




Image Manifolds & Image Generation

Slides from Noah Snavely, Abe Davis, Jin Sun, and Phillip Isola



Agenda

• The manifold of natural images

• Image -to-image methods and GANs

• Image synthesis methods

• diffusion models



DIMENSIONALITY REDUCTION

By Abe Davis



Linear Dimensionality Reduction: 2D ->1D

• Consider a bunch of data points in 2D

• Let’s say these points lie along a line

• If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D ->2D
• Similar to 1D case, we can fit a 

plane to the data, and 
transform our coordinate 
system so that plane becomes 
the x-y plane

• “Plane fitting”

• Now we only need to store two 
numbers for each point (and 
the plane parameters)

• More generally: look for the 2D 
subspace that best fits the 
data, and ignore the remaining 
dimensions

Think of this as data that sits on 
a flat sheet of paper, suspended 
in 3D space. We will come back 
to this analogy in a couple 
slides…



Generalizing Linear Dimensionality Reduction

• Principal Components Analysis 
(PCA) : find and order orthogonal 
axes by how much the data varies 
along each axis.

• The axes we find (ordered by 
variance of our data) are called 
principal components .

• Dimensionality reduction can be 
done by using only the first k 
principal components

Side Note: principal components are 
closely related to the eigenvectors of the 
covariance matrix for our data



Manifolds

• Think of a piece of paper as a 2D subspace

• If we bend & fold it, it’s still locally a 2D subspace…

• A “manifold” is the generalization of this concept to higher 
dimensions…



Autoencoders: Dimensionality Reduction for 
Manifolds

• Learn a non-linear (deep network) 
transformation into some lower -
dimensional space (encoder)

• Learn a transformation from lower-
dimensional space back to original 
content (decoder)

• Loss function measures difference 
between input & output

• Self Supervised! 

– No labels required! Signal is just from 
learning to compress data

Feature space at 
bottleneck is often 

called “latent space”



Autoencoders: Dimensionality Reduction for 
Manifolds

• Transformations that reduce 
dimensionality cannot be 
invertible  in general

• An autoencoder tries to learn 
a transformation that is 
invertible for points on 
some manifold



IMAGE MANIFOLDS

By Abe Davis



The Space of All Images

• Lets consider the space of all 
100x100 images

• Now lets randomly sample 
that space…

• Conclusion: Most images are 
noise

Question:
What do we expect a random uniform 

sample of all images to look like?



Natural Image Manifolds

• Most images are “noise”

• “Meaningful” images tend to 
form some manifold within 
the space of all images

• Images of a particular class 
fall on manifolds within that 
manifold…

The Space of All Images



Denoising & the “ Nullspace ” of Autoencoders

• The autoencoder tries to learn 

a dimensionality reduction 

that is invertible for our data 

(data on some manifold)

• Most noise will be in the non -

invertible part of image space 

(off the manifold)

• If we feed noisy data in, we will 

often get denoised data out
Examples from: https://blog.keras.io/building -autoencoders -in-keras.html

Input

Output

Noisy Input

Output

https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html


Problem

• Autoencoders can compress 

because data sits on a 

manifold

• This doesn’t mean that every 

point in the latent space will 

be on the manifold…

• GANs (later this lecture) will 

learn a loss function that 

helps with this…

(simple Interpolation)

Interpolation



IMAGE-TO-IMAGE APPLICATIONS

Abe Davis, with slides from Jin Sun, Phillip Isola, and Richard Zhang



Object labeling

[Long et al. 2015, …]

Style transfer

[Gatys et al. 2016, …][Reed et al. 2016, …]

Text -to-photo

“this small bird 

has a pink breast 

and crown…”

Image prediction (“structured prediction”)
Depth prediction

[Eigen et al. 2014, …]

We often use an architecture 
like a U-Net for such image -to-

image mappings



Image Colorization

from Jin Sun, Richard Zhang, Phillip Isola



“What should I do” “How should I do it?”

from Jin Sun, Richard Zhang, Phillip Isola



Color information: ab channelsGrayscale image: L channel

Objective function

(loss)

Neural Network

Training data

…

from Jin Sun, Richard Zhang, Phillip Isola



“yellow”

…

from Jin Sun, Richard Zhang, Phillip Isola



…

“black”

from Jin Sun, Richard Zhang, Phillip Isola



…

from Jin Sun, Richard Zhang, Phillip Isola



from Jin Sun, Richard Zhang, Phillip Isola

Recap: basic loss functions



from Jin Sun, Richard Zhang, Phillip Isola

Recap: basic loss functions



Input Output (with L2 loss) Ground truth

Designing loss functions

(L2 loss)



With L2 loss, predictions 

“regress to the mean”, 

and lack vivid colors



Color distribution cross-entropy loss with colorfulness enhancing term. 

Zhang et al. 2016

[Zhang, Isola, Efros, ECCV 2016]

Designing loss functions

Input Ground truth



Image colorization

Designing loss functions

L2 regression

Super-resolution

[Johnson, Alahi, Li, ECCV 2016]

L2 regression

[Zhang, Isola, Efros, ECCV 2016]



Image colorization

Designing loss functions

Cross entropy objective, 

with colorfulness term

Deep feature covariance 

matching objective

[Johnson, Alahi, Li, ECCV 2016]

Super-resolution

[Zhang, Isola, Efros, ECCV 2016]



(simple Interpolation)

Interpolation

Better Loss Function: Sticking to the Manifold

• How do we design a loss function 

that penalizes images that aren’t 

on the image manifold?

• Key insight: we will learn our loss 

function by training a network to 

discriminate between images that 

are on the manifold and images 

that aren’t



PART 3: GENERATIVE ADVERSARIAL 
NETWORKS (GANS)

Abe Davis, with slides from Jin Sun and Phillip Isola



Generative Adversarial Networks (GANs)

• Basic idea: Learn a mapping from some latent space to images 
on a particular manifold

• Example of a Generative Model:

– We can think of classification as a way to compute some P(x) that tells 
us the probability that image x is a member of a class.

– Rather than simply evaluating this distribution, a generative model 
tries to learn a way to sample from it



Generative Adversarial  Networks (GANs)

Training Data

Discriminator 
Network

• Generator network has similar 
structure to the decoder of our 
autoencoder

– Maps from some latent space to 
images

• We train it in an adversarial manner 
against a discriminator network

– Generator takes image noise, and tries 
to create output indistinguishable 
from training data

– Discriminator tries to distinguish 
between generator output and 
training data



[Ledig  et al 2016]

First: Conditional GANs

• Generate samples from a conditional distribution (conditioned 
on some other input)  

• Example: generate high -resolution image conditioned on low 
resolution input



Generator

[Goodfellow et al., 2014]



Generator Discriminator

real or fake?

[Goodfellow et al., 2014]

G tries to synthesize fake images that fool D

D tries to identify the fakes



fake (0.9)

real (0.1)

[Goodfellow et al., 2014]

(Identify generated images as fake) (Identify training images as real)



G tries to synthesize fake images that fool D:

real or fake?

[Goodfellow et al., 2014]



G tries to synthesize fake images that fool the best D:

real or fake?

[Goodfellow et al., 2014]



Loss Function

G’s perspective: D is a loss function.

Rather than being hand-designed, it is learned.

[Isola et al., 2017]

[Goodfellow et al., 2014]



real or fake?

[Goodfellow et al., 2014]



real!

[Goodfellow et al., 2014]



real or fake pair ?

[Goodfellow et al., 2014]

[Isola et al., 2017]



real or fake pair ?

[Goodfellow et al., 2014]

[Isola et al., 2017]



fake pair

[Goodfellow et al., 2014]

[Isola et al., 2017]



real pair

[Goodfellow et al., 2014]

[Isola et al., 2017]



real or fake pair ?

[Goodfellow et al., 2014]

[Isola et al., 2017]



More Examples of Image -to-Image Translation 
with GANs

• We have pairs of corresponding training images

• Conditioned on one of the images, sample from the 
distribution of likely corresponding images

Edges to Image

Segmentation to Street Image

Aerial Photo To Map



BW → Color

Input Output Input Output Input Output

Data from [Russakovsky et al. 2015]



Input Output Groundtruth

Data from

[maps.google.com]

http://maps.google.com/


Labels → Street Views

Data from [Wang et al, 2018]



Day → Night

Input Output Input Output Input Output

Data from [Laffont et al., 2014]



Edges → Images

Input Output Input Output Input Output

Edges from [Xie & Tu, 2015]



Image Inpainting

Data from [Pathak et al., 2016]



Pose-guided Generation

Data from [Ma et al., 2018]



Challenges —> Solutions

• Output is high -dimensional, structured object

– Approach: Use a deep net, D, to analyze output!

• Uncertainty in mapping; many plausible outputs

– Approach: D only cares about “plausibility”, doesn’t hedge



Unconditional GANs:
Learning an image manifold for a category

Latent code (“noise”)-to-image decoder network

Category -specific 
image dataset (FFHQ)



Unconditional GANs:
Learning an image manifold for a category

Category -specific 
image dataset (FFHQ)

94

61

13

Output image

Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category

Category -specific 
image dataset (FFHQ)

14

29

6

Output image

Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category

Latent code (“noise”)-to-image decoder network

Category -specific 
image dataset (FFHQ)

72

83

51

Output image



Example: Randomly Sampling the Space of Face 
Images

Which face is real?

A B

https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html


Example: Randomly Sampling the Space of Face 
Images

Which face is real?

A B

https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html


StyleGAN

https://github.com/NVlabs/stylegan

A Style -Based Generator Architecture for Generative Adversarial Networks
Tero Karras, Samuli  Laine, Timo Aila

https://github.com/NVlabs/stylegan


StyleGAN2 [2020]

https://github.com/NVlabs/stylegan2  

Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli  Laine, Miika Aittala, Janne  Hellsten, Jaakko Lehtinen , Timo Aila

https://github.com/NVlabs/stylegan2


StyleGAN3 [2021]

Alias -Free Generative Adversarial Networks (StyleGAN3)
Tero Karras, Miika Aittala, Samuli  Laine, Erik Härkönen , Janne  Hellsten, Jaakko Lehtinen , Timo Aila



GAN models trained on animal faces: interpolating between latent codes



GAN models trained on MetFaces: interpolating between latent codes



GANs for 3D

https://nvlabs.github.io/eg3d

https://nvlabs.github.io/eg3d


Limitations

• The unconditional models above must be trained per -
category:

– We have a separate model for every category – an animal face 
model, broccoli model, horse model, etc…

• What if we want to generate an image from any  description?

• -> diffusion and text -to-image models



Recall: The Space of All Images

• Lets consider the space of all 
100x100 images

• Now lets randomly sample 
that space…

• Conclusion: Most images are 
noise

Question:
What do we expect a random uniform 

sample of all images to look like?



Recall: Natural Image Manifolds

• Most images are “noise”

• “Meaningful” images tend to 
form some manifold within 
the space of all images

• Images of a particular class 
fall on manifolds within that 
manifold…

The Space of All Images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images

Forward mapping 
(noise to cats) is 

hard



Random images

Slide concept: Steve Seitz

Manifold of cat images

Reverse mapping 
(cats to noise) is 

easy



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat images



Random images

Slide concept: Steve Seitz

Manifold of cat imagesKey idea : train a neural network to take an image, and  predict 
the corresponding arrow above; that is, predict to convert a 
noisy image to a slightly less noisy image that is closer to the 
desired image manifold, using the examples above to train.



Denoising diffusion neural network

Diffusion 
neural 

network

This network can be a U -Net or other 
suitable image -to-image network



Generating new images

• Once diffusion network has been trained, generate new 
images by starting with a random noise image, and iteratively 
applying the network to slowly remove noise, for some 
number of steps (e.g., 1,000 for DALL-E 2)

• “Walking from random images towards the manifold of 
natural images”



Random images

Slide concept: Steve Seitz

cat 
images

dog 
images

llama 
images

How can we avoid 
training a separate 

diffusion network for 
each concept?



Idea 1: add a text label as conditioning

Diffusion 
neural 

network

“cat”



Idea 1: add a text label as conditioning

Diffusion 
neural 

network

“llama”



Idea 2: condition using large language model

Diffusion 
neural 

network

Large 
Language 

Model

“llama riding a skateboard”

language representation



Training on images + captions

https://en.wikipedia.org/wiki/Llama

https://en.wikipedia.org/wiki/Llama


DALL -E 2

“A llama riding a skateboard” “A llama riding a skateboard 
captured with a DSLR”



Imagen

“Sprouts in the shape of text 
'Imagen' coming out of a 

fairytale book.”

“A dragon fruit wearing 
karate belt in the snow.”



Other applications of diffusion models

• Uncropping

Palette: Image -to-Image Diffusion Models
Saharia et al. arXiv 2022.

Progressively zooming out. The most zoomed -in image is the input

https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/


Other applications of diffusion models

• Colorization

Palette: Image -to-Image Diffusion Models
Saharia et al. arXiv 2022.

https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/


Other applications of diffusion models

• Inpainting

Palette: Image -to-Image Diffusion Models
Saharia et al. arXiv 2022.

https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/


DreamFusion : Text-to-3D using 2D Diffusion

“a DSLR photo of a squirrel”

https://dreamfusion3d.github.io/

https://dreamfusion3d.github.io/








Personalized Residuals for 
Concept-Driven Text-to-Image 

Generation
Cusuh Ham, Matthew Fisher, James Hays,

Nicholas Kolkin, Yuchen Liu, Richard Zhang, Tobias Hinz
CVPR 2024



Motivation

DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, K. Aberman. CVPR 2023.



Background: diffusion model

Q
KV

“a photo of a dog”

Q
KV

Q
KV

Q
KV

Text encoder

D
iffusion m

odel



Personalization approaches

Q
KV

“a photo of a V* dog”

Q
KV

Q
KV

Q
KV

Text encoder

D
iffusion m

odel
V*



DreamBooth

Q
KV

“a photo of a V* dog”

Q
KV

Q
KV

Q
KV

Text encoder

D
iffusion m

odel
V*

DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, K. Aberman. CVPR 2023.

Large # parameters
Requires regularization images to 
preserve learned prior



Custom Diffusion

109

Q
KV

Q
KV

Q
KV

Q
KV

D
iffusion m

odel

Multi-concept customization of text-to-image diffusion. N. Kumari, B. Zhang, R. Zhang, E. Shechtman, J. Zhu. CVPR 2023.

V*Fewer parameters
Requires regularization 
images

“a photo of a V* dog”

Text encoder



Textual Inversion

Q
KV

Q
KV

Q
KV

Q
KV

D
iffusion m

odel

An image is worth one word: personalizing text-to-image generation using textual inversion. R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, D. Cohen-Or. arXiv preprint 
2022.

V*

Very few parameters
Doesn’t affect generative prior

Inflexible editing

“a photo of a V* dog”

Text encoder



Transformer blocks
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Transformer blocks
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Transformer blocks
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“a photo of V* dog”



Our approach: personalized residuals

𝑊𝑖d

d

𝑊𝑖
′Fine-tune

Overwrites learned prior

1x1 conv

Projout



Our approach

𝑊𝑖

d

r

r
d

∆𝑊𝑖d

d

∆𝑊𝑖 𝑊𝑖
′

LoRA: low-rank adaptation of large language models. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen. ICLR 
2022.

Method Regularization 
images? # parameters

Textual inversion ✗ 768

DreamBooth ✓ 983M

Custom 
Diffusion

✓ 19M

Ours ✗ 1.2M

LoRA w/ rank r

150 iterations
~3 min on 1 A100

Personalized residual



Concept Ours Textual Inversion DreamBooth Custom Diffusion





Comparison with GANs

• Diffusion models tend to be easier to train and more scalable

• Diffusion models tend to be slower – often many iterations of 
denoising are required

• However, recent work is mitigating some of these issues (with 
both GANs and diffusion models)
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