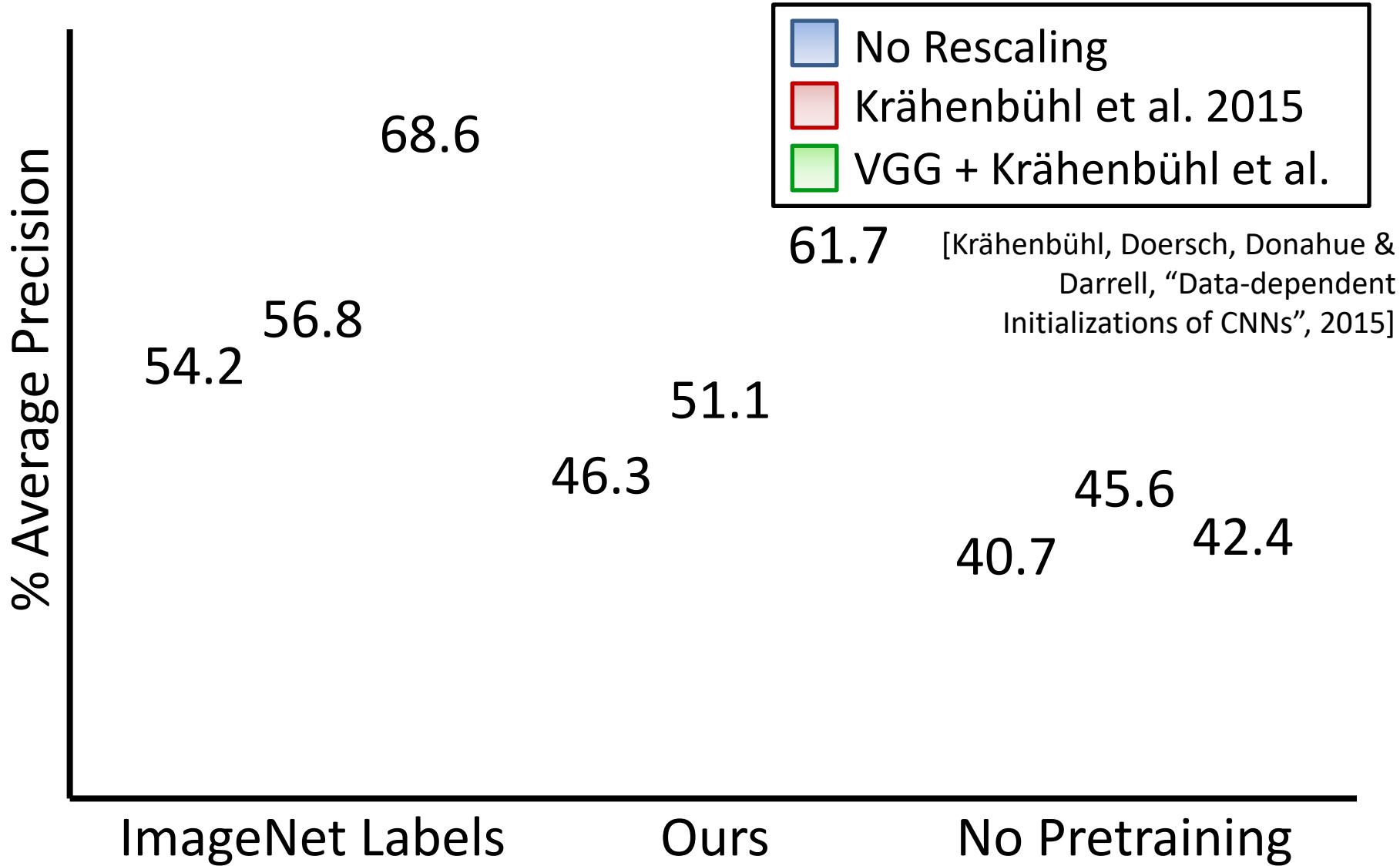
3. Compute CNN features

4. Classify regions

Pre-train on relative-position task, w/o labels

VOC 2007 Performance

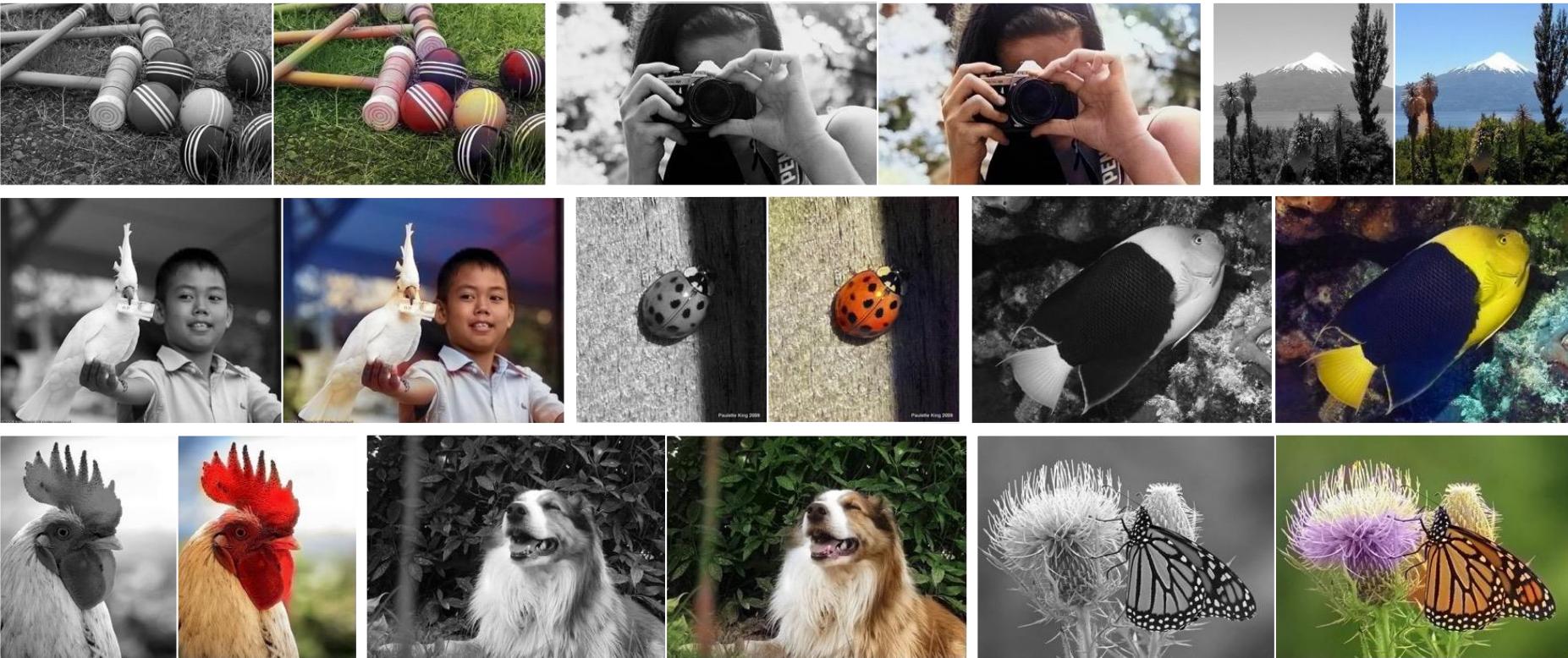
(pretraining for R-CNN)



Clever ideas to keep in mind

- “Pretext” tasks to train networks
- Avoiding shortcuts in learning by
 - Dropping out modalities
 - Randomizing patch offsets
 - Including gaps in patch offsets

So, do we need semantic labels?

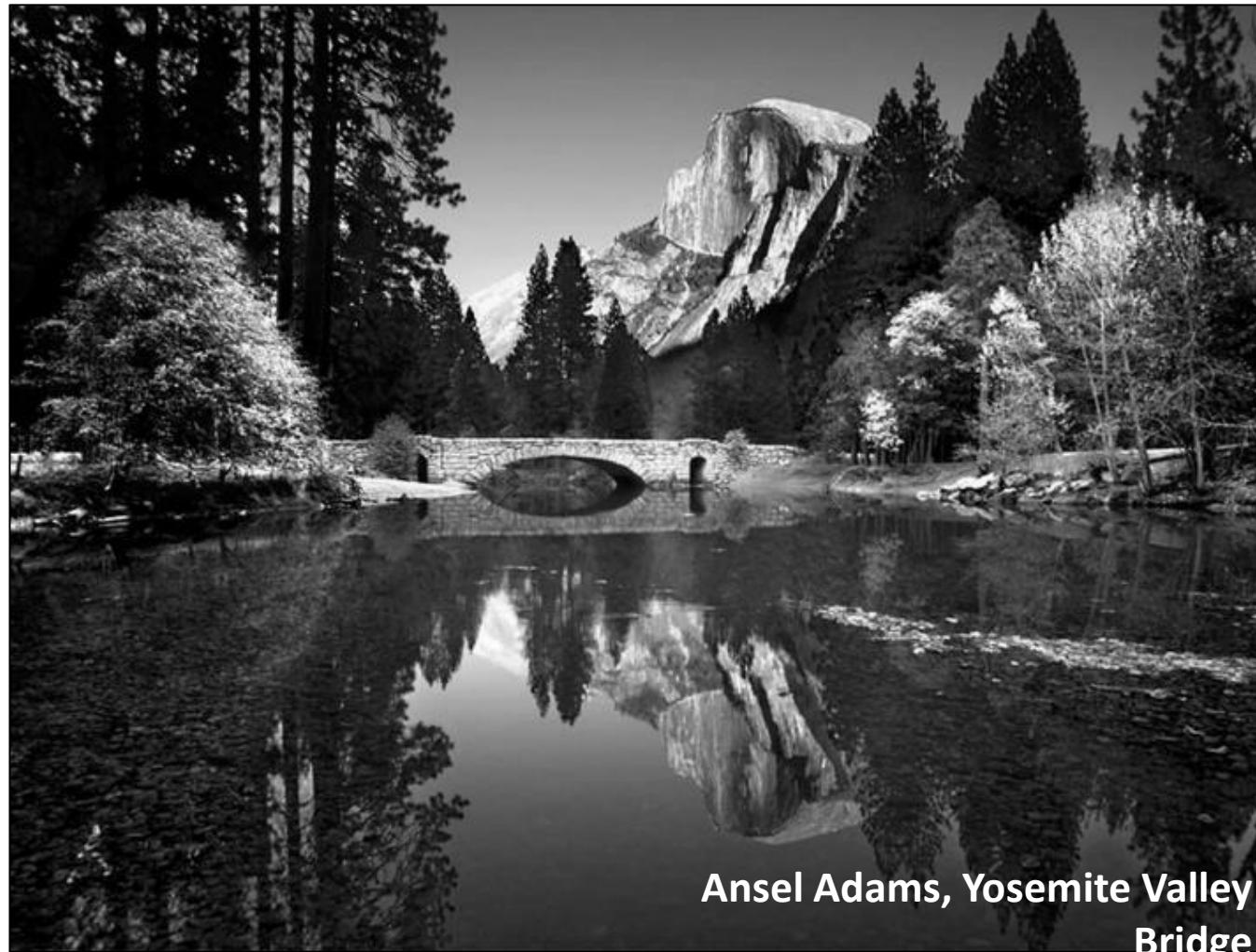


Colorful Image Colorization

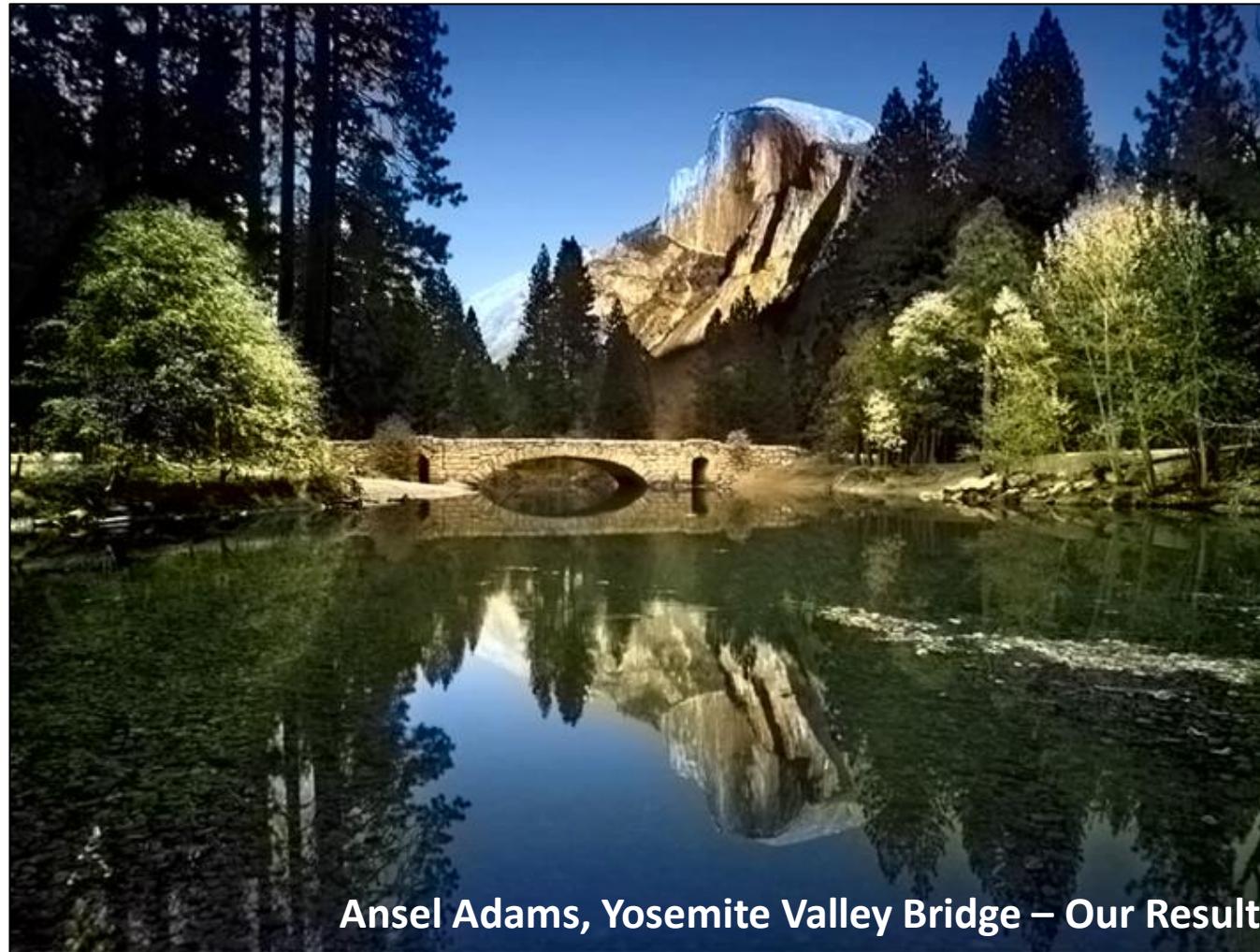
Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros

richzhang.github.io/colorization

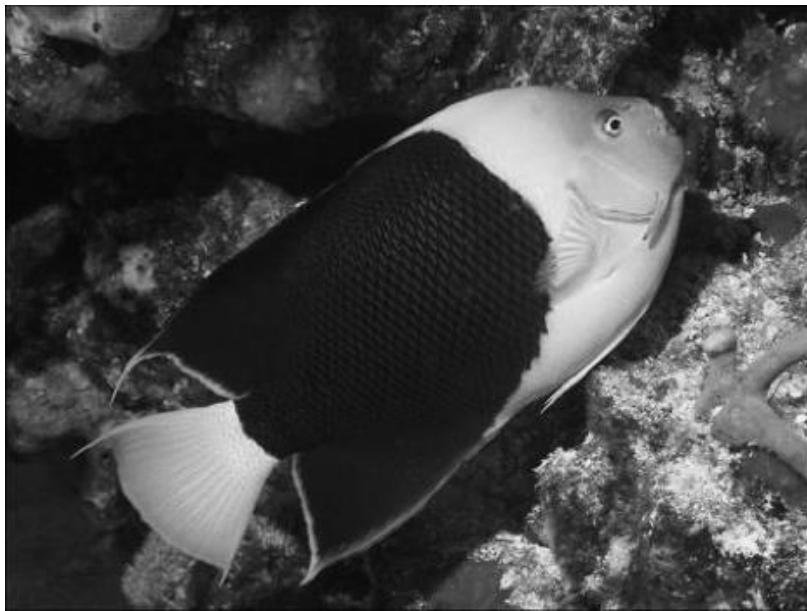
ECCV 2016



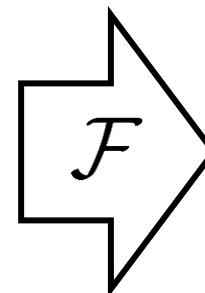
Ansel Adams, Yosemite Valley
Bridge



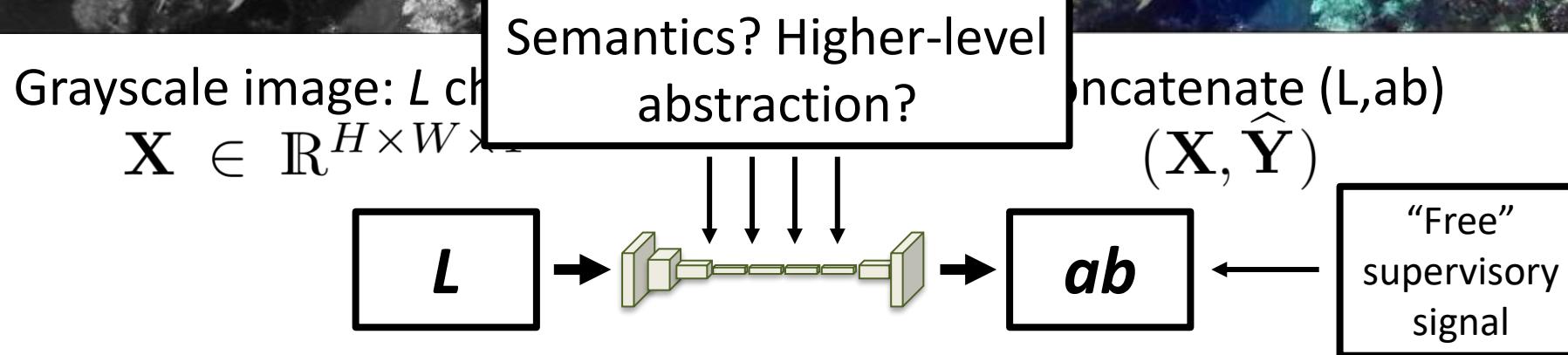
Ansel Adams, Yosemite Valley Bridge – Our Result



Grayscale image: L channel
 $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$



Color information: ab channels
 $\hat{\mathbf{Y}} \in \mathbb{R}^{H \times W \times 2}$



Inherent Ambiguity

Grayscale

Inherent Ambiguity

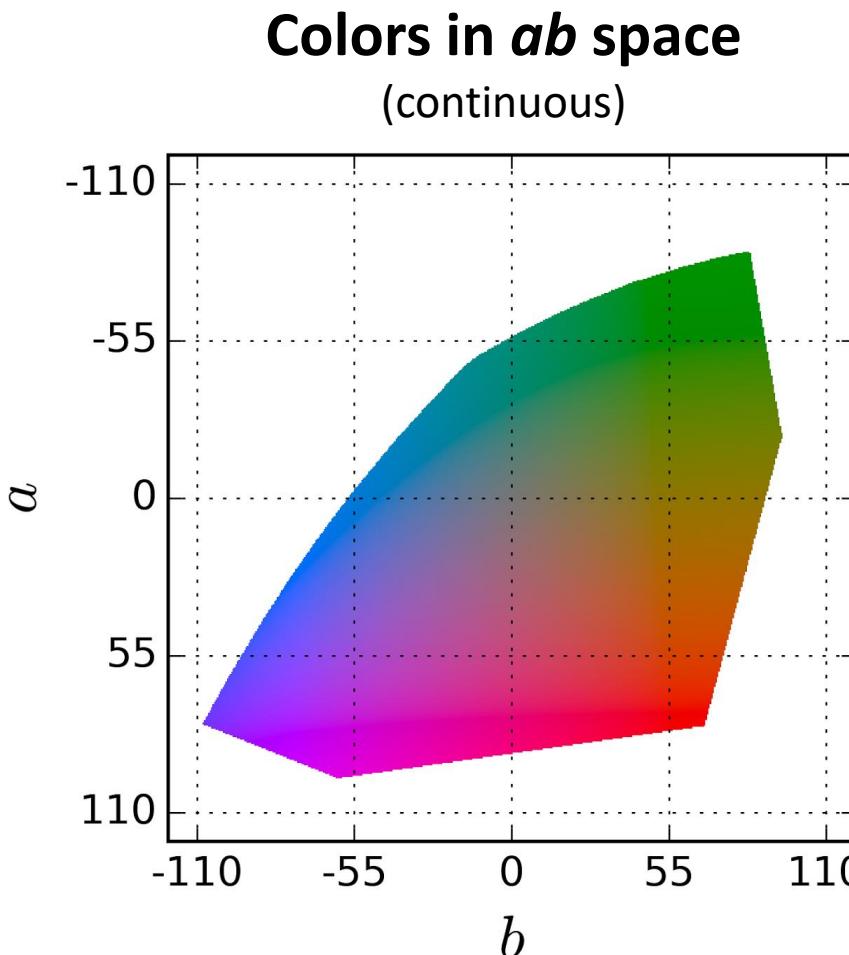
Our Output

Ground Truth

Better Loss Function

- Regression with L2 loss inadequate

$$L_2(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$



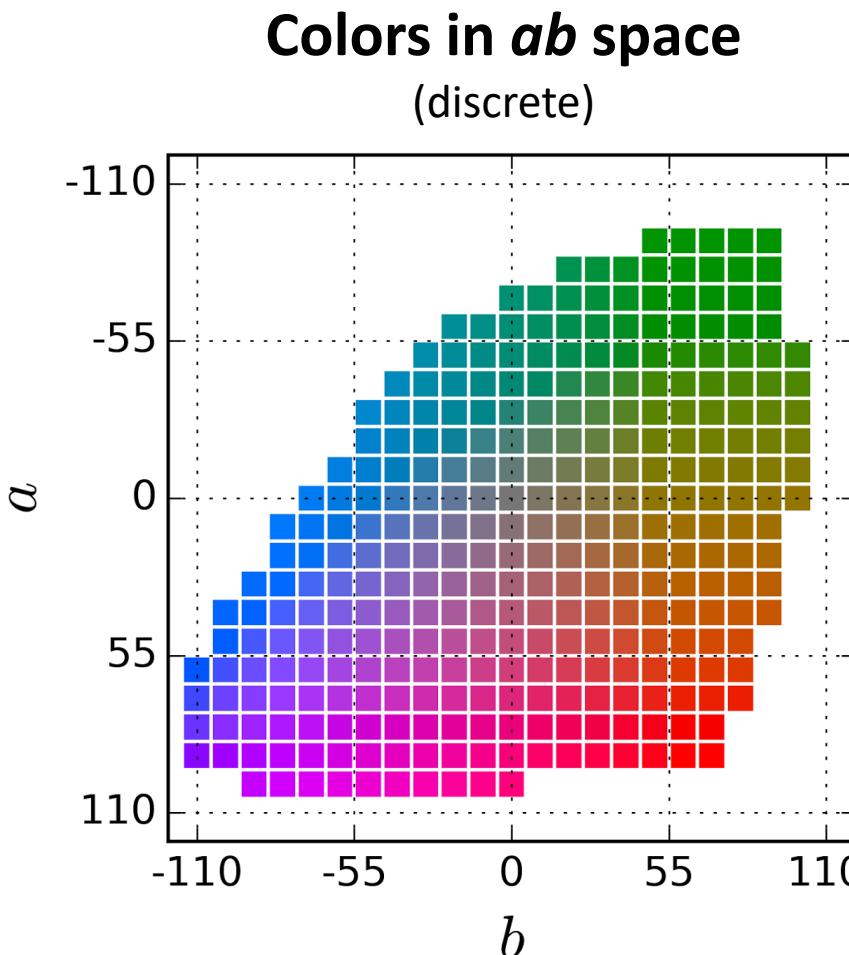
Better Loss Function

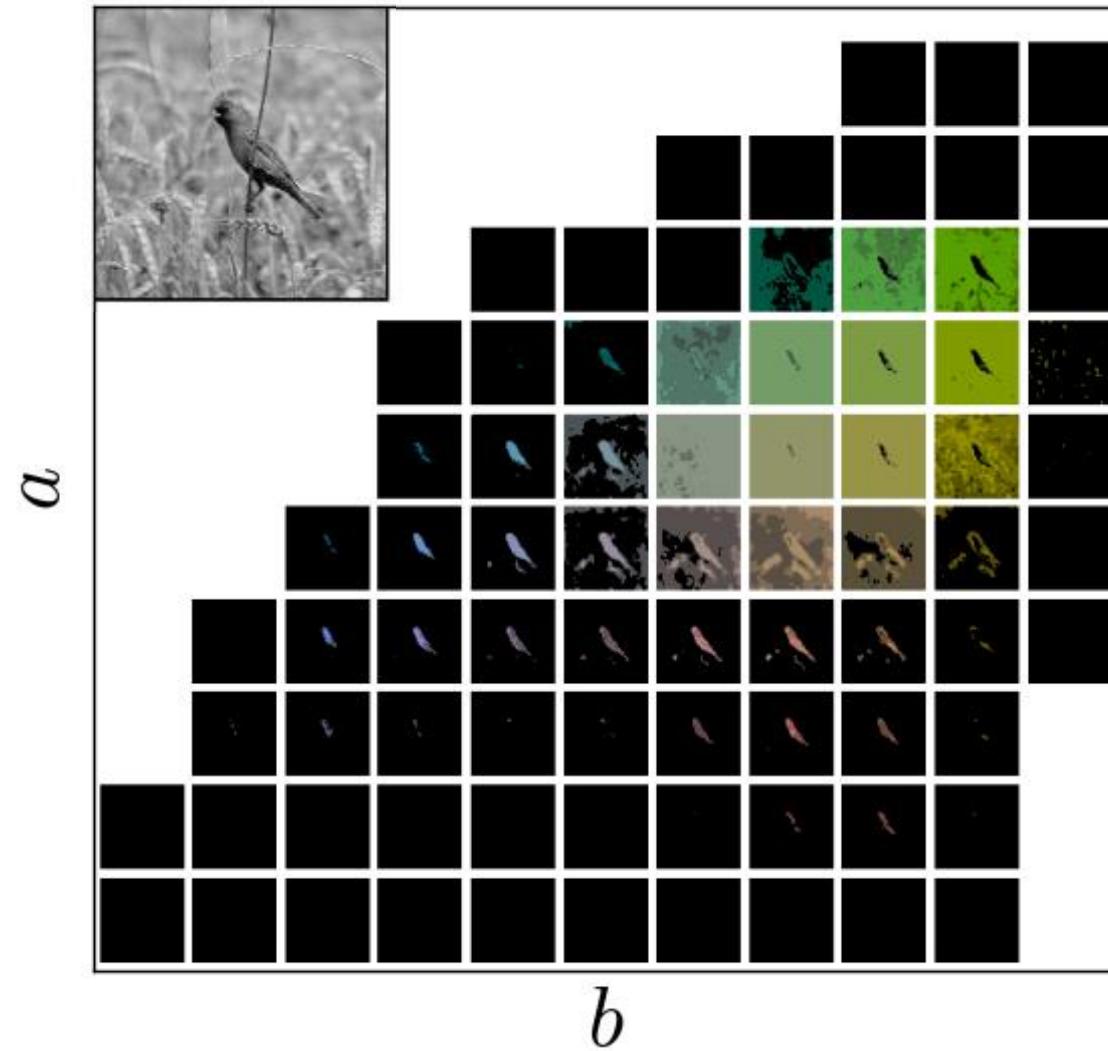
- Regression with L2 loss inadequate

$$L_2(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$

- Use **multinomial classification**

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$





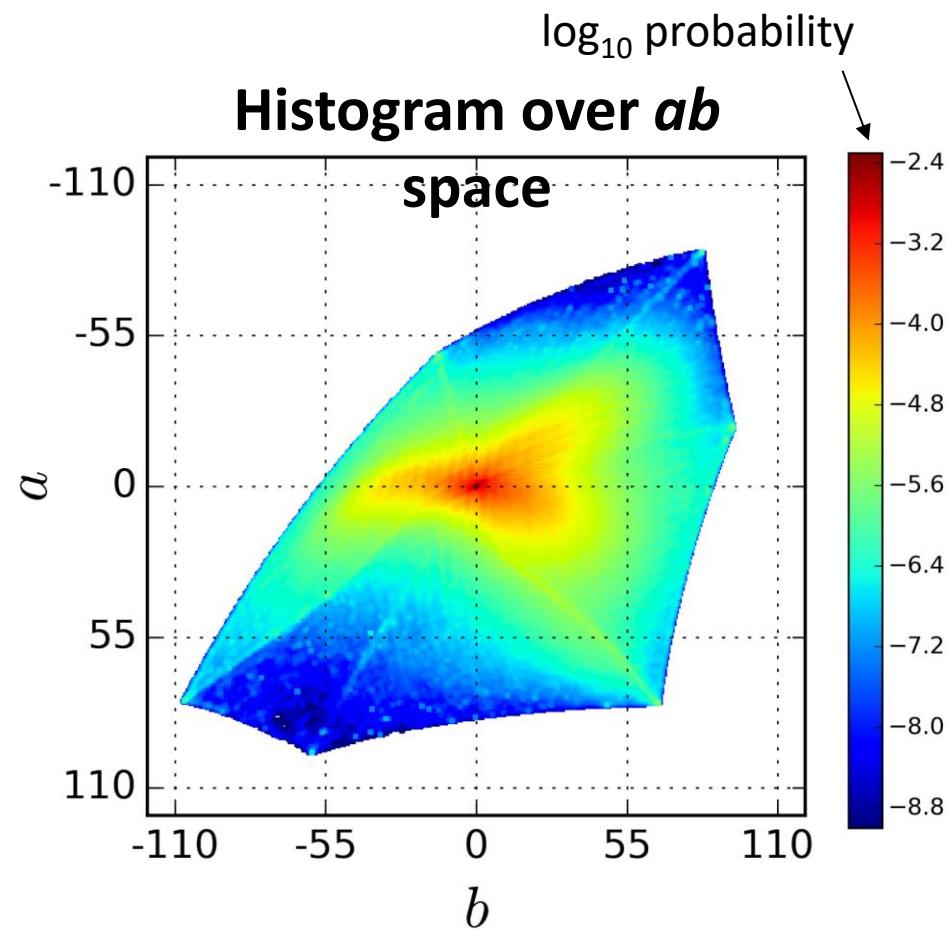
Better Loss Function

- Regression with L2 loss inadequate

$$L_2(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$

- Use **multinomial classification**

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$



Better Loss Function

- Regression with L2 loss inadequate

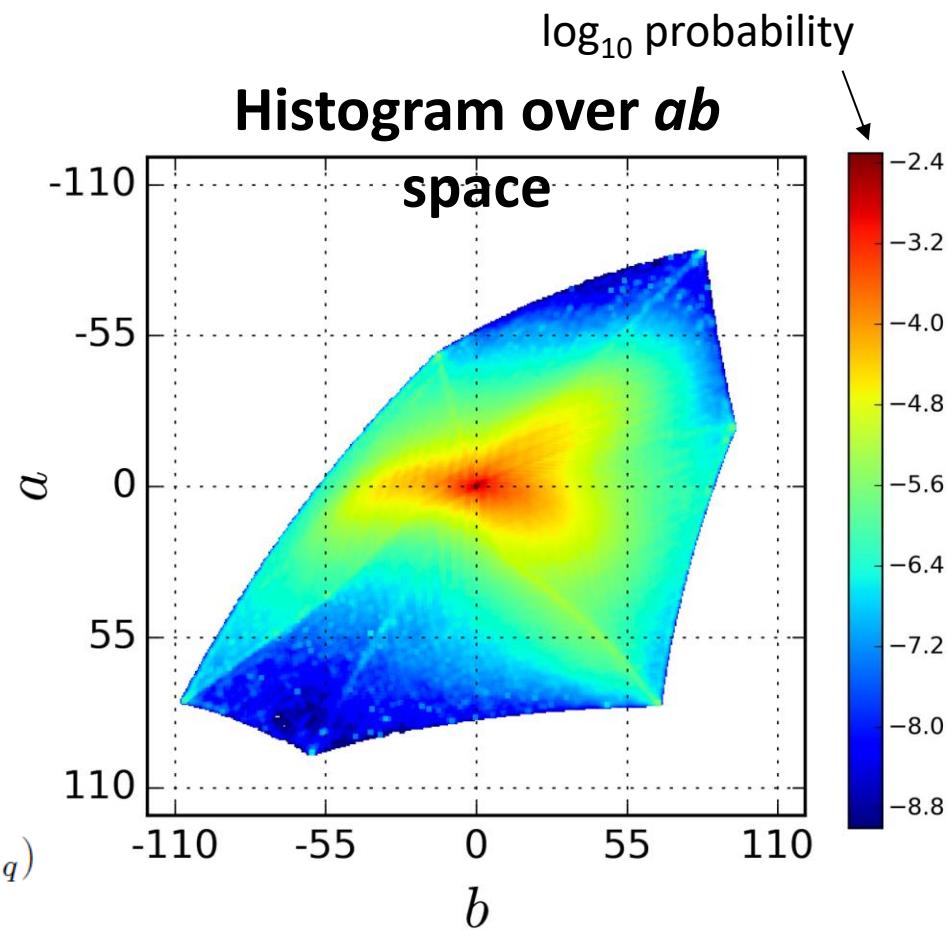
$$L_2(\hat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \hat{\mathbf{Y}}_{h,w}\|_2^2$$

- Use **multinomial classification**

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$

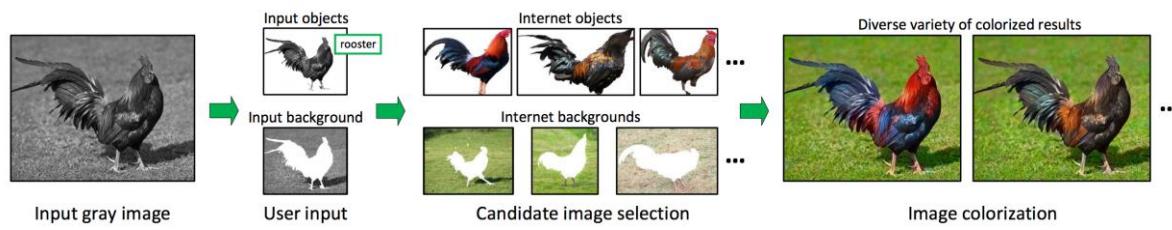
- **Class rebalancing** to encourage learning of *rare* colors

$$L(\hat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h,w} v(\mathbf{Z}_{h,w}) \sum_q \mathbf{Z}_{h,w,q} \log(\hat{\mathbf{Z}}_{h,w,q})$$



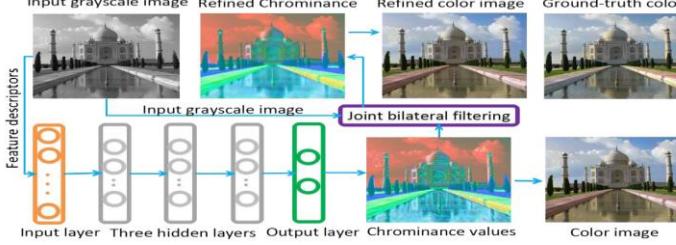
Non-parametric

Hertzmann et al. In SIGGRAPH, 2001.
 Welsh et al. In TOG, 2002.
 Irony et al. In Eurographics, 2005.
 Liu et al. In TOG, 2008.
 Chia et al. In ACM 2011.
 Gupta et al. In ACM, 2012.



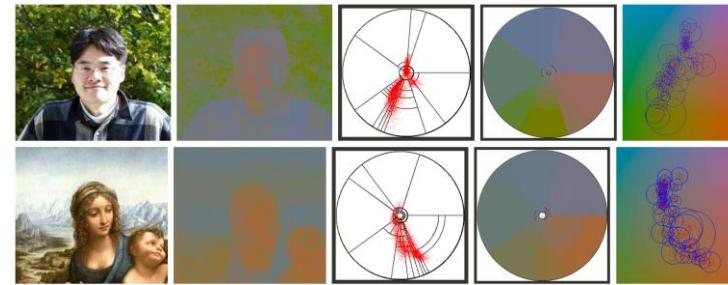
Parametric

L2 Regression



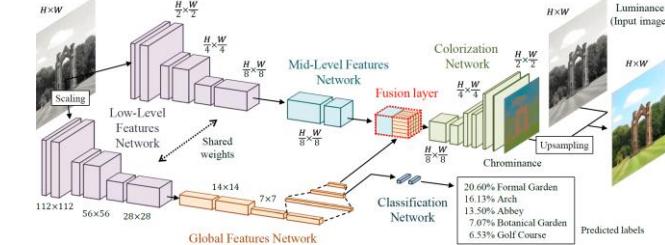
Deshpande et al. Cheng et al. In ICCV 2015.

Classification

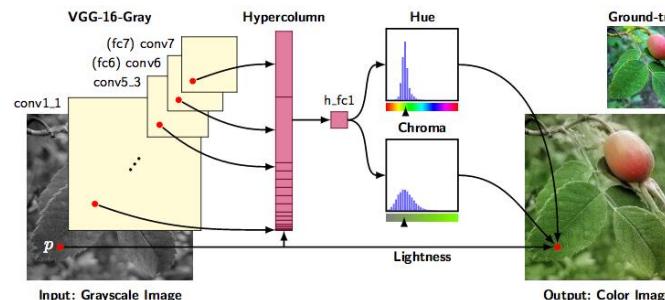


Charpiat et al. In ECCV 2008.

Deep Networks

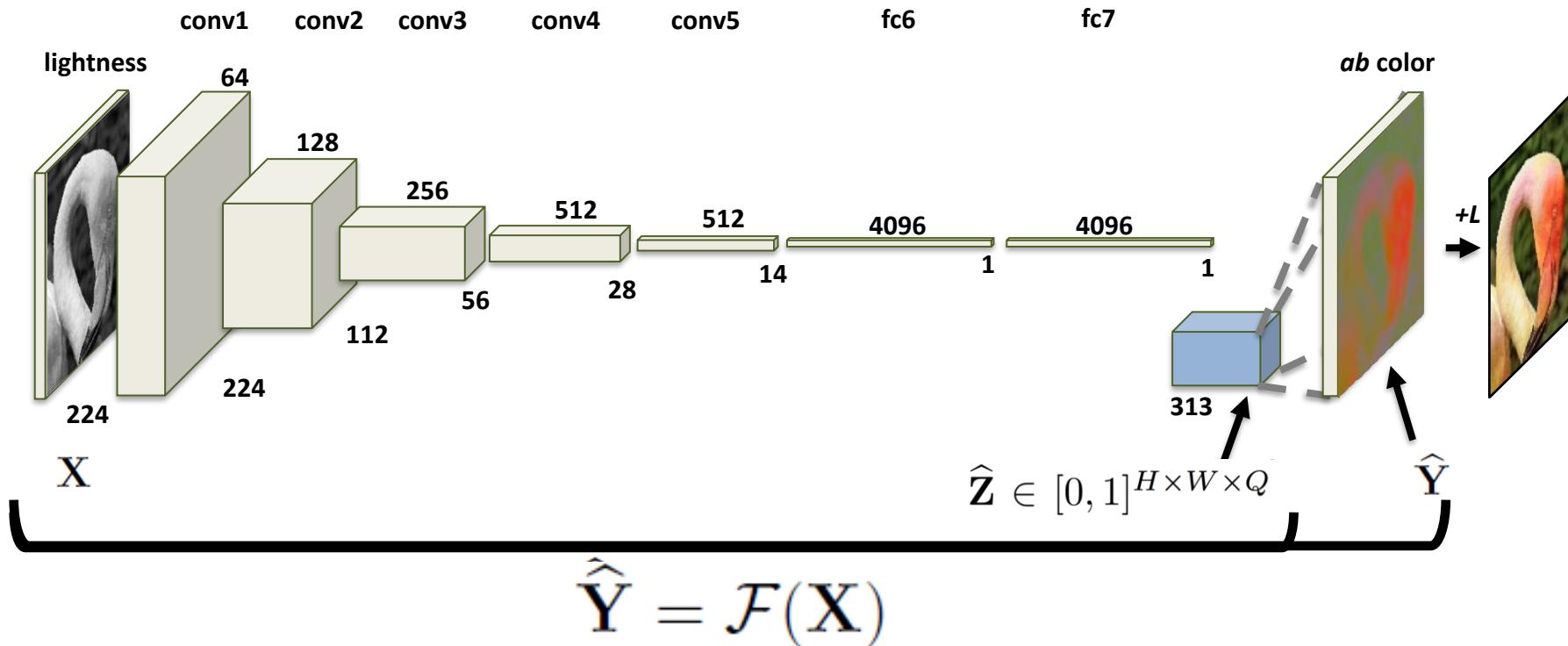


Dahl. Jan 2016. Iizuka et al. In SIGGRAPH, 2016.

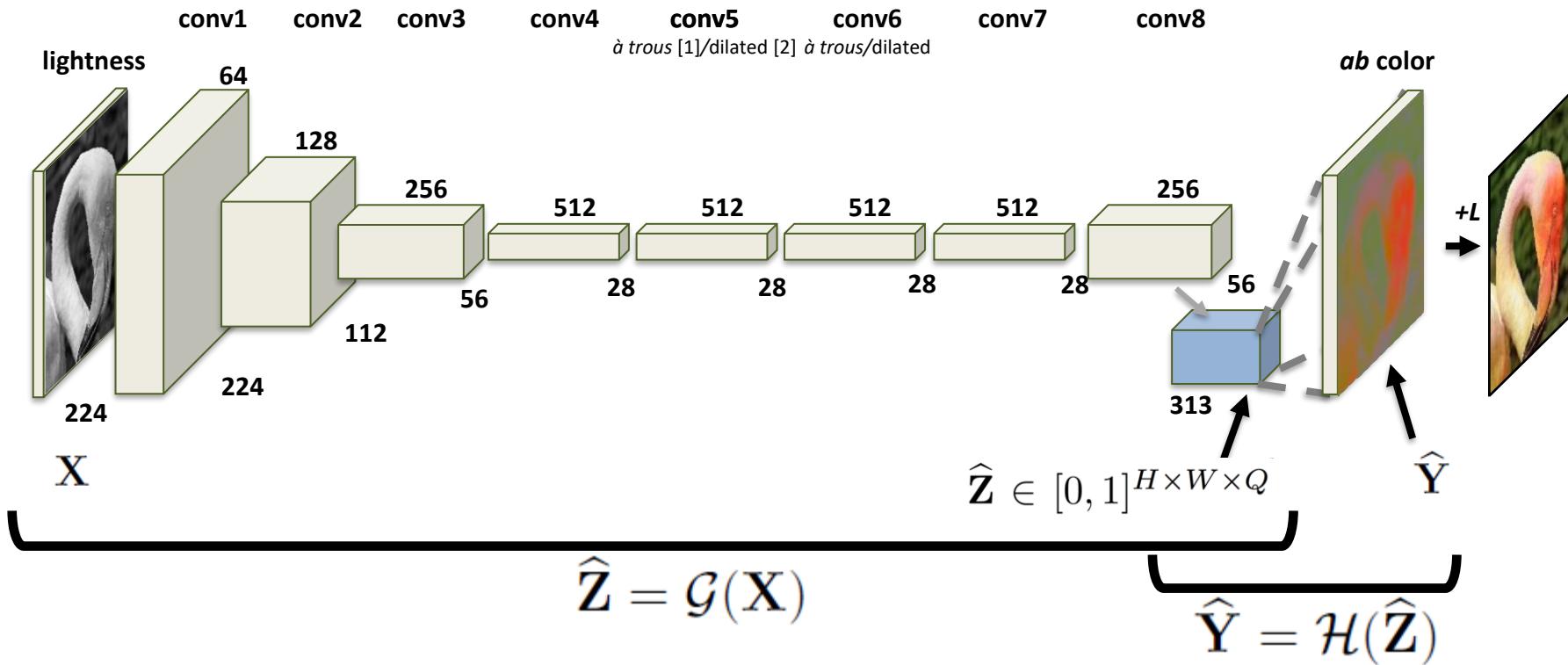


Larsson et al. In ECCV 2016. [Concurrent]

Network Architecture



Network Architecture



[1] Chen *et al.* In arXiv, 2016.

[2] Yu and Koltun. In ICLR, 2016

Ground truth

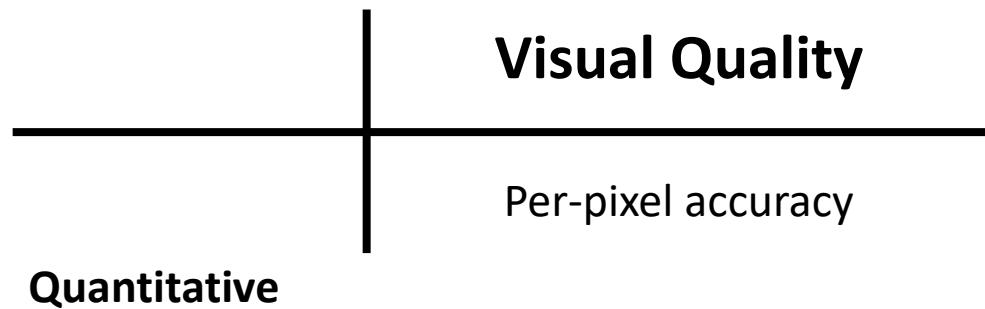
L2 Regression

Class w/ Rebalancing

Failure Cases

Biases

Evaluation



Evaluation

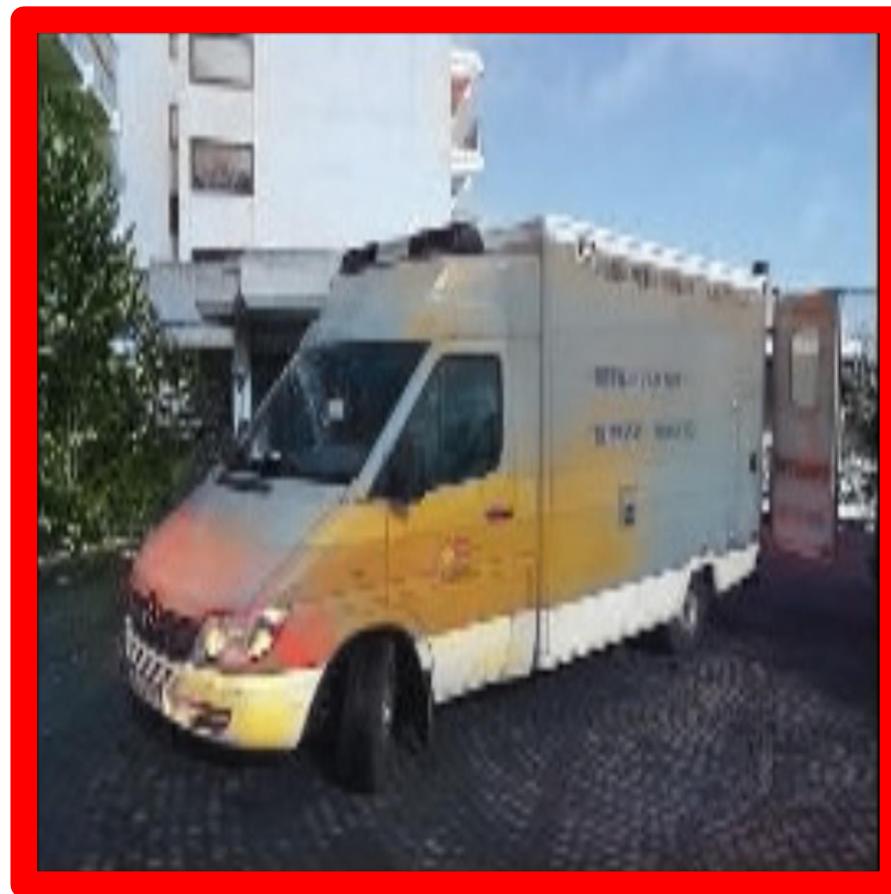
	Visual Quality	Representation Learning
Quantitative	Per-pixel accuracy Perceptual realism Semantic interpretability	Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation
Qualitative	Low-level stimuli Legacy grayscale photos	Hidden unit activations

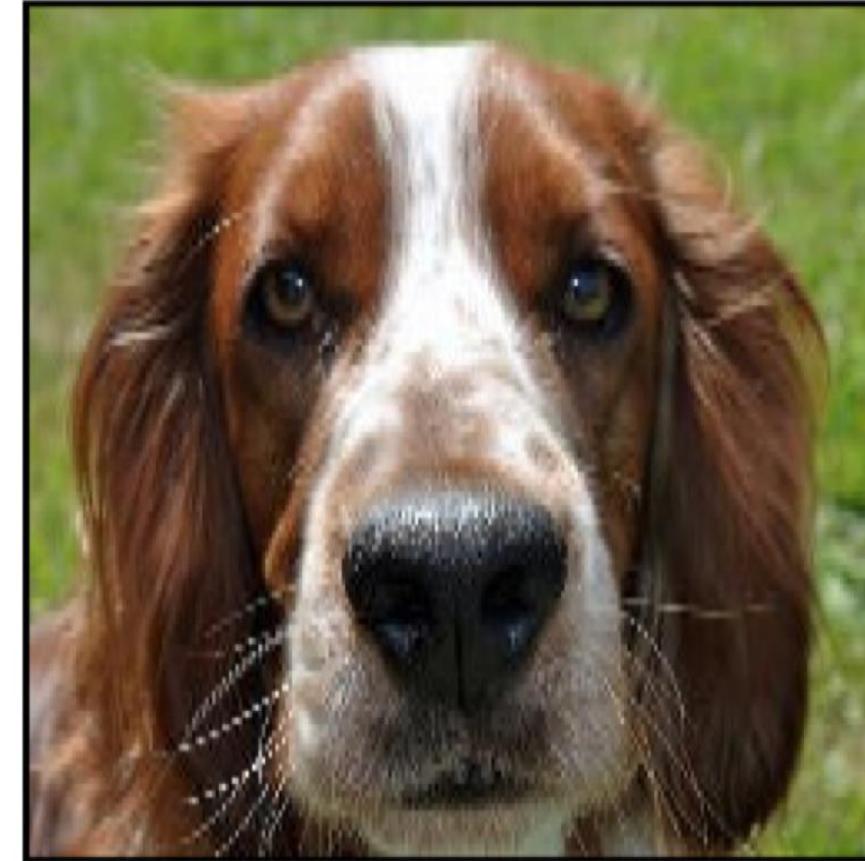
Evaluation

	Visual Quality	Representation Learning
Quantitative	Per-pixel accuracy Perceptual realism Semantic interpretability	Task generalization ImageNet classification Task & dataset generalization PASCAL classification, detection, segmentation
Qualitative	Low-level stimuli Legacy grayscale photos	Hidden unit activations

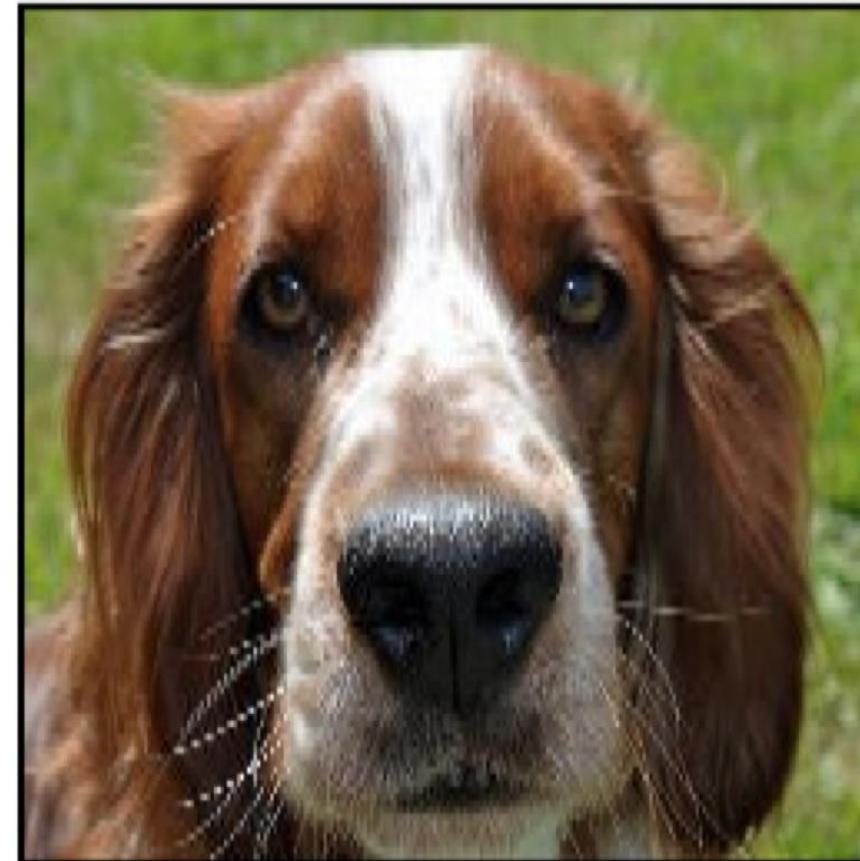
Perceptual Realism / Amazon Mechanical Turk Test

Fake, 0% fooled





Fake, 55% fooled



Fake, 58% fooled

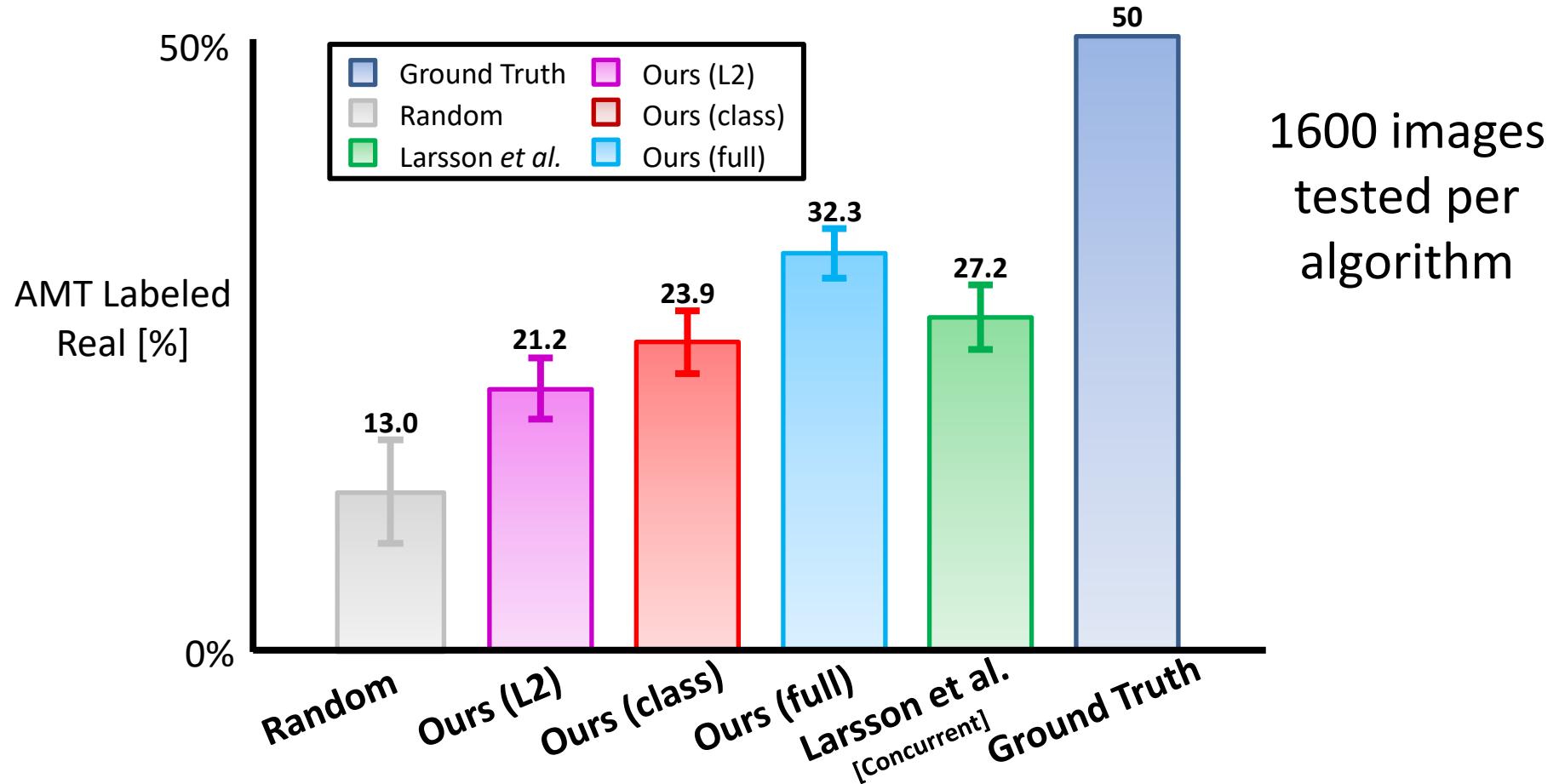
from Reddit /u/SherySantucci

Recolorized by Reddit ColorizeBot

**Photo taken by
Reddit /u/Timteroo,
Mural from street
artist Eduardo Kobra**

**Recolorized
by Reddit
ColorizeBot**

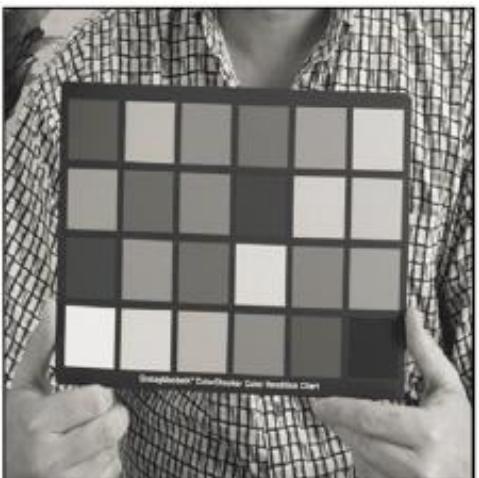
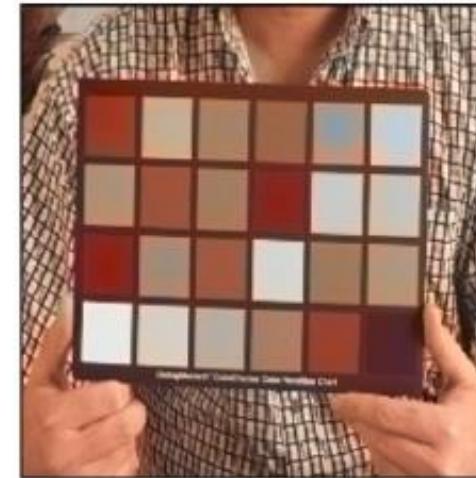
Perceptual Realism Test



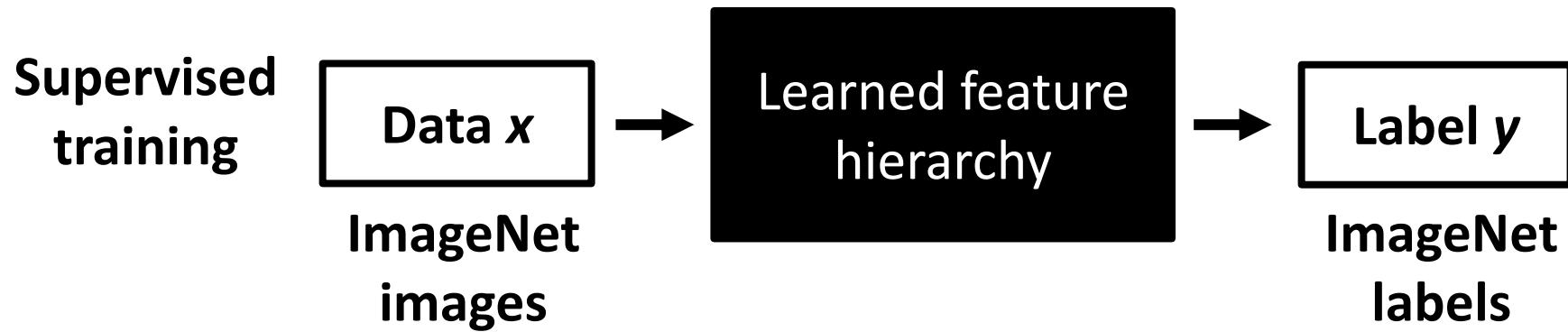
Input

Ground Truth

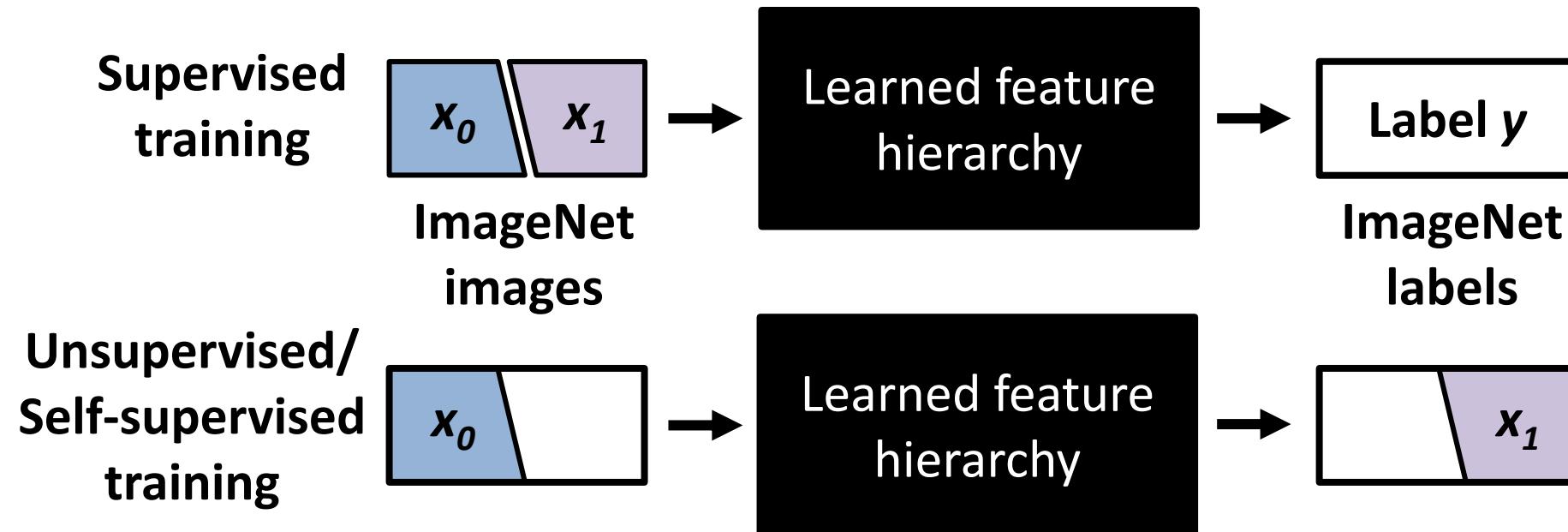
Output



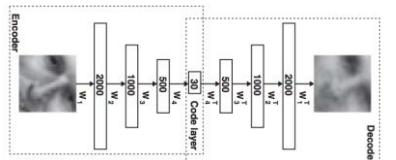
Predicting Labels from Data



Predicting Data from Data

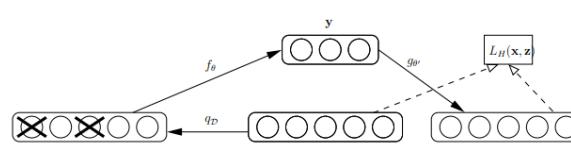


Autoencoders



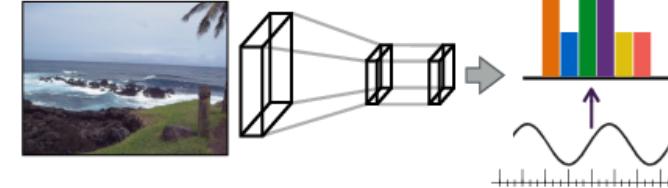
Hinton & Salakhutdinov.
Science 2006.

Denoising Autoencoders



Vincent *et al.* ICML 2008.

Audio

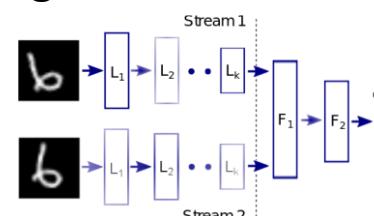


Owens *et al.* CVPR 2016, ECCV 2016

Co-Occurrence

Isola *et al.* ICLR Workshop 2016.

Egomotion

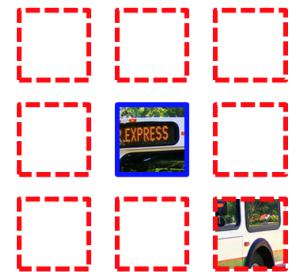


Agrawal *et al.* ICCV 2015

Jayaraman *et al.* ICCV 2015

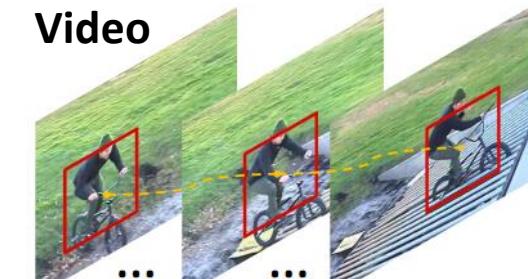
Context

Doersch *et al.* ICCV 2015



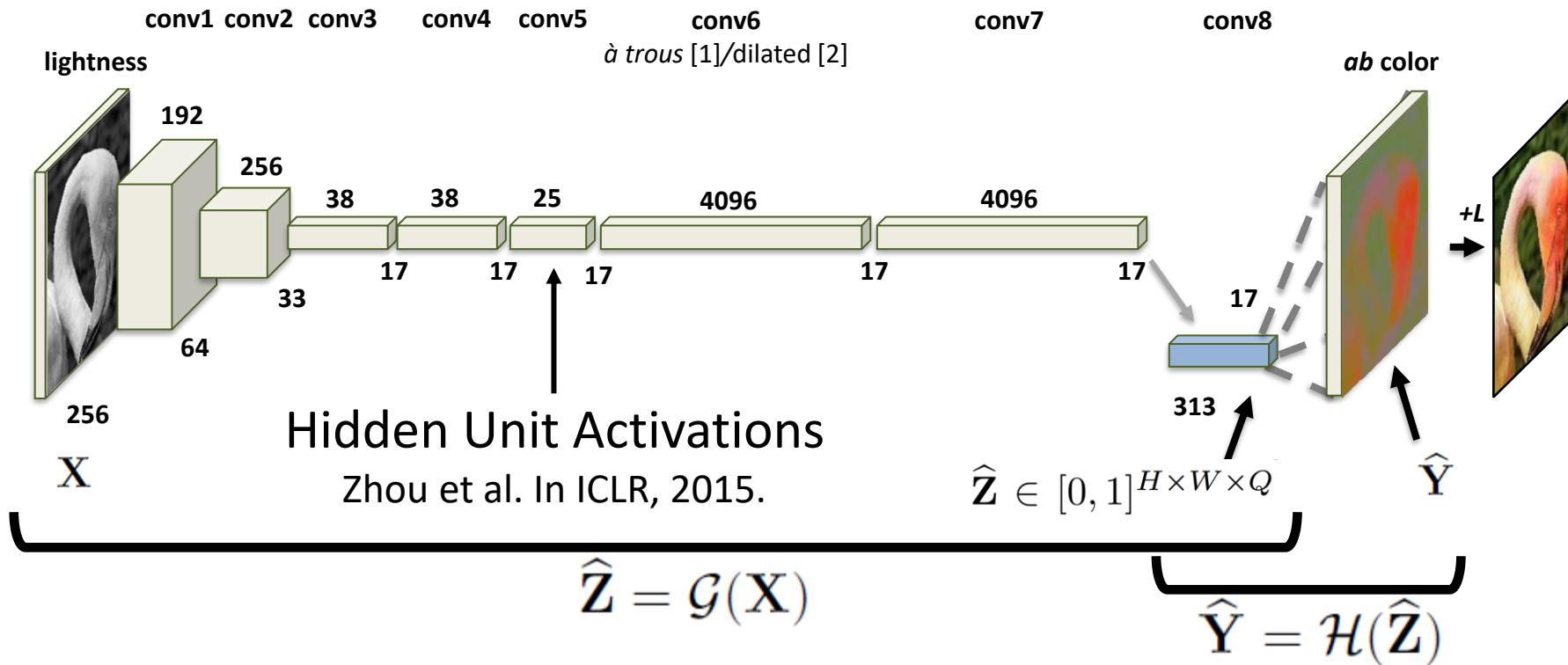
Pathak *et al.* CVPR 2016

Video



Wang *et al.* ICCV 2015

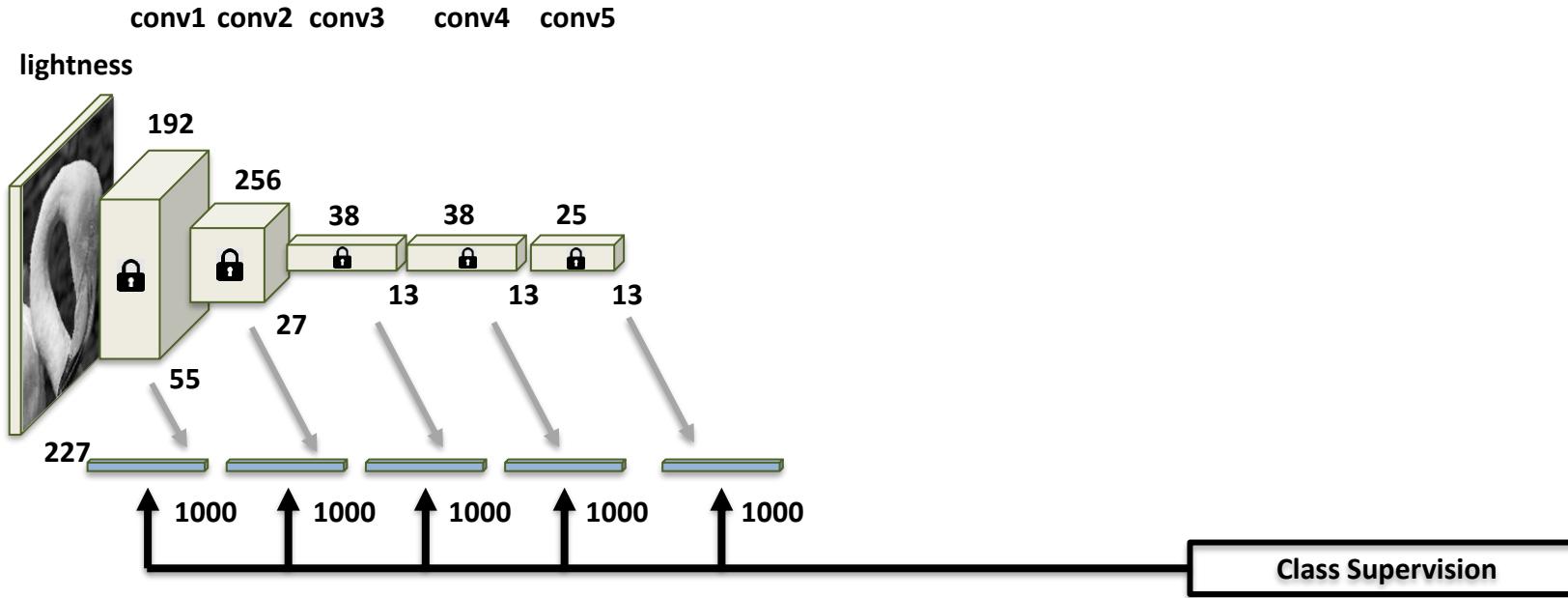
Cross-Channel Encoder



[1] Chen *et al.* In arXiv, 2016.

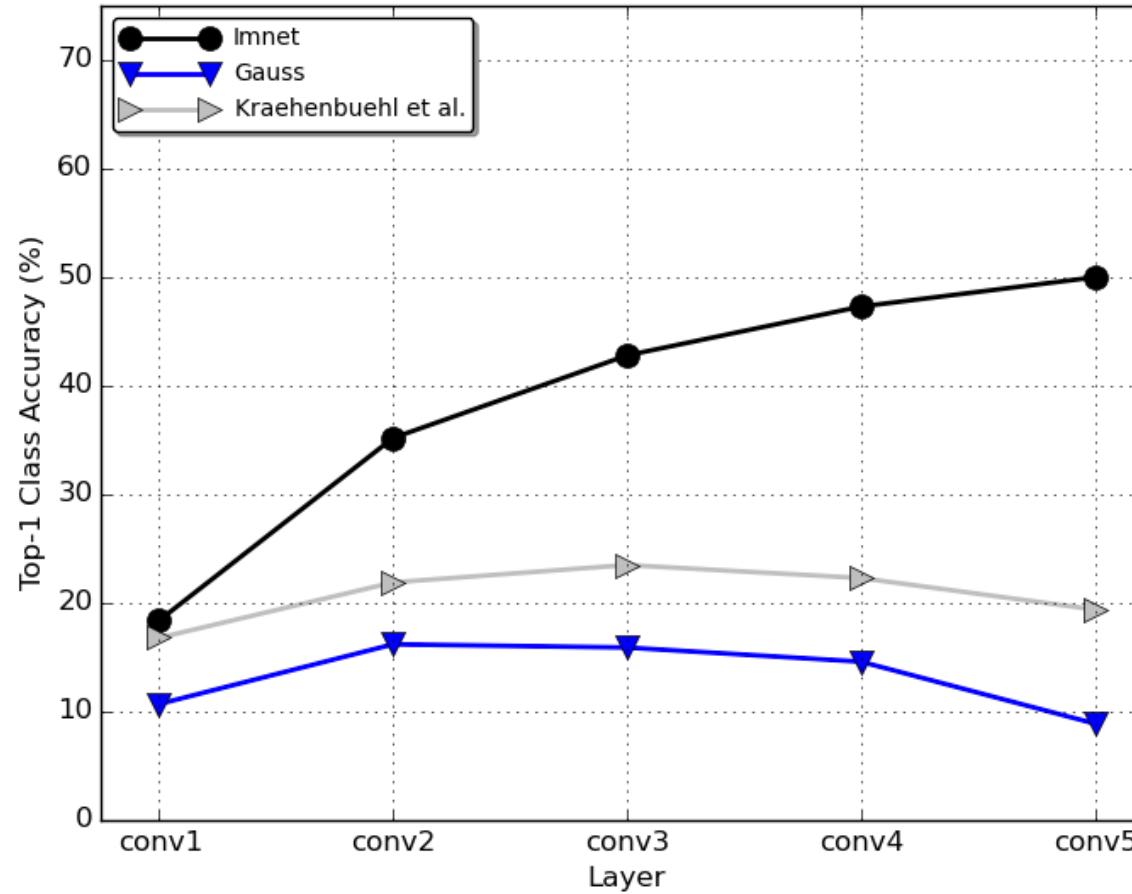
[2] Yu and Koltun. In ICLR, 2016

Task Generalization: ILSVRC linear classification

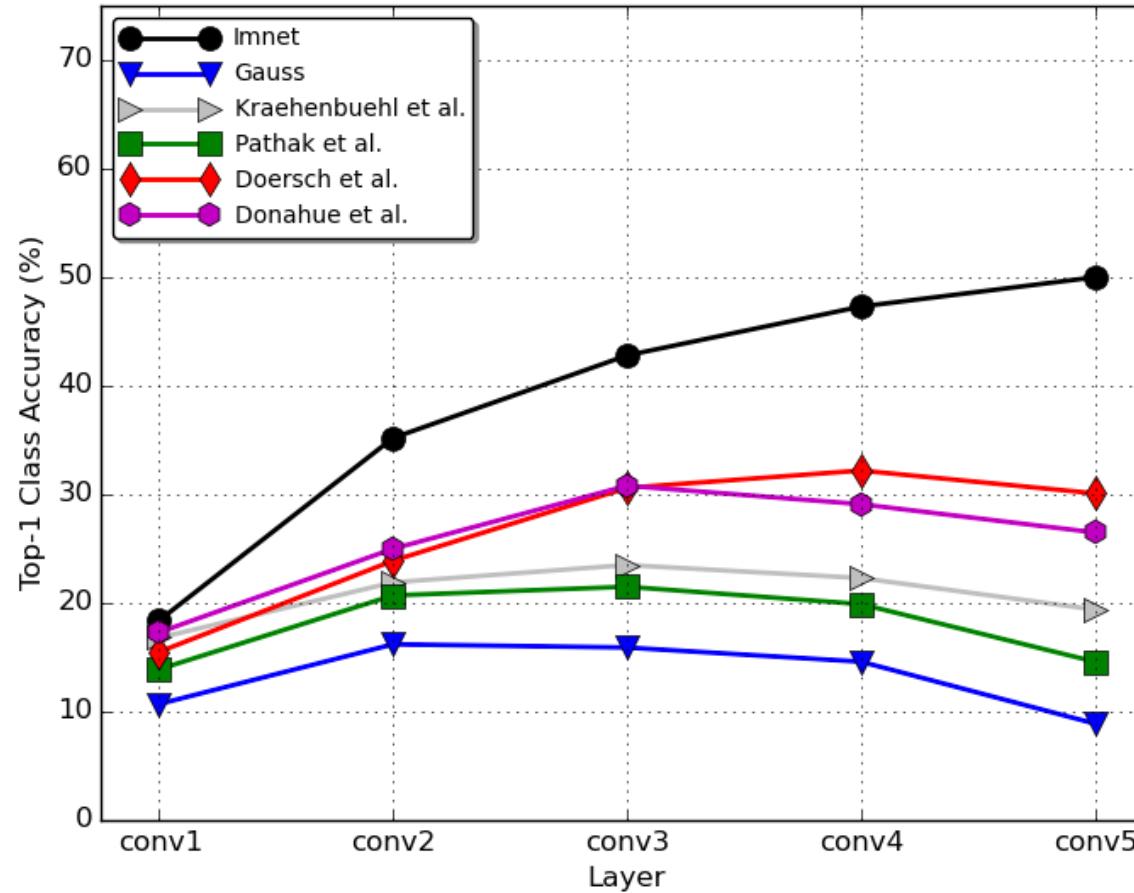


Are semantic classes *linearly separable*
in the learned feature space?

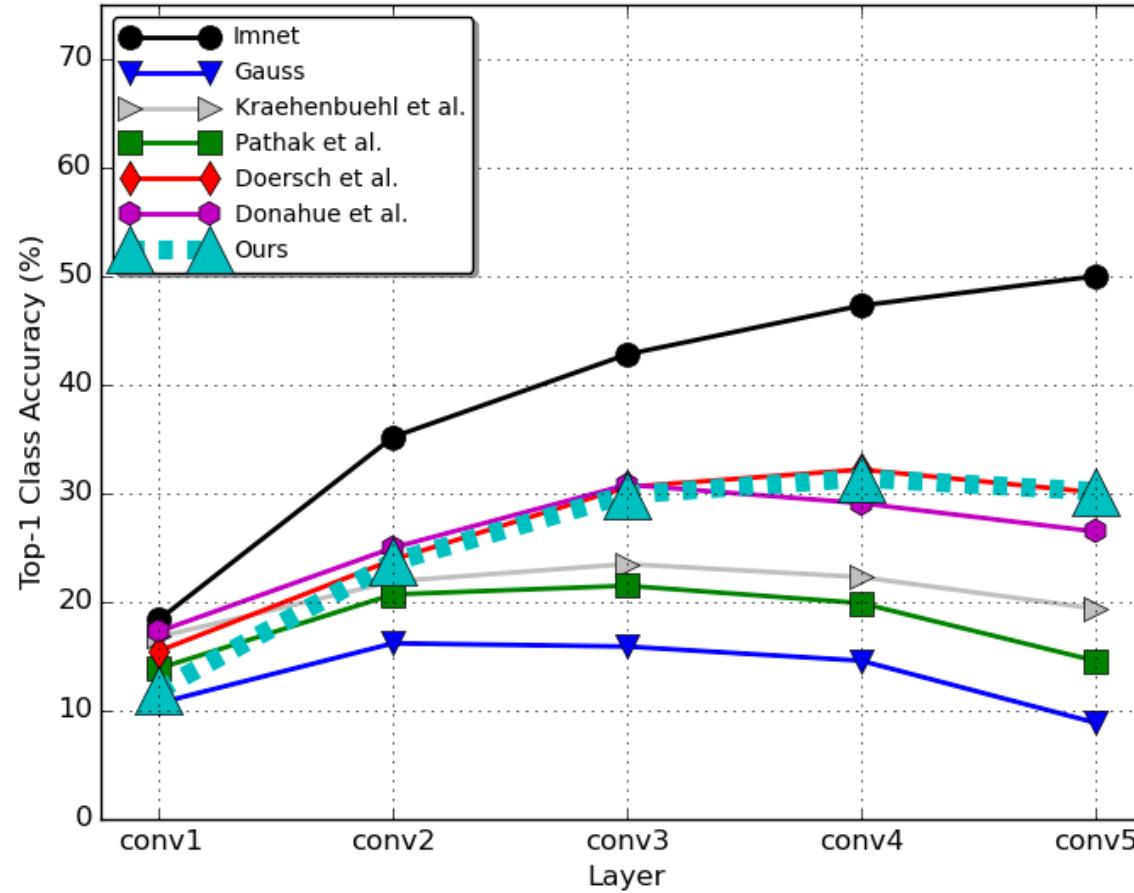
Task Generalization: ILSVRC linear classification



Task Generalization: ILSVRC linear classification



Task Generalization: ILSVRC linear classification



Hidden Unit (conv5) Activations

sky

trees

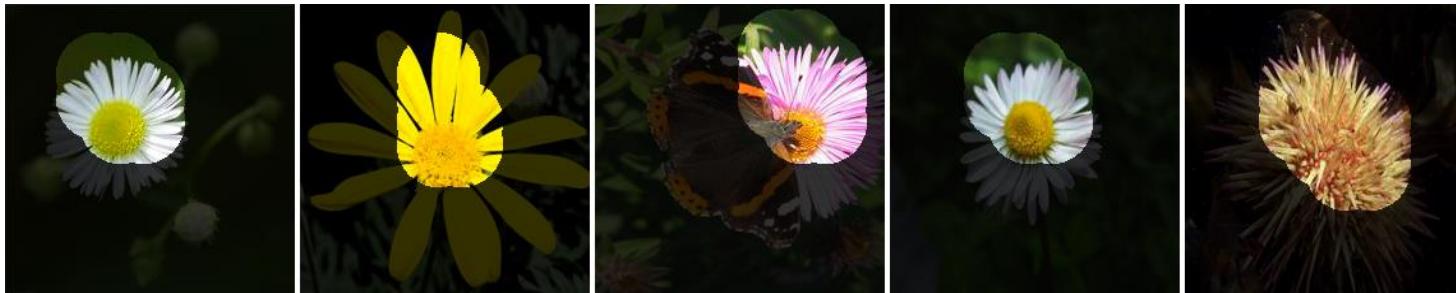
water

Hidden Unit (conv5) Activations

faces

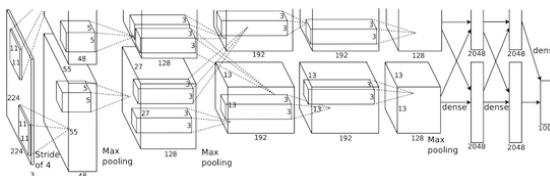
dog faces

flowers



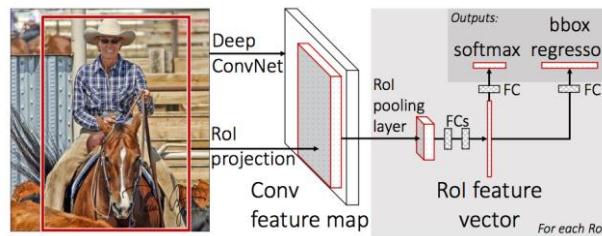
Dataset & Task Generalization on PASCAL VOC

Does the feature representation
transfer to other datasets and tasks?



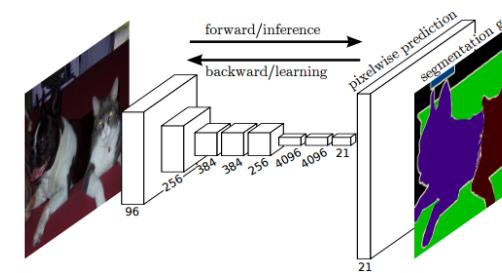
Classification

Krähenbühl et al. In ICLR, 2016.



Detection

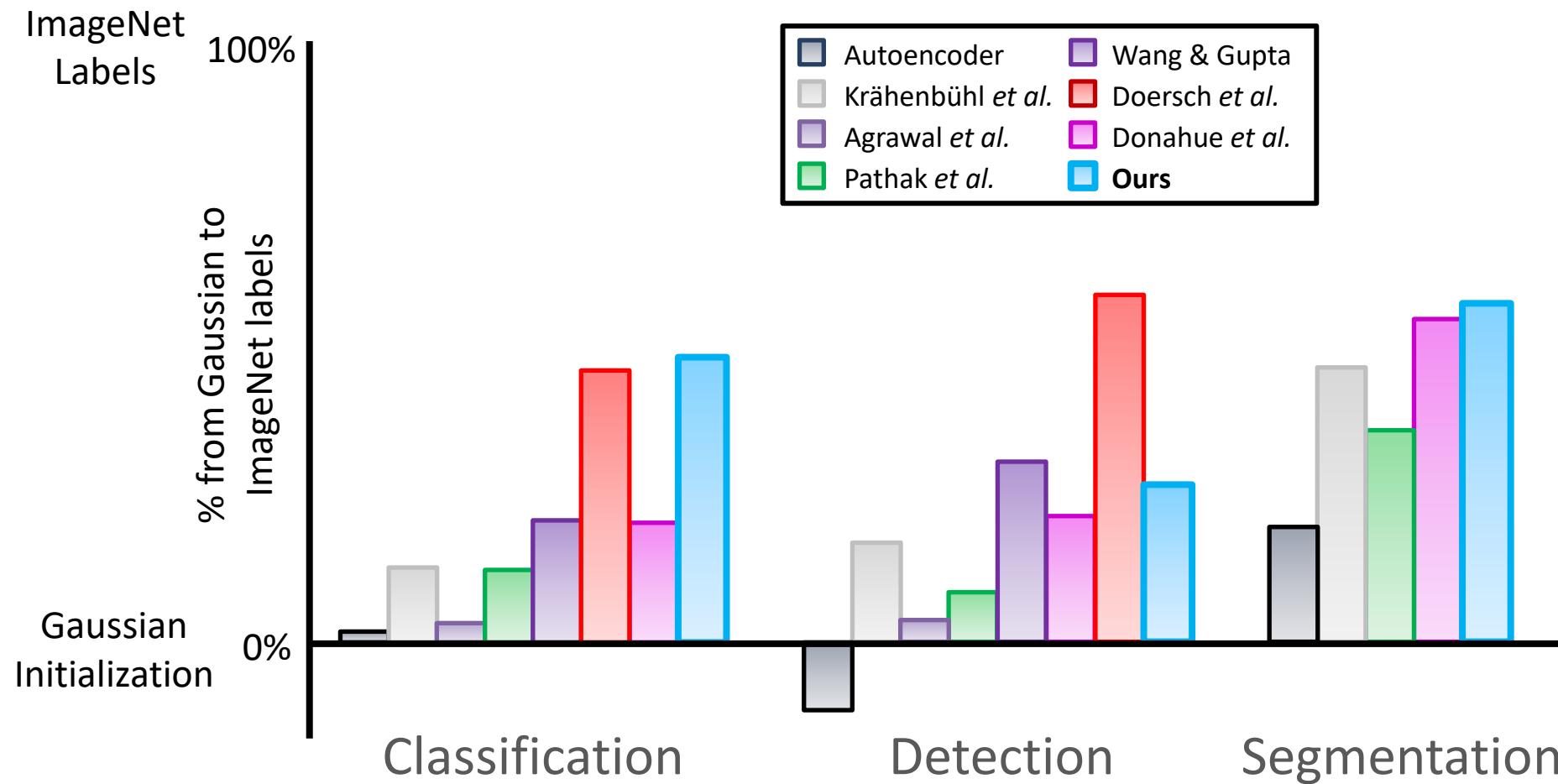
Fast R-CNN. Girshick. In ICCV, 2015.

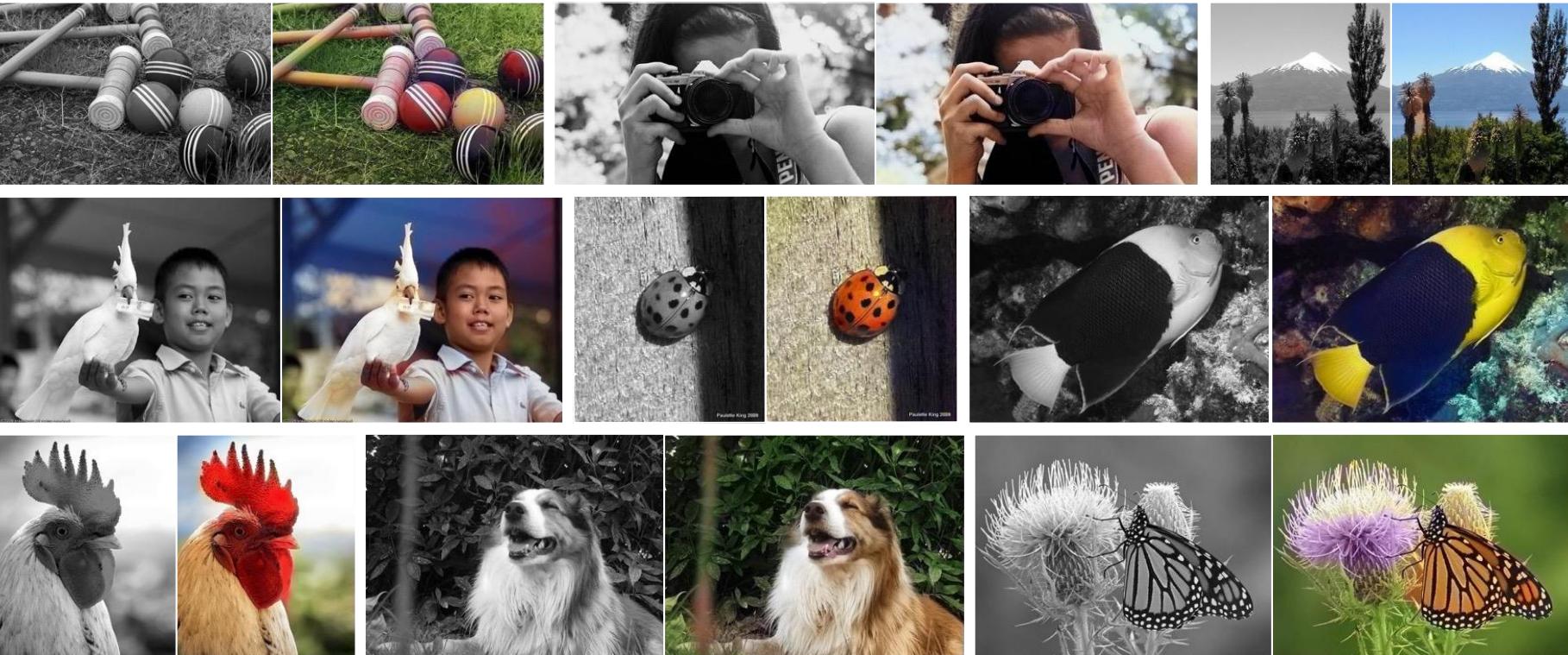


Segmentation

FCNs. Long et al. In CVPR, 2015.

Dataset & Task Generalization on PASCAL VOC





For the full paper, additional examples and our model:
richzhang.github.io/colorization

The Gelato Bet, Resolved

"If, by the first day of autumn (Sept 23) of 2015, a method will exist that can match or beat the performance of R-CNN on Pascal VOC detection, without the use of any extra, human annotations (e.g. ImageNet) as pre-training, Mr. Malik promises to buy Mr. Efros one (1) gelato"

Clever ideas to keep in mind

- Turn a regression task into a classification task
- Fight back against class imbalance
 - Loss functions that emphasize rare classes
 - Replay rare classes more during training

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen¹ Simon Kornblith¹ Mohammad Norouzi¹ Geoffrey Hinton¹

SimCLR, IMCL 2020

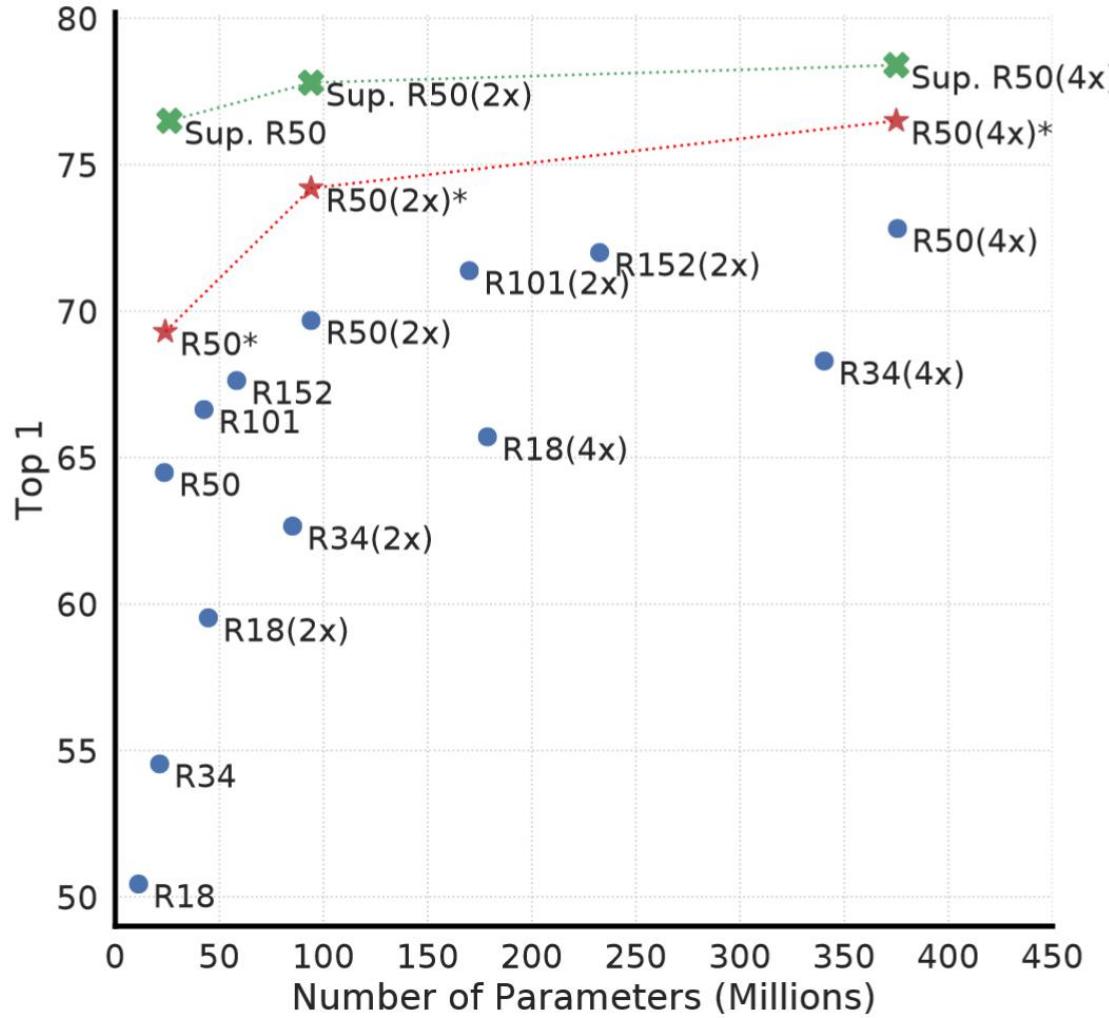
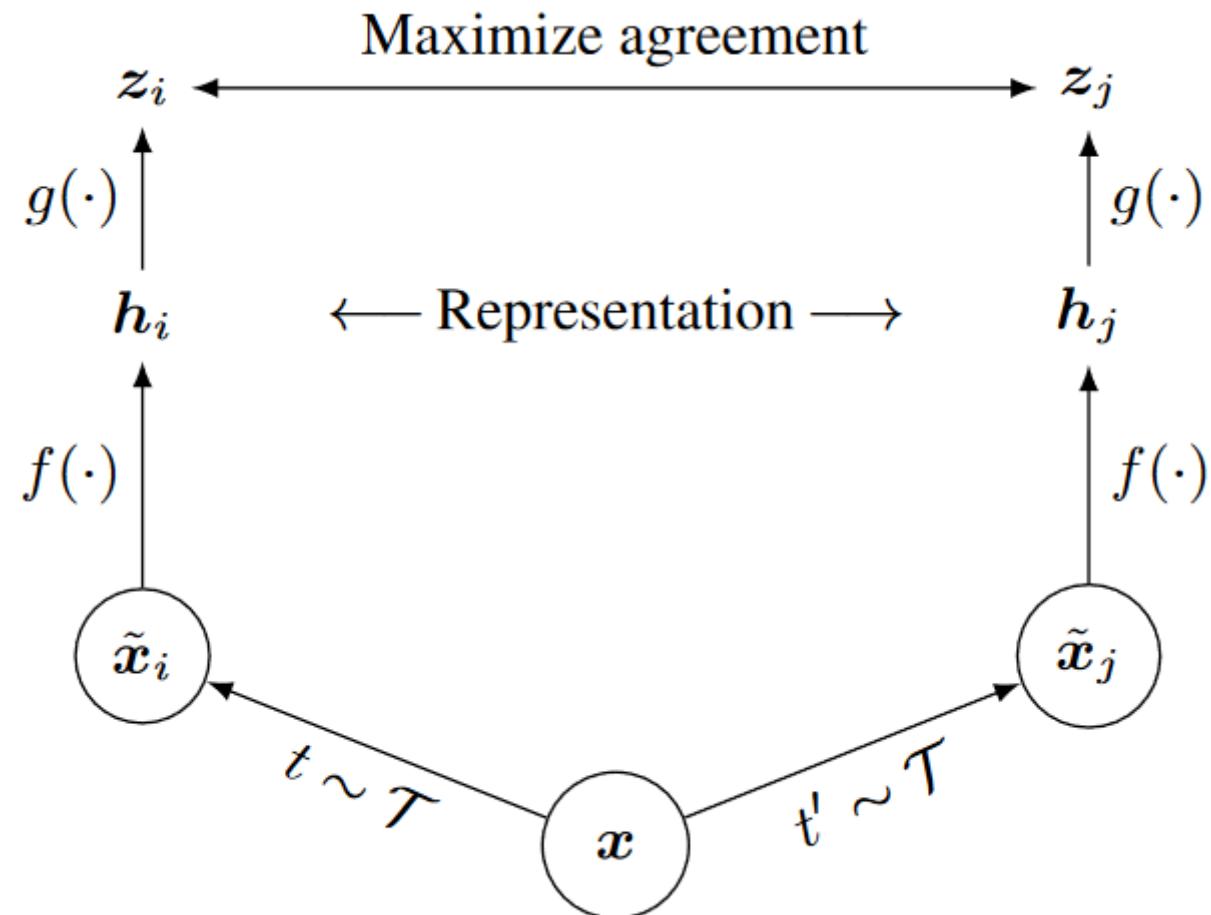


Figure 7. Linear evaluation of models with varied depth and width. Models in blue dots are ours trained for 100 epochs, models in red stars are ours trained for 1000 epochs, and models in green crosses are supervised ResNets trained for 90 epochs⁷ (He et al., 2016).



(a) Original

(b) Crop and resize

(c) Crop, resize (and flip)

(d) Color distort. (drop)

(e) Color distort. (jitter)

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

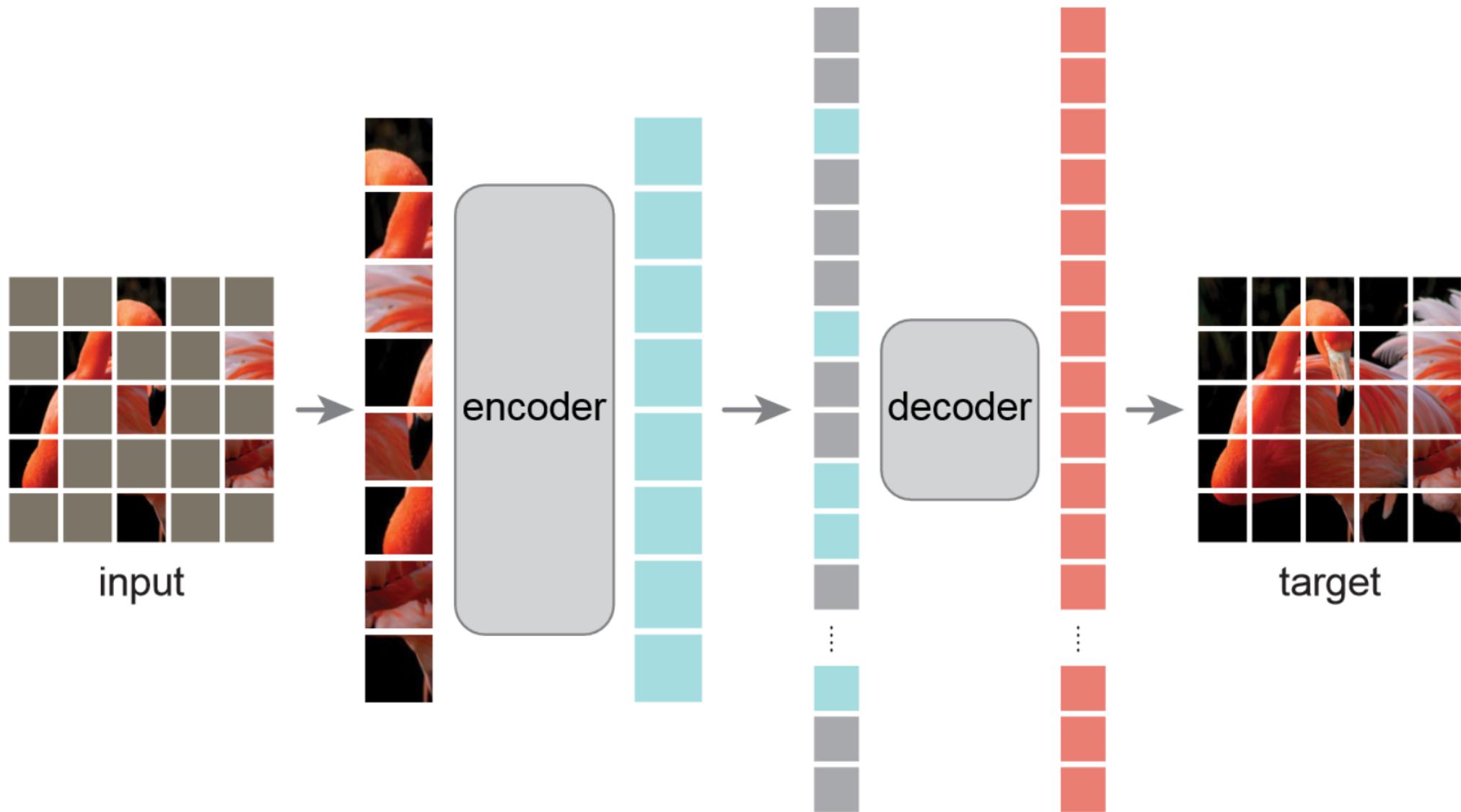
Masked Autoencoders Are Scalable Vision Learners

Kaiming He^{*,†} Xinlei Chen^{*} Saining Xie Yanghao Li Piotr Dollár Ross Girshick

^{*}equal technical contribution [†]project lead

Facebook AI Research (FAIR)

CVPR 2022



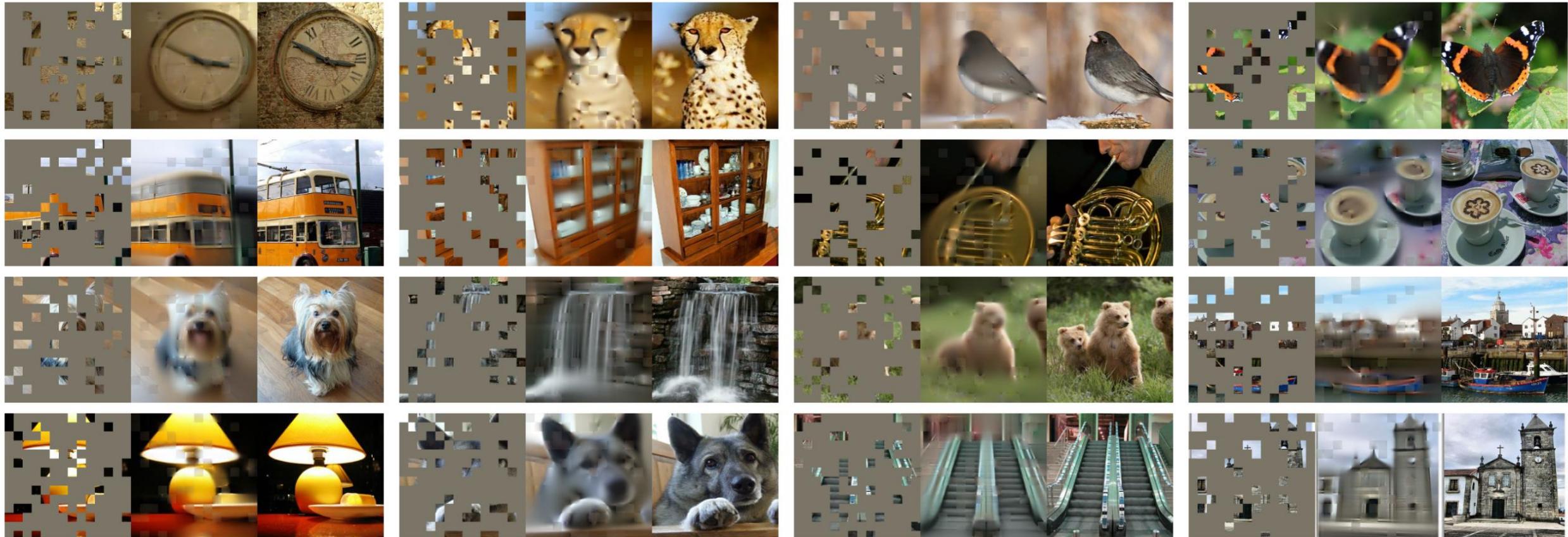


Figure 2. Example results on ImageNet *validation* images. For each triplet, we show the masked image (left), our MAE reconstruction[†] (middle), and the ground-truth (right). The masking ratio is 80%, leaving only 39 out of 196 patches. More examples are in the appendix.

[†]*As no loss is computed on visible patches, the model output on visible patches is qualitatively worse. One can simply overlay the output with the visible patches to improve visual quality. We intentionally opt not to do this, so we can more comprehensively demonstrate the method's behavior.*

Figure 3. Example results on COCO validation images, using an MAE trained on ImageNet (the same model weights as in Figure 2). Observe the reconstructions on the two right-most examples, which, although different from the ground truth, are semantically plausible.

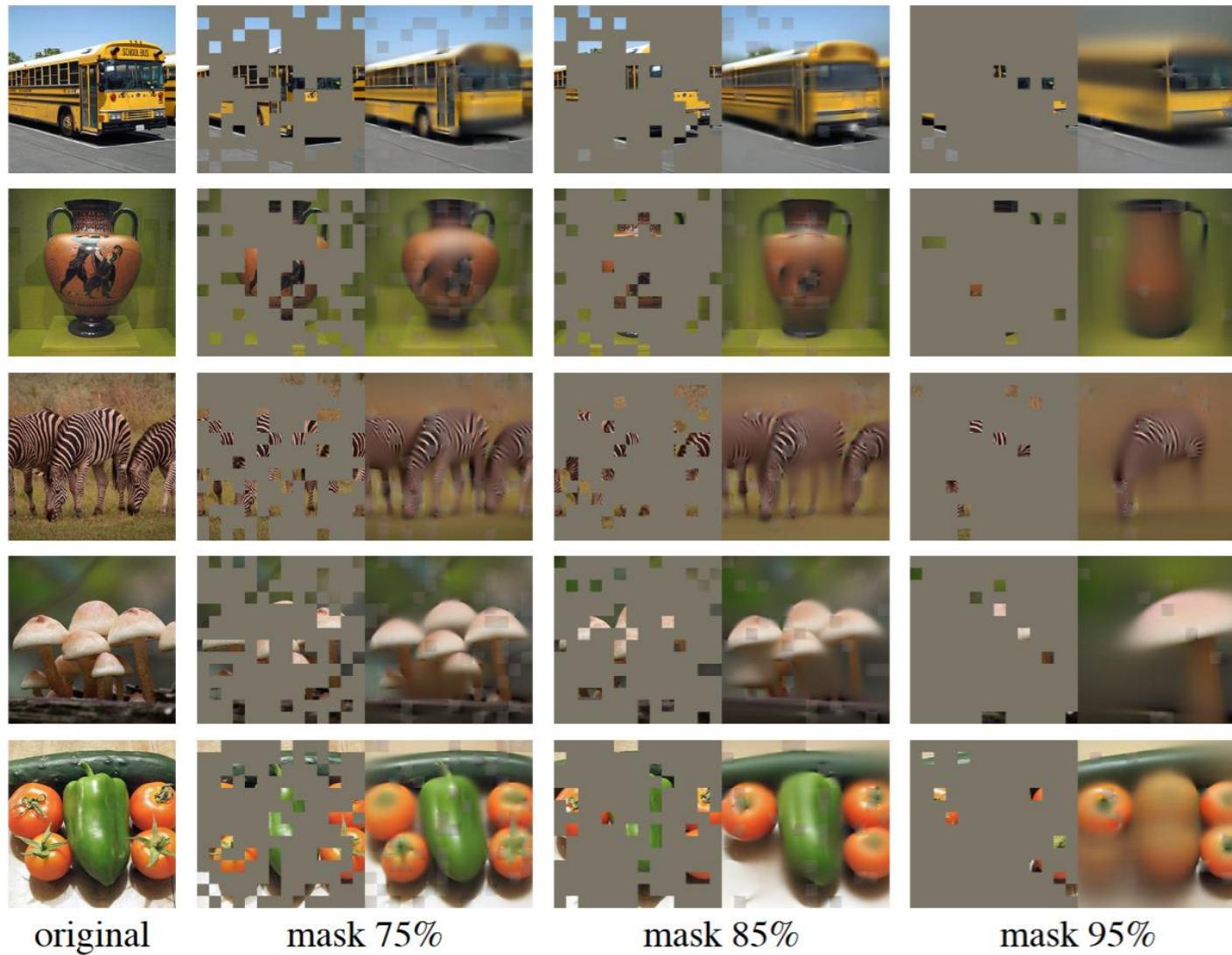
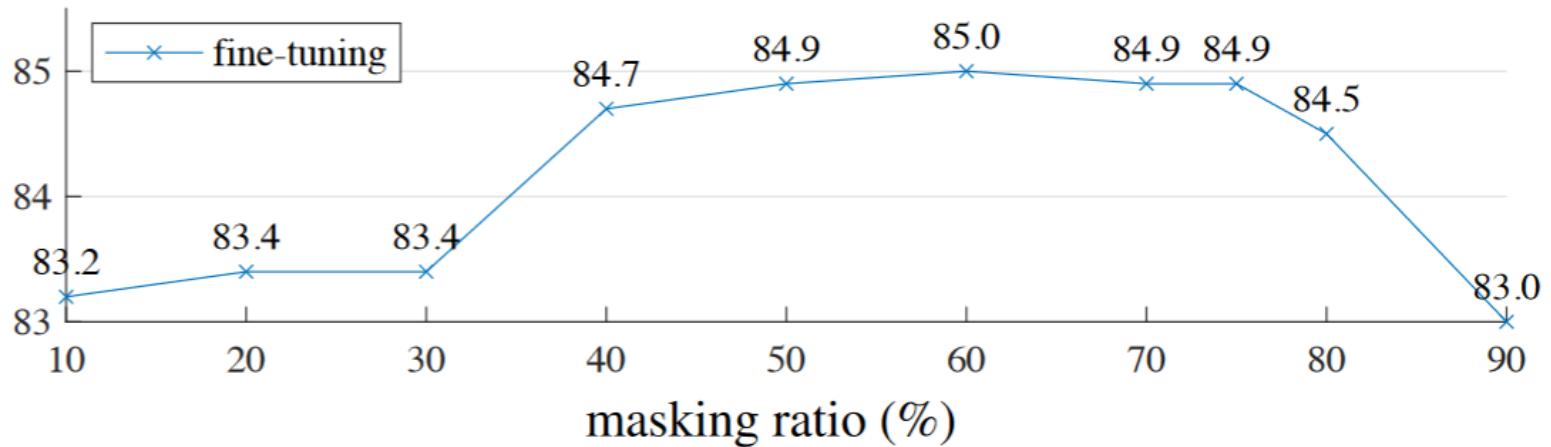
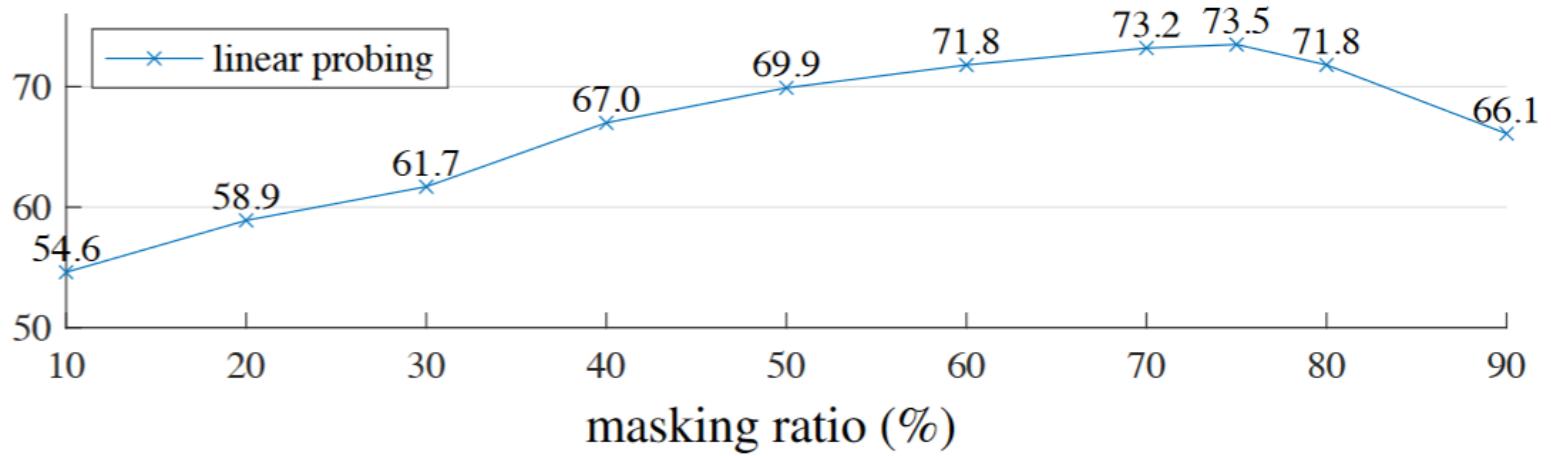


Figure 4. Reconstructions of ImageNet *validation* images using an MAE pre-trained with a masking ratio of 75% but applied on inputs with higher masking ratios. The predictions differ plausibly from the original images, showing that the method can generalize.



method	pre-train data	AP ^{box}		AP ^{mask}	
		ViT-B	ViT-L	ViT-B	ViT-L
supervised	IN1K w/ labels	47.9	49.3	42.9	43.9
MoCo v3	IN1K	47.9	49.3	42.7	44.0
BEiT	IN1K+DALLE	49.8	53.3	44.4	47.1
MAE	IN1K	50.3	53.3	44.9	47.2

Table 4. **COCO object detection and segmentation** using a ViT Mask R-CNN baseline. All entries are based on our implementation. Self-supervised entries use IN1K data *without* labels. Mask AP follows a similar trend as box AP.

Conclusion

- With the right “pretext” tasks and architectures, we are pretty close to matching supervised performance with self-supervised approaches. But it takes some work (longer training, bigger models, precise hyperparameter tuning)
- SimCLR and Masked AutoEncoder only train on ImageNet images. But couldn’t you use a lot more data if you don’t need human labels?
- The gelato bet was just a bit premature