[ THIS OFFICE BUILDING
IS CURSED. YESTERDAY,
1L~ M FRIEND WENT INSIDE
S FROM THE SECOND GATE
AND NEVER CAME BACK
FROM THE OTHER SIDE. m
\
/’ﬂ

https://en.wikipedia.org/wiki/Impossible_trident



3D Point Processing

James Hays



Recap: Self Supervised Learning
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7 Some comblnatlon of self

4 supervision from missing
« patch prediction (MAE) and
invariance to augmentations
(SimCLR) works without any
human labels.
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Figure 1: (a) Evolution of linear probing results on ImageNetlk (IN1k) over the years, comparing fully-
(SL), weakly- (WSL) and self-supervised learning (SSL) methods. Despite coming into the picture later,
SSL has quickly progressed and now reached the Imagenet accuracy plateau of recent years. On the other
hand, we demonstrate that SSL offers the unique promise of high-quality dense features. With DINOv3, we
markedly improve over weakly-supervised models on dense tasks, as shown by the relative performance of
the best-in-class WSL models to DINOv3 (b). We also produce PCA maps of features obtained from high
resolution images with DINOv3 trained on natural (c¢) and aerial images (d).
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3D Point Processing Outline

* How do we measure 3D points?

* How do we make decisions about point clouds?
* PointNet — orderless point processing
* VoxelNet — voxel-based point processing
e PointPillars — bird’s eye view point processing
* Exploiting Visibility for 3D Object Detection
* Range view object detection



Kinect V1 and V2

Infrared images of Kinect V1 structured light pattern and Kinect V2 time of flight pattern. Credit
“Lightweight Algorithms for Depth Sensor Equipped Embedded Devices” by Henry Zhong



Lidar overview
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Lidar overview

Source: Waymo Open Dataset
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Some datasets are entirely synthetic, though

ModelNet — CAD models selected to match common categories
in the SUN dataset
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Figure 5: ModelNet Dataset. Left: Word cloud visualization of the ModelNet dataset based on the number of 3D models in
each category. Larger font size indicates more instances in the category. Right: Examples of 3D chair models.
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Outline

e What is lidar?

* How do we make decisions about point clouds?
* PointNet — orderless point processing
* VoxelNet — voxel-based point processing
* PointPillars — bird’s eye view point processing
* Exploiting Visibility for 3D Object Detection
* Range view object detection



PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation

Charles R. Qi* Hao Su* Kaichun Mo Leonidas J. Guibas

% Stanford

University



Big Data + Deep Representation Learning

Robot Perception Augmented Reality Shape Design

......
;;;;;

source: Scott J Grunewald source: Google Tango source: solidsolutions

Need for 3D Deep Learning!
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Previous Works

Prior to PointNet, there were many handcrafted
Point Cloud Features

Supports Local /
Feature
Texture / Global / Best Use Case
Name <
Color Regional
PFH No L
2.5D Scans (Pseudo single position range
FPFH No L :
Images)
Object detection with basic pose
VFH No G j ', W,l 4
estimation
Object detection with basic pose
CVFH No R . J ) ) " I . .
estimation, detection of partial objects
Real world 3D-Scans with no mirror
RIFT Yes L

effects. RIFT is vulnerable against flipping.



Previous Works

Point cloud is converted to other representations
before it's fed to a deep neural network

Voxelization 3D CNN
Projection/Rendering 2D CNN

Feature extraction Fully Connected



Research Question:

Can we achieve effective feature learning
directly on point clouds?



Our Work: PointNet

End-to-end learning for scattered, unordered point data

PointNet




Our Work: PointNet

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

Object Classification

PointNet Object Part Segmentation

Semantic Scene Parsing



Our Work: PointNet

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

l PointNet

car?

Classification Part Segmentation =~ Semantic Segmentation



Challenges

Unordered point set as input

Model needs to be invariant to N! permutations.

Invariance under geometric transformations

Point cloud rotations should not alter classification results.



Challenges

Unordered point set as input

Model needs to be invariant to N! permutations.



Unordered Input

Point cloud: N orderless points, each represented by a D
dim vector

D
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Unordered Input

Point cloud: N orderless points, each represented by a D
dim vector

D
>
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Model needs to be invariant to N! permutations



Permutation Invariance: How about Sorting?

“Sort” the points before feeding them into a network.

Unfortunately, there is no canonical order in high dim space.

lexsorted
(1,2,3) (1,1,1)
(1,1,1) (1,2,3)
(2,3,2) (2,3,2) > MLP —
(2,3,4) (2,3,4)



Permutation Invariance: How about Sorting?

“Sort” the points before feeding them into a network.

Unfortunately, there is no canonical order in high dim space.

(1,2,3
(1,1,1
(2,3,2
(2,3,4

N N N N’

lexsorted

(1,1,1)
(1,2,3)
(2,3,2)
(2,3,4)

—> MLP —»I

Multi-Layer Perceptron
(ModelNet shape classification)

Accuracy
Unordered Input 12%
Lexsorted Input 40%

PointNet (vanilla) 87%



Point Transformer 3

(a) Z-order (b) Hilbert

tH]

Sl

(d) Trans Hilbert

Figure 3. Point cloud serialization. We show the four patterns of serialization with a triplet visualization. For each triplet, we show the
space-filling curve for serialization (left), point cloud serialization var sorting order within the space-filling curve (middle), and grouped
patches of the serialized point cloud for local attention (right). Shifting across the four serialization patterns allows the attention mechanism
to capture various spatial relationships and contexts, leading to an improvement in model accuracy and generalization capacity.



Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

However, RNN forgets and order matters.

LSTM = LSTM —» LSTM —»---—» LSTM —>I

N S t
MLP MLP MLP MLP

T T t
(1,2,3) (1,1,1) (2,3,2) (2,3,4)



Permutation Invariance: How about RNNs?

Train RNN with permutation augmentation.

However, RNN forgets and order matters.

(ModelNet shape classification)

LSTM Network
LSTM —&» LSTM —-» LSTM —»---—» LSTM —>I

A A A A

| | | | Accuracy
MLP MLP MLP o MLP LSTM 750,
4 ¢4 4
PointNet (vanilla) 87%

(1,2,3) (1,1,1) (2,3,2) (2,3,4)



Permutation Invariance: Symmetric Function

f(xl,xz,...,xn)sf(xﬂl,xﬂz,...,xﬂn), x € RP



Permutation Invariance: Symmetric Function

f(xl,xz,...,xn)sf(xﬂl,xﬂz,...,xﬂn), x € RP

Examples:

f(x;,%,5,...,X,) =max{x,;,X,,..., X, }

F(X, X0y, )=X+ X, +...+ X,



Permutation Invariance: Symmetric Function

f(xl,xz,...,xn)sf(xﬂl,xﬂz,...,xﬂn), x € RP

Examples:

f(x;,%,5,...,X,) =max{x,;,X,,..., X, }

F(X, X0y, )=X+ X, +...+ X,

How can we construct a family of symmetric
functions by neural networks?



Permutation Invariance: Symmetric Function

Observe:

f(x,%y,..0,x,)=yg(h(x,),....,h(x,)) is symmetric if & is symmetric



Permutation Invariance: Symmetric Function

Observe:

f(x,Xxy,..0x,)=yg(h(x,),....,h(x,)) is symmetric if & is symmetric

h
(1,2,3) —

(1,1,1) —

(2,3,2) —

(2,3,4) —



Permutation Invariance: Symmetric Function

Observe:

f(x,%y,..0,x,)=yg(h(x,),....,h(x,)) is symmetric if & is symmetric

h
(1,2,3) — simple symmetric function

(1,1,1) — g/

(2,3,2) — >

(2,3,4) —



Permutation Invariance: Symmetric Function

Observe:

f(x,%y,..0,x,)=yg(h(x,),....,h(x,)) is symmetric if & is symmetric

h
(1,2,3) — simple symmetric function
(1,1,1) —

g/ 7
(2,3,2) — >. g _’I

(2,3,4) — PointNet (vanilla)



Basic PointNet Architecture

Empirically, we use multi-layer perceptron (MLP) and max pooling:

h
(1,2,3) — mLP

(1,1,1) —

MLP
(2,3,2) — wmLp >

(2,3,4) — wmLP PointNet (vanilla)

s y

—»> MLP —>I



Challenges

Invariance under geometric transformations

Point cloud rotations should not alter classification results.



Input Alignment by Transformer Network

ldea: Data dependent transformation for automatic alignment

3 T-Net | transform 3
params
N N

Data Transformed
Data




Input Alignment by Transformer Network

The transformation is just matrix multiplication!

4 A
3 T-Net | transform 3
params: 3x3
\_ y,
/ ™ \
Matrix
N " Mut. '

. J

Data Transformed

Data



Embedding Space Alignment

transform
/ T-Net | harams: 64x64
Matrix
Mult.

Input Transformed

embeddings: embeddings:
Nx64 Nx64




PointNet Classification Network

input points




PointNet Classification Network
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PointNet Classification Network

input mlp (64,64)
transform >

|
shared
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nx64

Input points
nx3
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PointNet Classification Network

nx64

input mlp (64,64) feature
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PointNet Classification Network

) input mlp (64,64) feature mlp (64,128,1024)

% } transform 3 _: :: . transform . ) I t:

; <Hang > shared \g ] > \g shared nx1024
= N e N e B

64x64
transform :

3x3
transform -

matrix : > matrix :
multiply | : : multiply | :




PointNet Classification Network

input mlp (64,64) feature mlp (64,128,1024) max
= transform :: :: transform < ’:: pool 1024
- S > & shared < [ % shared nx1024 ll Dol foat J
, . obal feature
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transform :

3x3
transform -

matrix : > matrix :
multiply | : : multiply | :




PointNet Classification Network

input mlp (64,64) feature mlp (64,128,1024) max mlp
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Extension to PointNet Segmentation Network

input mlp (64,64) feature mlp (64,128,1024) max mlp
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Extension to PointNet Segmentation Network

) input mlp (64,64) feature mlp (64,128,1024) max mlp

% 3 transform 3} ::_I_:: . transform . I, ’;: pool 1024 (512,256,k)
;' S > & shared \g ] B \g shalred nx1024

2 —»!_I_H» ‘ g | » gloEa) feature ! . |

L R R LR IEETERTIRTERTRD o ———
:- T :. R .
: transform - transform ° : K pOlnt features

e
' : : : ; @
: : ; 5 5 —» > — s
: matrix : > : matrix : : | = o0 I > E 8 E
: multiply | : :_ multiply | : f n|x 1088 S g shared é :
R R T Y .t R R R .t g Q- .

3 Burp

e N e S == g

mlp (512,256,128) mlp (128,m)




Results



Results on Object Classification

input accuracy | accuracy
avg. class | overall

SPH [12] mesh - 68.2 -

3DShapeNets [29] | volume 1 77.3 84.7
VoxNet [18] volume 12 83.0 85.9
Subvolume [19] volume 20 86.0 89.2
LFD [29] image 10 75.5 -

MVCNN [24] image 80 90.1 -

Ours baseline point - 72.6 77.4
Ours PointNet point 1 86.2 89.2




Results on Object Classification

input #views | accuracy | accuracy
avg. class | overall
SPH [12] mesh - 68.2 -
3DShapeNets [29] ) volume 1 77.3 84.7
3D CNNs | VoxNet [18] volume 12 83.0 85.9
Subvolume [19] volume 20 86.0 89.2
LED [29] image 10 75.5 -
MVCNN [24] image 80 90.1 -
Ours baseline point - 72.6 77.4
Ours PointNet point 1 86.2 89.2
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Fig. 1. The VoxNet Architecture. Conuv(f,d, s) indicates f filters of size
d and at stride s, Pool(m) indicates pooling with area m, and Full(n)
indicates fully connected layer with n outputs. We show inputs, example

feature maps, and predicted outputs for two instances from our experiments.

The point cloud on the left is from LiDAR and is part of the Sydney Urban
Objects dataset [4]. The point cloud on the right is from RGBD and is part
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Results on Object Classification

input | #views | accuracy | accuracy
avg. class | overall
SPH [12] mesh - 68.2 -
3DShapeNets [29] | volume 1 77.3 84.7
VoxNet [18] volume 12 83.0 85.9
Subvolume [19] volume 20 86.0 89.2
ZIrDo'ection LFD [29] image 10 75.5 .
3D data MVCNN [24] image | 80 90.1 -
Ours baseline point - 72.6 77.4
Ours PointNet point 1 86.2 89.2




Results on Object Classification
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) ™ ’ ' 1 View desk|—
9 R el — - dresser[D
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_ toilet—
3D shape model 8
rendered with 2D rendered our multi-view CNN architecture output u."_.lass
different virtual cameras images predictions

Figure 1. Multi-view CNN for 3D shape recognition (illustrated using the 1% camera setup). At test time a 3D shape is rendered from 12
different views and are passed thorough CNN; to extract view based features. These are then pooled across views and passed through
CNN} to obtain a compact shape descriptor.



Results on Object Classification

input #views | accuracy | accuracy
avg. class | overall

SPH [12] mesh - 68.2 -

3DShapeNets [29] | volume 1 77.3 84.7
VoxNet [18] volume 12 83.0 85.9
Subvolume [19] volume 20 86.0 89.2
LFD [29] image 10 75.5 -

MVCNN [24] image 80 90.1 -

Ours baseline point - 72.6 77.4
Ours PointNet point 1 86.2 89.2




Results on Object Part Segmentation
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Results on Object Part Segmentation

aero bag cap «car chair ear guitar knife lamp laptop motor mug pistol rocket skate table

phone board
# shapes 2600 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
Wu [28] 63.2 - - - 73.5 - - - 744 - - - - - - 74.8
Yi [30] 81.0 78.4 777 757 876 619 92.0 854 825 957 70.6 919 859 53.1 698 753
3DCNN 75.1 72.8 733 700 872 635 884 796 744 939 587 918 76.4 512 653 77.1
Ours 834 78.7 825 749 89.6 730 915 859 808 953 652 93.0 81.2 579 728 80.6




Results on Semantic Scene Parsing
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Robustness to Data Corruption

Less than 2% accuracy drop with 50% missing data

100 5 //
90 ; i

X 80 - - ;

~ ] .

g 70 |

5 60 - s

S | “®=Furthest

< 50 .

40 1 “*Random
30 ’

0 02 04 06 08 1
Missing data ratio



Accuracy (%)

Robustness to Data Corruption
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Robustness to Data Corruption

Why is PointNet so robust

R G to missing data?
~®-PointNet |

-#-3D CNN

Accuracy (%)

0 0.2 0.4 0.6 0.8 1

Missing Data Ratio



Visualizing Global Point Cloud Features

3 MLP 1024

maxpool

3

I |
global feature

shqlred

Which input points are contributing to the global feature?
(critical points)



Visualizing Global Point Cloud Features

Original Shape:

, e T . v e > 2 : . 7
. n . ,_.. -.‘.. "'.'.'..."V.‘. -..:_1.1 s Pty A ’
Critical Point Sets: N - X% s (\



Visualizing Global Point Cloud Features

3 MLP 1024

maxpool

3

I |
global feature

shqlred

Which points won't affect the global feature?



Visualizing Global Point Cloud Features

Original Shape:

Critical Point Set:



Visualizing Global Point Cloud Features (OOS)

Original Shape:

Original Shape

Critical Point Set:
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Visualizing Global Point Cloud Features

3 MLP 1024

maxpool

3

I |
global feature

shqlred

What regions influence each of these dimensions?






Conclusion

* PointNet is a novel deep neural network that directly
consumes point cloud.

* A unified approach to various 3D recognition tasks.
* Rich theoretical analysis and experimental results.

l I PointNet I

Code & Data Available!
http://stanford.edu/~rgi/pointnet

car?

Classification Part Segmentation =~ Semantic Segmentation


http://stanford.edu/~rqi/pointnet

Speed and Model Size

params | FLOPs/sample
PointNet (vanilla) | 0.8M 148M

PointNet 3.5M 440M
Subvolume [ | 6] 16.6M 3633M
MVCNN [20] 60.0M 62057M

Inference time 11.6ms, 25.3ms GTX1080, batch size 8



Outline

e What is lidar?

* How do we make decisions about point clouds?
* PointNet — orderless point processing
* VoxelNet — voxel-based point processing
* PointPillars — bird’s eye view point processing
* Exploiting Visibility for 3D Object Detection
* Range view object detection



Convolutions are powerful

* Convolutions are how networks reason about neighborhoods and
spatial relationships.

* PointNet has limited ability to identify things like corners, junctions,
straight lines, etc.



Voxe | N et g:éestrian |

Cyclist

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection
Yin Zhou and Oncel Tuzel. CVPR 2018



VoxelNet Overview
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VoxelNet Voxel encoding looks a lot like
PointNet
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VoxelNet Overview

Region Proposal Network

Convolutional Middle Layers

g Feature Learning Network
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VoxelNet “Convolutional Middle Layers”

* For car detection, divide the world into 10 x 400 x 352 voxels,
corresponding to voxels that are 40 cm tall and 20 cm in
width/length.

e Uses 3D convolutions instead of 2D as we’ve seen before.
* The Z / height dimension gets downsampled away after many layers



VoxelNet Overview

Region Proposal Network

Convolutional Middle Layers

g Feature Learning Network
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VoxelNet quantitative results

: Car Pedestrian Cyclist
Method Modality Easy | Moderate | Hard || Easy | Moderate | Hard || Easy | Moderate | Hard
Mono3D [ 3] Mono 2.53 2.31 2.31 N/A N/A N/A N/A N/A N/A
3DOP [4] Stereo 6.55 5.07 4.10 N/A N/A N/A N/A N/A N/A
VeloFCN [22] LiDAR 15.20 13.66 1598 || N/A N/A N/A N/A N/A N/A
MV (BV+FV) [5] LiDAR 71.19 56.60 55.30 || N/A N/A N/A N/A N/A N/A
MV (BV+FV+RGB) [5] | LiDAR+Mono || 71.29 62.68 56.56 N/A N/A N/A N/A N/A N/A
HC-baseline LiDAR 71.73 59.75 55.69 || 43.95 40.18 37.48 || 55.35 36.07 34.15
VoxelNet LiDAR 81.97 65.46 62.85 || 57.86 53.42 48.87 || 67.17 47.65 45.11

Evaluation on KITTIl according to 3D loU




Outline

e What is lidar?

* How do we make decisions about point clouds?
* PointNet — orderless point processing
* VoxelNet — voxel-based point processing
* PointPillars — bird’s eye view point processing
* Exploiting Visibility for 3D Object Detection
* Range view object detection



The X, Y, and Z directions aren’t the same



PointPillars

Point cloud Predictions
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PointPillars: Fast Encoders for Object Detection from Point Clouds
Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang,
Oscar Beijbom. CVPR 2019
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What You See |s What You Get
Exploiting Visibility for 3D Object Detection

Peiyun Hu, Jason Ziglar, David Held, Deva Ramanan
Carnegie Mellon University ArgoAl

p CVPR 2020
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What is a good representation for LiDAR data?

vy

® LiDAR data provides more than just point measurements
® Rays emanating from the sensor to each 3D point must pass through free space

® Representing LiDAR data as (x, y, z)s fundamentally destroys such freespace information



A Simple Approach to Augment Visibility

Deep Voxel Representation

Voxel Encoder .

WA= TR Concat
,// & N \ \\\ N , : \ H x (C + 1)
Point CIoud Voxel Grid Ray-casting .

V|S|b|||ty Volume

V|5|b|||ty augmented
Deep Voxel Representation




W

CVPR

JUNE 14-19 2020

Visibility-aware LIDAR Synthesis
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Improve PointPillars by 4.5% in overall mAP

. PointPillars . Ours
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What Matters in Range View
3D Object Detection

https://github.com/benjaminrwilson/range-view-3d-detection

111 Benjamin Wilson, Nicholas Autio Mitchell, Jhony Kaesemodel Pontes, James Hays. Gr Georgia

"What Matters in Range View 3D Object Detection." 8th Annual Conference on Robot Learning. 2024. Tech.



What is the Range View?

Range View
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What is the Range View?

Range View

-;%t? ‘zq?“,
. ’.{%\fz : T

nATS
i S
RN \l;.

I ek, Tey
o Mg =
3 !'.,}_ i ! v
¢ X '\.»-‘r
I TR U &
R L
7.8 * <2 ¥
3. e at -
o - -
‘.:‘:""’
. N
»

113

Gr Georgia
Tech.



3D Object Detection in the Range View
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e What is lidar?

* How do we make decisions about point clouds?
* PointNet — orderless point processing
* VoxelNet — voxel-based point processing
e PointPillars — bird’s eye view point processing
* Exploiting Visibility for 3D Object Detection
* Range view object detection



summary

* Popular CNN backbones aren’t a direct fit for 3D point processing
tasks.

* It’s not clear how to best use deep learning on 3D data
e Use a truly permutation invariant representation (PointNet)

Render multiple 2D views of the 3D data

Use a voxel representation (VoxelNet)

Use a bird’s a view representation (PointPillars)

Use a range image
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