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Recap
Big Data

– The Unreasonable Effectiveness of Data

– Scene Completion

– Im2gps

Crowdsourcing

– “Wisdom of the Crowds” / consensus

– Find good annotators through grading

– Pricing affects throughput but not quality

– User interface and instructions matter a lot



Today’s Lecture

• Four methods for “unsupervised” deep learning

– Context Prediction. Doersch et al. ICCV 2015

– Colorful Image Colorization. Zhang et al. ECCV 2016

– SimCLR. Chen et al. ICML 2020

– Masked Autoencoders. He et al. CVPR 2022

• Big picture: do we need big, labeled datasets like ImageNet to 
make deep learning worthwhile? Can we learn from something 
else?





Large Pretrained Model?



The Gelato Bet

"If, by the first day of autumn 
(Sept 23) of 2015, a method 
will exist that can match or 
beat the performance of R-
CNN on Pascal VOC detection, 
without the use of any extra, 
human annotations (e.g. 
ImageNet) as pre-training, 
Mr. Malik promises to buy Mr. 
Efros one (1) gelato”





Unsupervised Visual Representation Learning by 
Context Prediction

Carl Doersch, Alexei A. Efros, and Abhinav Gupta

ICCV 2015



ImageNet + Deep Learning

Beagle

- Image Retrieval
- Detection (RCNN)
- Segmentation (FCN)
- Depth Estimation
- …



ImageNet + Deep Learning

Beagle

Do we even need semantic labels?
Pose?

Boundaries?Geometry?

Parts?
Materials?

Do we need this task?



Context as Supervision
[Collobert & Weston 2008; Mikolov et al. 2013 (Word2Vec)]

Deep
Net



Context Prediction for Images

A B

? ? ?

??

? ? ?



Semantics from a non-semantic task



Randomly Sample Patch
Sample Second Patch

CNN CNN

Classifier

Relative Position Task
8 possible locations



CNN CNN

Classifier

Patch Embedding

Input Nearest Neighbors

CNN Note: connects across instances!



Architecture
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Avoiding Trivial Shortcuts

Include a gap

Jitter the patch locations



Position in Image

A Not-So “Trivial” Shortcut
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Chromatic Aberration



Chromatic Aberration
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Ours

What is learned?

Input Random Initialization ImageNet AlexNet



Still don’t capture everything
Input Ours Random Initialization ImageNet AlexNet

You don’t always need to learn!
Input Ours Random Initialization ImageNet AlexNet



Pre-Training for R-CNN

Pre-train on relative-position task, w/o labels

[Girshick et al. 2014]



VOC 2007 Performance
(pretraining for R-CNN)
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Clever ideas to keep in mind

• “Pretext” tasks to train networks

• Avoiding shortcuts in learning by

– Dropping out modalities

– Randomizing patch offsets

– Including gaps in patch offsets



So, do we need semantic labels?



Colorful Image Colorization
Richard Zhang, Phillip Isola, Alexei (Alyosha) Efros

richzhang.github.io/colorization

ECCV 2016

http://richzhang.github.io/colorization


Ansel Adams, Yosemite Valley 
Bridge



Ansel Adams, Yosemite Valley Bridge – Our Result



Grayscale image: L channel Color information: ab channels

abL



abL

Concatenate (L,ab)Grayscale image: L channel

“Free” 
supervisory

signal

Semantics? Higher-level 
abstraction?



Inherent Ambiguity

Grayscale



Inherent Ambiguity

Our Output Ground Truth



Colors in ab space
(continuous)

Better Loss Function

• Regression with L2 loss inadequate

• Use multinomial classification

• Class rebalancing to encourage 
learning of rare colors



Colors in ab space
(discrete)

• Regression with L2 loss inadequate

• Use multinomial classification

• Class rebalancing to encourage 
learning of rare colors

Better Loss Function





Histogram over ab 
space

log10 probability

• Regression with L2 loss inadequate

• Use multinomial classification

• Class rebalancing to encourage 
learning of rare colors

Better Loss Function



• Regression with L2 loss inadequate

• Use multinomial classification

• Class rebalancing to encourage 
learning of rare colors

Histogram over ab 
space

log10 probability

Better Loss Function



Hertzmann et al. In SIGGRAPH, 2001.
Welsh et al. In TOG, 2002.

Irony et al. In Eurographics, 2005.
Liu et al. In TOG, 2008.

Chia et al. In ACM 2011.
Gupta et al. In ACM, 2012.

Larsson et al. In ECCV 2016. [Concurrent]

Dahl. Jan 2016.  Iizuka et al. In SIGGRAPH, 2016.Deshpande et al.    Cheng et al. In ICCV 2015.

Charpiat et al. In ECCV 2008.

Hand-engineered Features Deep Networks
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Network Architecture
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Input Class w/ RebalancingL2 RegressionGround Truth



Failure Cases



Biases



Evaluation

Visual Quality Representation Learning

Quantitative

Per-pixel accuracy

Perceptual realism

Semantic interpretability

Task generalization
ImageNet classification

Task & dataset generalization
PASCAL classification, detection, segmentation

Qualitative
Low-level stimuli

Legacy grayscale photos
Hidden unit activations
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Evaluation

Visual Quality Representation Learning

Quantitative

Per-pixel accuracy

Perceptual realism

Semantic interpretability

Task generalization
ImageNet classification

Task & dataset generalization
PASCAL classification, detection, segmentation

Qualitative
Low-level stimuli

Legacy grayscale photos
Hidden unit activations



Perceptual Realism / Amazon 
Mechanical Turk Test





Fake, 0% fooled





Fake, 55% fooled





Fake, 58% fooled



from Reddit /u/SherySantucci



Recolorized by Reddit ColorizeBot



Photo taken by 
Reddit /u/Timteroo,

Mural from street 
artist Eduardo Kobra



Recolorized 
by Reddit 

ColorizeBot



AMT Labeled 
Real [%]

50%

0%

Perceptual Realism 
Test

Ours (full)

32.3

Ground Truth
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Ours (L2)
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Random

13.0

Ours (class)

23.9

Larsson et al.

27.2

1600 images 
tested per 
algorithm



Input Ground Truth Output



Predicting Labels from Data

Data x Label y
Learned feature

hierarchy

Supervised
training

ImageNet
images

ImageNet
labels



Predicting Data from Data

Label y
Learned feature

hierarchy

Supervised
training x0 x1

Unsupervised/
Self-supervised

training
x1x0

Learned feature
hierarchy

ImageNet
images

ImageNet
labels



Egomotion

Agrawal et al. ICCV 2015 Jayaraman et al. ICCV 2015Isola et al. ICLR Workshop 2016.

Context

Doersch et al. ICCV 2015 Pathak et al. CVPR 2016

Hinton & Salakhutdinov.
Science 2006. 

Wang et al. ICCV 2015

Owens et al. CVPR 2016, ECCV 2016

Video

Co-Occurrence

AudioAutoencoders Denoising Autoencoders

Vincent et al. ICML 2008.



Cross-Channel Encoder
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Hidden Unit Activations
Zhou et al. In ICLR, 2015.
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Class Supervision

Are semantic classes linearly separable 
in the learned feature space?

Task Generalization: ILSVRC linear classification



Task Generalization: ILSVRC linear classification



Task Generalization: ILSVRC linear classification



Task Generalization: ILSVRC linear classification



Hidden Unit (conv5) Activations

sky

trees

water



faces

dog
faces

flowers

Hidden Unit (conv5) Activations



Dataset & Task Generalization on 
PASCAL VOC

Does the feature representation
transfer to other datasets and tasks?

Detection
Fast R-CNN. Girshick. In ICCV, 2015.

Segmentation
FCNs. Long et al. In CVPR, 2015.

Classification
Krähenbühl et al. In ICLR, 2016.



Dataset & Task Generalization on PASCAL VOC
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For the full paper, additional examples and our model:
richzhang.github.io/colorization



The Gelato Bet, Resolved

"If, by the first day of autumn 
(Sept 23) of 2015, a method 
will exist that can match or 
beat the performance of R-
CNN on Pascal VOC detection, 
without the use of any extra, 
human annotations (e.g. 
ImageNet) as pre-training, 
Mr. Malik promises to buy Mr. 
Efros one (1) gelato”



Clever ideas to keep in mind

• Turn a regression task into a classification task

• Fight back against class imbalance

– Loss functions that emphasize rare classes

– Replay rare classes more during training



SimCLR, IMCL 2020









CVPR 2022















Conclusion

• With the right “pretext” tasks and architectures, we are pretty 
close to matching supervised performance with self-supervised 
approaches. But it takes some work (longer training, bigger 
models, precise hyperparameter tuning)

• SimCLR and Masked AutoEncoder only train on ImageNet 
images. But couldn’t you use a lot more data if you don’t need 
human labels?

• The gelato bet was just a bit premature
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