











Structured Predictions with
Deep Learning

James Hays



Outline — More complex outputs from deep
networks

* Image Output (e.g. colorization, semantic segmentation, super-resolution,
stylization, depth estimation...)

e Attributes
* Text Captions
* Semantic Keypoints

* Object Detection
Bounding boxes

* Keypoint locations

* Segmentation masks

3D cuboids
3D object coordinates



end-to-end, pixels-to-pixels network

convolution

HxW H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 Hx W



What if we want other types of
outputs?

e Easy*: Predict any fixed dimensional output

Generated results

Sketch Sketch + Color

Scribbler: Controlling Deep Image Synthesis with Sketch and Color.
Sangkloy, Lu, Chen Yu, and Hays. CVPR 2017

*easy to design an architecture. Not necessarily easy to get working well.



What if we want other types of outputs?

* Easy: Predict a fixed number of labels. For classification,
there will be just one best answer, but for other labels like
attributes, dozens could be appropriate for an image.

Jumping, catqhing eatipg traveling, bending thinking, leaning
happy, axercising grazing riding, moving smelling / sniffing
dog floating, enjoying giraffe bending person driving, adult dog watching, tame
hal.ry, playm.g. peaceful athletic, male loving, curious
athletic, soqghzmg spo.tted public family-friendly
competitive wild

Fig. 1. Examples from COCO Attributes. In the figure above, images from the COCO
dataset are shown with one object outlined in white. Under the image, the COCO
object label is listed on the left, and the COCO Attribute labels are listed on the right.



What if we want other types of
outputs?

* Hard: Outputs with varying dimensionality or cardinality
* A natural language image caption
* An arbitrary number of human keypoints (17 points each)

e An arbitrary number of bounding boxes (4 parameters each) or
segmentation masks (hundreds of parameters each)

* Today we will examine influential methods for keypoint
prediction and object detection

* The keypoint detection approach is “bottom up” and the object
detection approach is “top down”.



Realtime Multi-Person Pose
Estimation using Part Affinity
Fields

/Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh
Carnegie Mellon University

CVPR 2017

ROBOTICS
INSTITUTE



Human Pose Estimation




Human Pose Estimation
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Single-Person Pose Estimation
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Single-Person Pose Estimation




Multi-Person Pose Estimation
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Color encodes the body part type




Multi-Person Pose Estimation




Major Challenge: Part-to-Person Association
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Major Challenge: Part-to-Person Association

{ Challenges:
. 1 1. Unknown number of people
© 2. Variance in person scales
3 Occlusion between people
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Major Challenge: Part-to-Person Association
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For 30 people and each with 17 joints, there are in total 1.3
x 10° pair-wise connection cost, NP-hard optimization



Unexpected Conclusion

An efficient representation is
discriminative enough that a
greedy parse is sufficient to

produce high-quality results
Bottom-up




Novelty: Part Affinity Fields for Parts Association

Part Affinity Field between right elbow and wrist



Novelty: Part Affinity Fields for Parts Association

Part Affinity Field between right elbow and wrist
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Novelty: Part Affinity Fields for Parts Association



Part Affinity Fields for Part-to-Part Association

=» Direction vector in the PAFs
O Part 1
® Part?2




Part Affinity Fields for Part-to-Part Association

.p2

Affinity score between Pi1and D2
= sum( « « p1p2)




Part Association for Full-body Pose

© Elbow
® \Wrist
* Shoulder




Greedy Algorithm for Body Parts Association
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Greedy Algorithm for Body Parts Association

© Elbow
® Shoulder




Greedy Algorithm for Body Parts Association







Jointly Learning Parts Detection and Parts Association

Stage 1

1st branch
part heatmaps

2nd branch
part affinity fields




Jointly Learning Parts Detection and Parts Association

Stage 1

CNN




Jointly Learning Parts Detection and Parts Association

Stage 1

CNN










Frame by frame detection (no tracking)
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Source: https://www.youtube.com/watch?v=2DiQUX11YaY



https://www.youtube.com/watch?v=2DiQUX11YaY

SSD: Single Shot
MultiBox Detector

Wei Liu(1), Dragomir Anguelov(2), Dumitru Erhan(3), Christian Szegedy(3),
Scott Reed(4), Cheng-Yang Fu(1), Alexander C. Berg(1)

UNC Chapel Hill(1), Zoox Inc.(2), Google Inc.(3),
University of Michigan(4)

Google D & e il

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

UNIVERSITY OF
MICHIGAN



Bounding Box Prediction

Classical sliding SSD and other deep
windows approaches

Is it a cat? No

Discretize the box space more coarsely

Discretize the box space densely Refine the coordinates of each box



Extra Feature Layers
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Fig.2: A comparison between two single shot detection models: SSD and YOLO [35].
Our SSD model adds several feature layers to the end of a base network, which predict
the offsets to default boxes of different scales and aspect ratios and their associated
confidences. SSD with a 300 x 300 input size significantly outperforms its 448 x 448
YOLO counterpart in accuracy on VOC2007 test while also improving the speed.



Related Work

MultiBox [Erhan et al. CVPR14]

N

Fully
connected + post classify

—— > =

— -/

P(objectness)

or K boxes

boxes

Offsets for
K boxes

Faster R-CNN [Ren et al. NIPS15]

P(objectness) Box offsets

\ \I

Convolutional

post classify
boxes

YOLO [Redmon et al. CVPR16]

SSD

LTI
4 P

multiclass prob
) for K boxes

Fully
connected

=

| J Offsets for
K boxes

multiclass prob  Box offsets

Convolutional
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(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map




Why So Many Default Boxes!?

Faster R-CNN YOLO SSD300 SSD512
# Default Boxes 6000 98 8732 24564
Resolution 1000x600 448x448 300x300 512x512

GT  DETECTION
=3 - ® SmoothlL1 or L2 loss for box shape
averages among likely hypotheses

e Need to have enough default boxes
(discrete bins) to do accurate regression
IN each

e General principle for regressing
complex continuous outputs with deep
nets



VOC2007 test mAP

80

SSD512
80% mAP /19 fps

Faster R-CNN, Ren 2015
73% mAP /7 fps

SSD300
77% mAP / 46 fps

x29° o Single Shot
0&6 06\0\0‘

A\ P
Fast R-CNN Qﬂuck 2015
70% mABOﬁ?fps
R-CNN, Girshick 2014 YOLO, Redmon 2016
66% MAP /0.02 fps 66% MAP /21 fps

| | | | )
10 20 30 40 20

Speed (fps)




. Mask R-CNN

ICCV 2017

Kaiming He,

Georgia Gkioxari, Piotr Dollar, and Ross Girshick
Facebook Al Research (FAIR)



Visual Perception Problems

Object Detection Semantic Segmentation Instance Segmentation

v v ?



Object Detection

* Fast/Faster R-CNN
v'Good speed
v'Good accuracy
v Intuitive
v'Easy to use

7

RolPool

Y
A Tl LY

Ross Girshick. “Fast R-CNN”. ICCV 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.



Semantic Segmentation

* Fully Convolutional Net (FCN)
v'Good speed
v'Good accuracy
v Intuitive
v’ Easy to use

forward /inference

<€

backward /learning

00 0° 21
Pz 3%& 3%& 16)6 8O” pO

21
Figure credit: Long et al

Jonathan Long, Evan Shelhamer, & Trevor Darrell. “Fully Convolutional Networks for Semantic Segmentation”. CVPR 2015.



Instance Segmentation

* Goals of Mask R-CNN
v'Good speed
v'Good accuracy
v Intuitive

v'Easy to use

| RolAlign

Y

co nV’




Instance Segmentation Methods
R-CNN driven { FCN driven

SR IS
oK




Instance Segmentation Methods

!
\

e SDS [Hariharan et al, ECCV’14]

° HyperCO| [Hariharan et al, CVPR’15]

RCNN-driven

® PFN [Liang et al, arXiv’15] FCN-driven
e CFM [Dai et al, CVPR'15]

¢ |[nstanceCut [Kirillov et al, CVPR’17
¢ MINC [Dai et al, CVPR’16] [ ]

e \Watershed [Bai & Urtasun, CVPR’17]

:;- FCIS [Li et al, CVPR’17]
|

'® DIN [Arnab & Torr, CVPR'17]
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Mask R-CNN

e Mask R-CNN = Faster R-CNN with FCN on Rols
Faster R-CNN

—
box
A
A
| RolAlign| _
Ml conv’> conv >
A
e
W
L/

FCN on Rol



Parallel Heads

* Easy, fast to implement and train

Feat.

cls

bbox
reg

Feat.

(slow) R-CNN

Fast/er R-CNN

cls

cls

bbox
reg

Feat.

bbox
reg

mask

Mask R-CNN




Invariance vs. Equivariance
* Equivariance: changes in input lead to corresponding changes in output

desires invariant representations: output a label

desires equivariant representations:
* Translated object => translated mask
e Scaled object => scaled mask
* Big and small objects are equally important (due to AP metric)
* unlike semantic seg. (counting pixels)



Equivariance in Mask R-CNN
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1. Fully-Conv Features:
equivariant to global (image) translation



Equivariance in Mask R-CNN
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2. Fully-Conv on Rol:
equivariant to translation within Rol



Fully-Conv on Rol

target masks on Rols

Translation of object in Rol => Same translation of mask in Rol
e Equivariant to small translation of Rols
* More robust to Rol’s localization imperfection



Equivariance in Mask R-CNN

RolAlign

Y

ANANANANAN

3. RolAlign:
3a. maintain translation-equivariance before/after Rol



RolAlign

FAQs: how to sample grid points within a cell?

* 4 regular points in 2x2 sub-cells
e other implementation could work

conv feat. map

.

Grid points of
bilinear interpolation

. ol o e RolAlign
output
—
e o | o o
e o | o o

(Variable size Rol)

(Fixed dimensional
representation)




see also “What is wrong with convolutional neural nets?”, Geoffrey Hinton, 2017

RolAlign vs. RolPool

* RolPool breaks pixel-to-pixel translation-equivariance ‘

Iy /

RolPool coordinate
guantization




Equivariance in Mask R-CNN
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3. RolAlign:
3b. Scale-equivariant (and aspect-ratio-equivariant)



RolAlign: Scale-Equivariance

normalized w.rt Rol,

invariant representations

’ [

Rol

output

Rol
P RolAlign

I D

g

image

* RolAlign creates scale-invariant representations
* RolAlign + “output pasted back” provides scale-equivariance



More about Scale-Equivariance: FPN

* RolAlign is scale-invariant if on raw pixels:
= (slow) R-CNN: crops and warps Rols

* RolAlign is scale-invariant if on scale-invariant
feature maps

e Feature Pyramid Network (FPN) [Lin et al. cvPR'17]
creates approx. scale-invariant features

Faster R-CNN
w/ FPN [20]

D\

class

7XT

ratll x256 T11024 l/ !1024|/ box
L 14><14 28><28

Rol || X256 x256




Equivariance in Mask R-CNN: Summary

* Translation-equivariant
* FCN features
* FCN mask head
* RolAlign (pixel-to-pixel behavior)

 Scale-equivariant (and aspect-ratio-equivariant)
* RolAlign (warping and normalization behavior) + paste-back
* FPN features



Instance Seg: When we don’t want equivariance?

* A pixel x could have a different label w.rt.
different Rols '
e zero-padding in Rol boundary breaks equivariance l |
* outside objects are suppressed |
* only equivariant to small changes of Rols ‘ ‘ \
(which is desired)

m
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Mask R-CNN results on COCO



Result Analysis



Instance Segmentation Results on COCO

backbone AP AP50 AP75 AP S AP M AP L
MNC [7] ResNet-101-C4 24.6 443 24.8 4.7 25.9 43.6
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 394 16.9 39.9 33.5

e 2 AP better than SOTA w/ R101, without bells and whistles

 200ms / img




Instance Segmentation Results on COCO

backbone AP AP50 AP75 AP S AP M AP L
MNC [7] ResNet-101-C4 24.6 443 24.8 4.7 25.9 43.6
FCIS [20] +OHEM ResNet-101-C5-dilated | 29.2 49.5 - 7.1 31.3 50.0
FCIS+++ [20] +OHEM | ResNet-101-C5-dilated | 33.6 54.5 - - - -
Mask R-CNN ResNet-101-C4 33.1 54.9 34.8 12.1 35.6 51.1
Mask R-CNN ResNet-101-FPN 35.7 58.0 37.8 15.5 38.1 52.4
Mask R-CNN ResNeXt-101-FPN 37.1 60.0 394 16.9 39.9 33.5

e benefit from better features (ResNeXt [xie et al. cvPr'17])



Accuracy (mAP@50:95)
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State of the art as of 2025




disconnected
object
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Mask R-CNN results on COCO



small
objects

Mask R-CNN results on COCO



person:1.00

person:1.00

person:1.00 person:1.00

* person:1.00
person:1.00 person:1.00 person:0.96
person:1.00 g / person:1.00
‘ ReEIO08 . 0.92
person:0.50 \
i {

bicycle:0.98

Mask R-CNN results on CityScapes




Failure case: detectlon/segmentatlon

= person 96 : . .
person 99 ‘ m|SS|ng,

false mask

m|ss|ng person.97 person.95

rsonp@w@&ﬁiig =—_

Ry person'§§'

\ -'

A
person.86

person1:Q0

Mask R-CNN rsults on COCO




Failure case: recognition

umbrella.87

: - .:b',"'iwj

handbag.76

Mask R-CNN results on COCO



28x28 soft prediction from Mask R-CNN
(enlarged)

Soft prediction resampled to image coordinates

(bilinear and bicubic interpolation work equally well)

Final prediction (threshold at 0.5)

Validation image with box detection shown in red



28x28 soft prediction

Resized Soft prediction

Final mask

-\

Validation image with box detection shown in red



Mask R-CNN: for Human Keypoint Detection

* 1 keypoint = 1-hot “mask”
* Human pose = 17 masks

e Softmax over spatial locations
* e.g. 562-way softmax on 56x56

* Desire the same equivariances
 translation, scale, aspect ratio

0.94 nose 1.00 left_eye 1.00 right_eye 0.98 left_ear 0.98

Agligigligh

right_ear 0.93 left_shoulder 0.97right_shoulder 1.00 left_elbow 0.41 right_elbow 0.99

211 2

left_wrist 0.91  right_wrist 0.97 Ieft_hip 0.96 right_hip 0.97 left_knee 0.99

SRR R X

right knee 0.99 left_ankle 0.91 right_ankle 0.98

= R1E







Conclusion

Mask R-CNN
v Good speed Code open-sourced as Facebook Al
v'Good accuracy Research’s Detectron platform
v’ Intuitive

v'Easy to use
v Equivariance matters



Summary — More complex outputs from deep
networks

* Image Output (e.g. colorization, semantic segmentation, super-
resolution, stylization, depth estimation...)

* Attributes
* Text Captions
* Bottom up: Semantic Keypoints

* Top down: Object Detection
* “single shot” vs “two stage”
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