





Image Manifolds & Image Generation
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Slides from Noah Snavely, Abe Davis, Jin Sun, and Phillip Isola



Agenda

* The manifold of natural images

* Image-to-image methods and GANs
* Image synthesis methods

* diffusion models



DIMENSIONALITY REDUCTION



Linear Dimensionality Reduction: 2D->1D

* Consider a bunch of data points in 2D
 Let’s say these points lie along a line
* |f so, we can translate and rotate our data so thatitis 1D



Linear Dimensionality Reduction: 3D->2D

Similar to 1D case, we canfit a
plane to the data, and
transform our coordinate
system so that plane becomes
the x-y plane

“Plane fitting”

Now we only need to store two
numbers for each point (and
the plane parameters)

More generally: look for the 2D
subspace that best fits the
data, and ignore the remaining
dimensions
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Think of this as data that sits on
a flat sheet of paper, suspended
in 3D space. We will come back
to this analogy in a couple
slides...



Generalizing Linear Dimensionality Reduction

* Principal Components Analysis
(PCA): find and order orthogonal

axes by how much the data varies
along each axis. 00-

* The axes we find (ordered by
variance of our data) are called
principal components. T
* Dimensionality reduction can be
done by using only the first k Side Note: principal components are
: : closely related to the eigenvectors of the
p”ﬂCIpaI COmpOnentS covariance matrix for our data



Manifolds

* Think of a piece of paper as a 2D subspace
* |If we bend & fold it, it’s still locally a 2D subspace...

* A“manifold”is the generalization of this concept to higher
dimensions...




Autoencoders: Dimensionality Reduction for

Manifolds

Learn a non-linear (deep network)
transformation into some lower-

dimensional space (encoder)

Learn a transformation from lower-
dimensional space back to original

content (decoder)

Loss function measures difference

between input & output

Self Supervised!

— No labels required! Signal is just from

learning to compress data

Input

Feature space at
bottleneck is often
called “latent space”

Output
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Autoencoders: Dimensionality Reduction for
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Manifolds

* Transformations that reduce
dimensionality cannot be
invertible in general
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* An autoencoder tries to learn
a transformation that is
invertible for points on
some manifold




IMAGE MANIFOLDS



The Space of All Images N

 Lets consider the space of all
100x100 images

* Now lets randomly sample
that space...

Question:
What do we expect a random uniform
sample of all images to look like?

* Conclusion: Most images are
noise pixels = np.random.rand(100,100,3)




Natural Image Manifolds

* Most images are “noise”

* “Meaningful”images tend to
form some manifold within
the space of all images

* Images of a particular class
fall on manifolds within that
manifold...

The Space of All Images




Denoising & the “Nullspace” of Autoencoders

* The autoencoder tries to learn
a dimensionality reduction
that is invertible for our data ;_, LLLLLLL
(data on some manifold)

| | | Input ..ﬂ......
* Most noise will beinthenon- . 2l/10l4l/lv1als]2

invertible part of image space
(off the manifold)

* |f we feed noisy data in, we will
often get denoised data out
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Examples from: https://blog.keras.io/building-autoencoders-in-keras.html



https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html
https://blog.keras.io/building-autoencoders-in-keras.html

Input Output

Problem e =
I //_\\\\\Code/////_\ /// -
\

 Autoencoders can compress O Ve VEY Y B
. — Vi NN SN
because data sits on a A e AN E
1, 2 ~ \
manifold = S

Enchder Dechder

* This doesn't mean that every
point in the latent space will
be on the manifold...

 GANSs (later this lecture) will
learn a loss function that
helps with this...




IMAGE-TO-IMAGE APPLICATIONS



Image prediction (“structured prediction”)

4 Object labeling )

\ [Long et al. 201

Text-to-ph

“this small bird
has a pink breast= B

and crown...”

We often use an architecture
like a U-Net for such image-to-
Image mappings

[Reed et al. 20186, ...] .

4 Depth prediction R
Depth Map

igen et al. 2014, ...] j

vle transfer )

\_ [Gatys et al. 20186, ...] Y.




Image Colorization

from Jin Sun, Richard Zhang, Phillip Isola



arg m}H Ex,y [L(F(X)? Y)]

“What should | do” “How should | do it?”

from Jin Sun, Richard Zhang, Phillip Isola



Training data
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| channel Color information: ab channels

arg m}n ix,y | L(F(x),y)]

Objective function Neural Network
(lOSS) from Jin Sun, Richard Zhang, Phillip Isola




—_— > > —_ —_ — O “ye”OW”

from Jin Sun, Richard Zhang, Phillip Isola



—_— > > —_— —_— — B “blaCk”

from Jin Sun, Richard Zhang, Phillip Isola



from Jin Sun, Richard Zhang, Phillip Isola



Recap: basic loss functions

Prediction: 5} — f(x) Truth: Yy
Classification (cross-entropy): How many extra
-~ _ ~ _ bits it takes to
L(YaY) __Ziy’lzlogy% ) correct the
predictions

from Jin Sun, Richard Zhang, Phillip Isola



Recap: basic loss functions
Prediction: 5} — F(X)

Classitication (cross-entropy):

Truth: y

How many extra
bits it takes to

L(y,y)=—>_;Yilogy; -

Least-squares regression:

correct the
predictions

How far off we are

Ly,y) =y -yl -

IN Euclidean
distance

from Jin Sun, Richard Zhang, Phillip Isola



Designing loss functions

Input Output (with L2 loss) Ground truth
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With L2 loss, predictions
“regress to the mean”,

110_Q.A““.1”_.w_ﬂ“._uuﬂ““””w“

and lack vivid colors 110 55 0 55 110
b

1 ~
L2(Y,Y) = 5 D Ynw = Yl
h,w



Designing loss functions

Input /Zhang et al. 2016 Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]



Designing loss functions

Image colorization

L2 regression

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

L2 regression

[Johnson, Alahi, Li, ECCV 2016]



Designing loss functions

Image colorization

Cross entropy objective,
with colorfulness term

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

Deep feature covariance
matching objective

[Johnson, Alahi, Li, ECCV 2016]



Better Loss Function: Sticking to the Manifold

* How do we design a loss function
that penalizes images that aren't
on the image manifold?

* Key insight: we will learn our loss
function by training a network to
discriminate between images that
are on the manifold and images
that aren’t



PART 3: GENERATIVE ADVERSARIAL
NETWORKS (GANS)



Generative Adversarial Networks (GANs)

* Basicidea: Learn a mapping from some latent space to images
on a particular manifold

* Example of a Generative Model:

— We can think of classification as a way to compute some P(x) that tells
us the probability that image x is a member of a class.

— Rather than simply evaluating this distribution, a generative model
tries to learn a way to sample from it



* We train it in an adversarial manner
against a discriminator network
— Generator takes image noise, and tries

to create output indistinguishable
from training data

Generator network has similar
structure to the decoder of our

autoencoder

— Maps from some latent space to

images

— Discriminator tries to distinguish
between generator output and
training data
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Generative Adversarial Networks (GANSs)

Discriminator
Network



First: Conditional GANs

* Generate samples from a conditional distribution (conditioned
on some other input)

* Example: generate high-resolution image conditioned on low
resolution input

original bicubic SRResNet SRGAN
(20.34dB/0.6562)
LY s v

(21.59dB/0.6423) (23.44dB/0.7777)

3 h T :"’u.n‘&
[Ledig et al 2016]



[Goodfellow et al., 2014]



G tries to synthesize fake images that fool D

D tries to identify the fakes

- ﬁ

Generator

Discriminator

1 — real or fake?

[Goodfellow et al., 2014]



— fake (0.9)

1 real (0.1)

(Identify generated images as fake) (Identify training images as real)

argmax Exy[[log D(G(x)| + [log(1 — D))

[Goodfellow et al., 2014]



H — real or fake?

G tries to synthesize fake images that foo/ D:

ar Exy| logD(G(x)) + log(l— D(y)) |

[Goodfellow et al., 2014]



— H H — real or fake?

G tries to synthesize fake images that foo/ the best D:
arghinfnax| Exy[ log D(G(x)) + log(1 - D(y)) |

[Goodfellow et al., 2014]



D

G’s perspective: D is a loss function.

Rather than being hand-designeq, it Is learned.

[Goodfellow et al., 2014]
[Isola et al., 2017]



— H H — real or fake?

a,rgmginmg,x Exy| logD(G(x)) + log(l— D(y)) |

[Goodfellow et al., 2014]



—HHF— real!

a,rgmginmg,x Exy| logD(G(x)) + log(l— D(y)) |

[Goodfellow et al., 2014]



—1HH— realorfake pair??

argm&nmgx Ex,y[ logD(G(x)) + log(l—D(y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1HH— realorfake pair??

argm&nmg,x Ex,y[ log D(x, G(x)) + log(1 — D(x,y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1I A fake pair

argm&nmg,x Ex,y[ log D(x, G(x)) + log(1 — D(x,y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1 A real pair

argm&nmg,x Ex,y[ log D(x, G(x)) + log(1 — D(x,y)) ]

[Goodfellow et al., 2014]
[Isola et al., 2017]



—1IHH— realorfake pair?

argm&n max Ex,y[ log D(x,G(x)) + log(1 — D(x,y)) ]

D

[Goodfellow et al., 2014]
[Isola et al., 2017]



More Examples of Image-to-Image Translation
with GANs

* We have pairs of corresponding training images

* Conditioned on one of the images, sample from the
distribution of likely corresponding images

Edges to Image

Ground truth Output

Segmentation to Street Image

input L o output

output




BW — Color

Input Output

Data from [Russakovsky et al. 2015]



Input Output Groundtruth

Data from

[maps.google.com] A



http://maps.google.com/

Labels — Street Views

Input labels

Data from [Wang et al, 2018]



Day — Night

OQutput

Data from [Laffont et al., 2014]



Edges — Images

Input

Edges from [Xie & Tu, 2015]



Image Inpalntlng

Data from [Pathak et al., 2016]



Pose-guided Generation

Condition Target Target Coarse Refined Condition Target Target Coarse Refined
result result

image pose image (GT) result result

image (GT)

bowy £ : :
(a) DeepFashion (b) Market-1501

Refined results
i £ 0 i
A } 5; ) ‘A

J o & s

(c) Generating from a sequence of poses

Condition image Target pose sequence

Data from [Ma et al., 2018]



Challenges —> Solutions

e Output is high-dimensional, structured object

— Approach: Use a deep net, D, to analyze output!

* Uncertainty in mapping; many plausible outputs

— Approach: D only cares about “plausibility’, doesnt hedge



Unconditional GANs:
Learning an image manifold for a category
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Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category

Output
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Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category

Output
71
// //
Code /// \ /
-/ \ /
14|\ // \ /
29| ) b
67 \ /\\
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~Q \\
\\ \
Category-specific N .
. gory=sp Output image
image dataset (FFHQ) K y
-
Decoder

Latent code (“noise”)-to-image decoder network



Unconditional GANs:
Learning an image manifold for a category

Output
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. gory=sp Output image
image dataset (FFHQ) k y
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Decoder

Latent code (“noise”)-to-image decoder network



Example: Randomly Sampling the Space of Face
Images

Which face is real?



https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html

Example: Randomly Sampling the Space of Face
Images

Which face is real?



https://www.nytimes.com/interactive/2024/01/19/technology/artificial-intelligence-image-generators-faces-quiz.html

StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks
Tero Karras, Samuli Laine, Timo Aila

https://github.com/NVlabs/stylegan



https://github.com/NVlabs/stylegan

StyleGAN2 [2020]

Analyzing and Improving the Image Quality of StyleGAN
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

https://github.com/NVlabs/stylegan2



https://github.com/NVlabs/stylegan2

StyleGAN3 [2021]

StyleGAN2 /.

Alias-Free Generative Adversarial Networks (StyleGAN3)
Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten, Jaakko Lehtinen, Timo Aila



;(S y el (e

GAN models trained on animal faces: interpolating between latent codes



StyleGAN2&.

GAN models trained on MetFaces: interpolating between latent codes



GANs for 3D

EG3D: Efficient
Geometry-aware 3D
Generative
Adversarial Networks

2

Eric Ryan Chan "~ Connor Zhizhen Lin "' Matthew Aaron Chan "'

Koki Nagano "  Boxiao Pan ' Shalini De Mello ©  Orazio Gallo °

2 2

Leonidas Guibas | Jonathan Tremblay ©  Sameh Khamis Tero Karras

Gordon Wetzstein '

1 Stanford University 2 NVIDIA

" Equal contribution.

https://nvlabs.github.io/eg3d



https://nvlabs.github.io/eg3d

Limitations

* The unconditional models above must be trained per-
category:
— We have a separate model for every category — an animal face
model, broccoli model, horse model, etc...

* What if we want to generate an image from any description?

« -> diffusion and text-to-image models



Recall: The Space of All Images

* Lets consider the space of all . A

100x100 images

* Now lets randomly sample

|
that space...
Question:
° 1 . 1 What do we expect a random uniform
ConCI usion: MOSt Images are sample of allpimages to look like?
noise

pixels = np.random.rand(100,100,3)
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Diff

Manifold of cat images
Random images

Slide concept: Steve Seitz



Forward mappin

noise to cats) is
hard

Manifold of cat images
Random images

Slide concept: Steve Seitz



Reverse mappin
cats to noise) is
easy

Manifold of cat images
Random images

Slide concept: Steve Seitz



anifold of cat images
Random images

Slide concept: Steve Seitz



Manifold of cat images
Random images

Slide concept: Steve Seitz



Manifold of cat images

Random images

Slide concept: Steve Seitz



Manifold of cat images
Random images

Slide concept: Steve Seitz



Manifold of cat images
Random images

Slide concept: Steve Seitz



Manifold of cat images
Random images

Slide concept: Steve Seitz



images

Manifold of cat

Random images

Steve Seitz

Slide concept



Key idea: train a neural network to take an image, and predict
the corresponding arrow above; that is, predict to convert a
noisy image to a slightly less noisy image that is closer to the
desired image manifold, using the examples above to train.

Ide concept: Steve Seitz



Denoising diffusion neural network

Diffusion

neural
network

This network can be a U-Net or other
suitable image-to-image network



Generating new images

* Once diffusion network has been trained, generate new
images by starting with a random noise image, and iteratively
applying the network to slowly remove noise, for some
number of steps (e.g., 1,000 for DALL-E 2)

* “Walking from random images towards the manifold of
natural images”



cat
Images

How can we avoid
—— training a separate
diffusion network for
each concept?

llama
Images

Random images

Slide concept: Steve Seitz



itioning

add a text label as condi

Idea 1

llcatll

Diffusion




Idea 1: add a text label as conditioning

“llama”

Diffusion

neural
network




Idea 2: condition using large language model

language representation

Large Diffusion

Language neural
Model network

“llama riding a skateboard”



Training on images + captions

- f_z"; o't e . A i a0 e ~dae
=4 ot 2 =S P - v o S Lo R T Sy

A pack llama in the Rocky Mountain =~
National Park

https://en.wikipedia.org/wiki/Llama



https://en.wikipedia.org/wiki/Llama

DALL-E 2

“A llama riding a skateboard” "A llama riding a skateboard
captured with a DSLR”



“Sprouts in the shape of text “A dragon fruit wearing

'Imagen' coming out of a karate belt in the snow!”
fairytale book



Other applications of diffusion models

* Uncropping

Progressively zooming out. The most zoomed-in image is the input

Palette: Image-to-Image Diffusion Models
Saharia et al. arXiv 2022.



https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
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Other applications of diffusion models

e Colorization

Reference

Palette: Image-to-Image Diffusion Models
Saharia et al. arXiv 2022.



https://iterative-refinement.github.io/palette/
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https://iterative-refinement.github.io/palette/

Other applications of diffusion models

* Inpainting

Reference

Palette: Image-to-Image Diffusion Models
Saharia et al. arXiv 2022.



https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/
https://iterative-refinement.github.io/palette/

DreamFusion: Text-to-3D using 2D Diffusion

“a DSLR photo of a squirrel”

https://dreamfusion3d.github.io/



https://dreamfusion3d.github.io/

Scaling Rectified Flow Transformers for High-Resolution Image Synthesis

Patrick Esser© Sumith Kulal Andreas Blattmann Rahim Entezari Jonas Miiller Harry Saini Yam Levi
Dominik Lorenz Axel Sauer Frederic Boesel Dustin Podell Tim Dockhorn Zion English
Kyle Lacey Alex Goodwin Yannik Marek Robin Rombach”
Stability Al

Achievement unlocked:

Diffusion models can spell now!

Figure 1. High-resolution samples from our 8B rectified flow model, showcasing its capabilities in typography, precise prompt following
and spatial reasoning, attention to fine details, and high image quality across a wide variety of styles.




a space elevator, A cheeseburger with juicy
cinematic scifi art beef patties and melted
cheese sits on top of a toilet
that looks like a throne and
stands in the middle of the
royal chamber.

a hole in the floor of my
bathroom with small
gremlins living in it

a small office made out of car
parts



DreamBooth: Fine Tuning Text-to-Image Diffusion Models for
Subject-Driven Generation

Nataniel Ruiz  Yuanzhen [Li  Varun Jampani  Yael Pritch  Michael Rubinstein ~ Kfir Aberman

Google Research

n a doghouse  4n o bucket getti;tg a hotreut

Input images

1t’s like a photo booth, but once the subject is captured, it can be synthesized wherever your dreams take you...

[Paper] (new!)[Dataset] [BibTeX]



Personalized Residuals for
Concept-Driven Text-to-Image
Generation

Cusuh Ham, Matthew Fisher, James Hays,
Nicholas Kolkin, Yuchen Liu, Richard Zhang, Tobias Hinz
CVPR 2024



Motivation

Input images

Purple Wizard Outfit Superman Outfit Police Outfit Angel Wings

DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, K. Aberman. CVPR 2023.



Background: diffusion model

“a photo of a dog
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19pow uoisnyig



Personalization approaches

photo of a V dog”

“a
\ Text encoder

]
|
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19pow uoisnyig



D feam BOOth O Requires regularization images to

\j /
]
|

© Large # parameters

preserve learned prior

photo ofa V*dog” {//’ _____________________________
l i 4 N ~ - P
| Q Q o 0
: KV K\ "y o
l i < ) % )L )
Imi

DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, K. Aberman. CVPR 2023.

19pow uoisnyig



CUStom DifoSiOn Fewer parameters

O Requires regularization
images

“a photo of a V* dog”

L - N N N B
\Textencoder/ ,___Q________Q_________Q________Q___\
T | KV || KV KV KV |

Il Hﬂeﬂi

G

19pow uoisnyig

109
Multi-concept customization of text-to-image diffusion. N. Kumari, B. Zhang, R. Zhang, E. Shechtman, J. Zhu. CVPR 2023.



(=) Very few parameters

TeXtu a l_ I nve rS | O n ‘ (:©) Doesn’t affect generative prior

O© Inflexible editing

“a photo of a V* dog”
| |
4 N\ [ ) 4 N )
\ Text encoder/ Q Q Q Q
U T I | KV KV KV KV

| HHEH

CJ

19pow uoisnyig

J

An image is worth one word: personalizing text-to-image generation using textual inversion. R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, D. Cohen-Or. arXiv preprint
2022.
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Transformer blocks
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Transformer blocks
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“a photo of V*dog”




Transformer blocks
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“a photo of V*dog”




Our approach: personalized residuals

Proj,

1x1 conv

© Overwrites learned prior



LoRA w/ rank r

®

Our approach

AW,

D

Method

Regularization
g # parameters

AW,

images?
Textual inversion X 768
DreamBooth v 983M
Custom v 19M
Diffusion
Ours X 1.2M
150 iterations
~3 minon 1 A100
— W’

Personalized residual

LoRA: low-rank adaptation of large language models. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen. ICLR

2022.



Concept DreamBooth Custom Diffusion




Personalized Residuals

¥ &

“V* plushie oil painting Concept
Ghibli inspired”

Concept “A rusty V* toy gnomein a
post-apocalyptic landscape”

Personalized Residuals
+ LAG Sampling

“V* action figure riding a Concept “The V* lighthouse Concept “A V* car resting beneath the
motorcycle” surrounded by a tranquil lake” cherry blossoms in full bloom”



Comparison with GANs

e Diffusion models tend to be easier to train and more scalable

* Diffusion models tend to be slower — often many iterations of
denoising are required

* However, recent work is mitigating some of these issues (with
both GANs and diffusion models)
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