Neural Volumetric Rendering

Many slides from ECCV 2022 Tutorial by Angjoo Kanazawa,
Ben Mildenhall, Pratul Srinivasan, Matt Tancik



Capturing Reality
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Earliest cave painting (45,500 years old) in Sulawesi, Indonesia



Capturing Real
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. study of light 1893-1894

Monet’s Cathedral series



Capturing Reality

First self-portrait Cornelius 1839 First Movie - Muybridge 1878



Capturing Reality —in 3D
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Building Rome in a Day, Agarwal 'et al. ICCV 2009
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2020: Neural Radiance Field (NeRF

Mildenhall*, Srinivasan*® , Barron, Ramamoorthi, Ng, ECCV 2020







* Original NeRF paper: 15000+ citations in 5 years




Project 6 Notebook - Neural Radiance Fields (NeRF)

In this project, you will learn:

1. Basic usage of the PyTorch deep learning library
2. How to understand and build neural network models in PyTorch
3. How to build a Neural Radiance Field NeRF from a set of images

4. How to synthesize novel views from a NeRF

If this is your first time working with PyTorch, please go through the "What is PyTorch” and "Neural Networks™ tutorials in Deep
Learning with PyTorch: A 60 Minute Blitz. It won't take too long, but you will learn a lot and it will make this assignment much easier.

You can use a new Colab notebook for the tutorials.

Initialization

Run the cell below to import the necessary libaries and print the device that the code will be run on (GPU vs.CPU). By default, you

should get a GPU (i.e., the output is cuda ).

import os

import numpy as np

import torch

import torch.nn as nn

import torch.nn.functional as F
import matplotlib.pyplot as plt
import imageio

import time

device_type = (
"cuda" if torch.cuda.is_available() else
"mps"” if torch.backends.mps.is available() else
"cpu”

)

device = torch.device(device type)

print(device)

%load _ext autoreload
%autoreload 2
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Descriptors

NeRF-Supervision: Learning Dense Object Descriptors from Neural
Radiance Fields, [Yen-Chen et al. ICRA 2022]
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Dex-NeRF: Using a Neural Radiance field to Grasp Vision-Only Robot Navigation in a Neural Radiance World
Transparent Objects, [Ichnowski and Avigal et al. CoRL 2021] [Adamkiewicz and Chen et al. ICRA 2022]



Birds Eye View

* What is NeRF?
* How is it different or similar to existing approaches?

* \What is its historical context?



Problem Statement

Input: Output:
A set of calibrated Images A 3D scene representation that
renders novel views







Three Key Components

Objective: Synthesize
all training views
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Neural Volumetric 3D  Differentiable Volumetric
Scene Representation Rendering Function Analysis-by-Synthesis




Representing a 3D scene as a continuous 5D function

(x,v,2,0,0) —» —» (1,2, b, 0)
-
Spatial Viewing Output Output
location direction F Q color density
MLP
9 layers,

256 channels

What kind of a 3D representation is this?



It IS volumetric

It's continuous voxels made of shiny transparent cubes



Part 1(b): 2D Image Fitting

Now, let's try to fit a 2D image with a multilayer perceptron (MLP)! In class we learn that we can store an 2D image with a coordinate-
based MLP (as shown in the figure below). The input to this MLP is 2D pixel coordinate (x, y) as a pair of floating point numbers, and the
output is RGB color of the corresponding pixel. This is a simple supervised learning problem, and we can just use simple gradient

descent to train the network weights and see what happens.

Fq
(x,7) —»l“—» (r, g, b)

First, let's define the network architecture for this 2D fitting task. We provide an example of network architecture called Model2d
below. You can run all the way to the last cell in TODO 1(b) to execute the training process. Without any modification, you should get

PSNR* ~=27 after training for 10,000 iterations.

Now, your task is to modify Model2d , such that after training for 10,000 iterations with num_encoding_functions=6, PSNR is
greater than or equal to 30. Please do not change the model name, the name of the existing arguments, or the input/output

dimensions. Hint: You can try different model structure (e.g. more/fewer layers, smaller/bigger hidden dimensions).

*PSNR is an image quality measurement. Higher PSNR generally indicates that the reconstruction is of higher quality.

Training comparison w/ and w/o positional encoding

Run the following cell to initialize the training function.

# Load painting image

painting = imageio.imread("Starry-Night-canvas-Vincent-van-Gogh-New-1889 12.jpg")
painting = torch.from numpy(np.array(painting, dtype=np.float32)/255.).to(device)
height _painting, width_painting = painting.shape[:2]

plt.figure(figsize=(13, 4))
plt.title("Starry Night painting")
plt.imshow(painting.detach().cpu().numpy())
plt.show()
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What is the problem that is being solved?
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Figure by Leonard McMillan

Q: What is the set of all things that we can ever see?

A: The Plenoptic Function (Adelson & Bergen ‘91)

Let's start with a stationary person and try to

parameterize everything that they can see... Slide credit:

Alyosha Efros
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P(9,0)
* is Intensity of light

* Seen from a single position (viewpoint)
* At a single time
* Averaged over the wavelengths of the visible spectrum

Slides from Alyosha Efros
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P(9,0,A)
* IS Intensity of light

* Seen from a single position (viewpoint)
* At a single time

* As a function of wavelength
Slides from Alyosha Efros
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A holographic movie
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The plenoptlc function
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Goal: Plenoptic Function from a set of images
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* Objective: Recreate the visual reality

* All about recovering photorealistic pixels, not about
recording 3D point or surfaces

Image Based Rendering aka Novel View Synthesis
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Goal: PI

enoptic Function from a set of ima
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Adelson & Bergen do not discuss how to solve this
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An example of a sparse plenoptic function
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If street view was super dense

(360 view from any view point)
then it is the Plenoptic Function



Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph™™

* An approach for modeling the Plenoptic Function
* Take a lot of pictures from many views

* Interpolate the rays to render a novel view

Stanford Gantry
128 cameras

Lytro camera



Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph™™

* An approach for modeling the Plenoptic Function

* Take a lot of pictures from many views

* Interpolate the rays to render a novel view

/L T "J\

Stanford Gantry
128 cameras

Lytro camera Figure from Marc Levoy



Levoy and Hanrahan, SIGGRAPH 1996

Lightfield / Lumigraph™™

* An approach for modeling the Plenoptic Function

* Take a lot of pictures from many views

* Interpolate the rays to render a novel view

Stanford Gantry
128 cameras

i e,

Lytro camera Figure from Marc Levoy



Levoy and Hanrahan, SIGGRAPH 1996

Lig htfield / Lu m ig r'apl"iﬁortler et al. SIGGRAPH 1996
Lighting :/\@/:—

No Change 1n

Lightfields assume that the ray
shooting out from a pixel is never
occluded.

Radiance

Surface Camera

‘t
. =
Because of this it only models the a

plenoptic surface: L P
AT T

Figure 1: The surface of a cube holds all the radiance mmformation
due to the enclosed object.
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How NeRF models the Plenoptic Function

Look familiar

[ I | f )
\ J
T -

P (6,¢, VX’ VY) VZ)

NeRF takes the same Input as the Plenoptic Function!

A subtle difference:

© [ >S

Plenoptic Function NeRF

S0 NeRF requires the integration along the viewing ray to compute the Plenoptic Function

Bottom line: it models the full plenoptic function!



5D functlon
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. For every location (3D), all possible views (2D) L. .

* NeRF models this space with a continuous view-dependent
volume with opacity

* The color emitted by every point is composited to render a pixel

* Unlike a light field, the entire 5D plenoptic function can be
modeled (you can fly through the world)



Visualizing the 2D function on the sphere

Outgoing radiance distribution Outgoing radiance distribution
for point on side of ship for point on water's surface



Baking In Light

* NeRF can capture non-Lambertian (specular, shiny surfaces) because it
models the color in a view-dependent manner

* This is hard to do with meshes unless you model the physical materials
& lighting interactions

* But, with Image Based Rendering — All lighting effects are baked in



NeRF in a Slide

Objective: Reconstruct
all training views

Optimization via
Analysis-by-Synthesis



Unmentioned caveat so far

* Training a NeRF requires a calibrated
camerallll

» " . . .
"‘('J' e & )
)

* Need to know the camera parameters: | |
extrinsic (viewpoint) & intrinsics (focal Y
length, distortion, etc) ' @

How do we get this from images?



Structure from Motion

Or Photogrammetry (1850~)
Long history in Computer Vision




NeRF is AFTER Structure from Motion

* |n order to train NeRF you need to run SfIM/SLAM on the images to
estimate the camera parameters

* |n this sense, the problem category is same as that of Multi-view Stereo




VWhere NeRF stands

EN Pam— —

. can do Image Based Rendering well,
while also being a 3D representation

|

* Does not suffer from limitations of surface |
Appearance Based models Physics based
Reconstruction * Easy to optimize from images Reconstruction
(Image Based NeRF (3D Surface
Rendering) ERFS Modeling)
Lightfield/Lumigraph One 3D Surface
(No 3D representation) | One 3D Surface Single Albedo
Layered Depth Multi-Plane View-Dependent Texture
Images (LDIs) Images (MPIs) Texture Mapping
Conventional

Graphics Pipeline



Analysis by Synthesis Requires
Differentiable Renderers

Next: Deep dive into Volumetric Rendering Function



Neural Volumetric Rendering



Rendering

computing color along rays
through 3D space

I

What color is this pixel?




Cameras and rays



Cameras and rays

Pixel

* We need the mathematical mapping
from (camera, pixel) = ray

* Then can abstract underlying problem

as learning the function ray — color
(the “plenoptic function™)

Camera

Ray



Coordinate frames + Transforms: world-to-camera

Orientation + Location of How_thg camera maps a
the camera in the World point in 3D to image
Extrinsics (R, T) Intrinsics (K)

- ~ ) /\
.
12

Z

! ’ |
I X y
World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman



Coordinate frames + Transforms: camera-to-world

Orientation + Location of How the camera maps a
the camera in the World point in image to 3D
Extrinsics (R, T) Intrinsics (K)

V< ~ ) /\
.
12

Z

! ’ |
I X y
World coordinates Camera coordinates Image coordinates

Figure credit: Peter Hedman



Calculating points along a ray

O
O

OO

O o +.td
d
O Scalar € controls distance

along the ray




Neural Volumetric Rendering



Volumetric

continuous, differentiable rendering
model without concrete ray/surface
intersections




Surface vs. volume rendering

Want to know how ray interacts with scene



Surface vs. volume rendering

Ray

Camera Scene
representation

Surface rendering — loop over geometry, check for ray hits



Surface vs. volume rendering

Ray

.

Camera Scene
representation

Volume rendering — loop over ray points, query geometry



History of volume rendering



S.Chandrasekhar

wes  Early computer graphics

¥

> Theory of volume rendering co-opted from physics in the 1980s:
absorption, emission, out-scattering /in-scattering

Ray tracing simulated cumulus cloud [Kajiyal]

Chandrasekhar 1950, Radiative Transfer
Kajiya 1984, Ray Tracing Volume Densities



Alpha compositing

> Alpha rendering developed for digital compositing in VFX
movie production

Pt.Reyes = Foreground over Hillside over Background.

Alpha compositing [Porter and Duff]

Porter and Duff 1984, Compositing Digital Images



Volume rendering for visualization

Medical data visualisation [Levoy]

> Volume rendering applied to visualise 3D medical scan data in

1990s

Levoy 1988, Display of Surfaces from Volume Data
Max 1995, Optical Models for Direct Volume Rendering



Volume rendering derivations



Dut—sczttenng

o, °o0\o _OOC

Absorption Scattering

http://commons.wikimedia. org http://wikipedia.org

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering



Simplify

Absorption Scattering

http://wikipedia.org

Slide credit: Novak et al 2018, Monte Carlo methods for physically based volume rendering



Volumetric formulation for NeRF

Scene is a cloud of tiny colored particles

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral



Volumetric formulation for NeRF

Ray r(t) = o+ td

Camera If a ray traveling through the scene hits @
particle at distance T along the ray, we
return its color C(t)



What does it mean for a ray to “hit” the volume?

: Plhitatt| = o(t)dt

This notion is probabilistic: chance that ray hits o

particle in a small interval around t is o (t)dLt.
o is called the “volume density”



Probabilistic interpretation

P|no hits beforet| = T(t)

To determine if T is the first hit along the ray,
need to know T (t): the probability that the ray
makes it through the volume up to L.

T(t) is called “transmittance”



Probabilistic interpretation

P|no hits beforet| = T(t)
Plhitatt] = o(t)dt

The product of these probabilities tells us how much you see the

particles at :
P|first hit att| = P|no hit beforet| X P|hit att]
=T(t)o(t)dt



Calculating T given o

P|no hits beforet| = T(t)

If 0 is known, T can be computed... How?



Calculating 1 given o

P|no hits beforet| = T(t)
Plhitatt] = o(t)dt

o and T are related by the probabilistic fact that
P|no hit beforet + dt| = P|no hit beforet| X P|no hit att]



Calculating transmittance 1

P|no hits beforet| = T(t)
Plhitatt] = o(t)dt

o and T are related by the probabilistic fact that
T(t + dt) = T(t) X (1—a(t)dt)



Calculating transmittance 1

T(t +dt) = T()(1 — o(t)dt)

P|no hit beforet + dt| = P|no hit beforet| X P|no hit att]



Solve for I’

T(t +dt) = T()(1 — o(t)dt)



Solve for I’

T(t +dt) = T(t)(1 — a(t)dt)

Taylor expansion for T= T(t) + T'(t)dt = T(t) — T(t)o(t)dt



Solve for I’

T(t +dt) = T()(1 — o(t)dt)

Taylor expansion for T= T(t) + T'(t)dt = T(t) — T(t)o(t)dt

T'(t) 5, _
Rearrange= —_ dt = —o(t)dt




Solve for I’

T(t +dt) = T()(1 — o(t)dt)

Taylor expansion for T= T(t) + T'(t)dt = T(t) — T(t)o(t)dt

') ;. _
Rearrange= — dt = —o(t)dt

Integrate= logT (t) = —fttOO'(S)dS



Solve for I’

T(t +dt) = T()(1 — o(t)dt)

Taylor expansion for T= T(t) + T'(t)dt = T(t) — T(t)o(t)dt

') ;. _
Rearrange= — dt = —o(t)dt

Integrate= logT (t) = —fti)O'(S)dS

Exponentiate= T (t) = exp (—ftl;O'(S)dS)



PDF for ray termination

P|no hits beforet| = T(t)
Plhitatt| = o(t)dt

Finally, we can write the probability that a ray terminates at £ as a function of only sigma

P|first hit att| = P|no hit beforet| X P|hit att]
=T(t)o(t)dt

= exp (—f, o(s)ds) o(t)dt



Expected value of color along ray

This means the expected color returned by the ray will be

[ T(®)a®)e(t)dt

Note the nested integrall



Approximating the nested integral

4

We use quadrature to approximate the nested integral,



Approximating the nested integral

We use quadrature to approximate the nested integral,

splitting the ray up into 1 segments with endpoints {t1, t5, ..., L 41}



Approximating the nested integral

We use quadrature to approximate the nested integral,
splitting the ray up into 1 segments with endpoints {t1, t5, ..., £ 11}
with lengths 0; = t;,1 — t;



Approximating the nested integral

4

We assume volume density and color

are roughly constant within each interval



Deriving quadrature estimate

| T()o()c(t)dt =

This allows us to break the outer intearal into a



Deriving quadrature estimate

[ T(Oo®e®dt ~ T J T (0c.dt
i=1 '

This allows us to break the outer integral into @
sum of analytically tractable integrals



Summary: volume rendering integral estimate

Rendering model for ray r(t) = o + td:

n
c~ ) Tia;c;
=1 N\

\ colors

weights

How much light is blocked earlier along ray:

1—1

Ii=111-«a)

J=1

How much light is contributed by ray segment i:

a; =1 —exp(—0;0;)

Camera

Ray

3D volume



Volume rendering is trivially differentiable

Rendering model for roy) = 0 + td:

4 n | RCIY
i t{ differentiable w.r.t. c, o -
3 1=1
; ' colors
weights
How much light is blocked earlier along ray:
3D volume

i1
=111 -qa)
J=1

‘ Camera

How much light is contributed by ray segment i:

a; =1 —exp(—0;0;)



5D Input
Position + Direction

/

)

F

e

| K(Xyz ,0,9) *["]I]—* RGBo) X -

Output
Color + Density

e e

Volume
Rendering

Ray 7

A

Ray 2

Ray Distance

c)

Rendering
L.oss




Par2 Neural Radiance Field Scene Representation

A simplified version of NeRF represents a continous scene as a function using the following MLP network, whose input is a 3D location
x= (z,y, z) and whose output is an RGB color ¢= (r, g, b) and volume density o at that 3D location.

/__’ [":"] _j@ﬂ’m“

3

NERF model implementations are in part2.py

The following cell defines the network architecture of NeRF.



NeRF Limitations

Assumes a static scene

Doesn't model scattering and thus isn't relightable

Doesn’t naively work for large scenes. Needs bounds on the volume.
Degenerate solutions (e.g. floating blobs in front of the cameras)
Requires lots of calibrated input views

Runs pretty slowly because of all of the samping required for each ray



D-NeRF: Neural Radiance Fields for Dynamic Scenes

Albert Pumarola’ Enric Corona’ Gerard Pons-Moll?3 Francesc Moreno-Noguer!
nstitut de Robotica i Informatica Industrial, CSIC-UPC
“University of Tiibingen
*Max Planck Institute for Informatics

Point of View & Time

Figure 1: We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex
non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without

the need of ground-truth geometry nor multi-view images. The figure shows two scenes under variable points of view and time instances
synthesised by the proposed model.



NeRYV: Neural Reflectance and Visibility Fields for Relighting and View Synthesis

Pratul P. Srinivasan Boyang Deng
Google Research Google Research
Ben Mildenhall
UC Berkeley
Abstract

We present a method that takes as input a set of images
of a scene illuminated by unconstrained known lighting, and
produces as output a 3D representation that can be rendered
from novel viewpoints under arbitrary lighting conditions.
Our method represents the scene as a continuous volumetric
function parameterized as MLPs whose inputs are a 3D lo-
cation and whose outputs are the following scene properties
at that input location: volume density, surface normal, ma-
terial parameters, distance to the first surface intersection
in any direction, and visibility of the external environment
in any direction. Together, these allow us to render novel
views of the object under arbitrary lighting, including indi-
rect illumination effects. The predicted visibility and surface
intersection fields are critical to our model’s ability to simu-
late direct and indirect illumination during training, because
the brute-force techniques used by prior work are intractable
for lighting conditions outside of controlled setups with a sin-
gle light. Our method outperforms alternative approaches
for recovering relightable 3D scene representations, and
performs well in complex lighting settings that have posed a

Xiuming Zhang Matthew Tancik
MIT UC Berkeley

Jonathan T. Barron
Google Research

Ao LAGED
o PP~ U P

(a) Input images of the scene under unconstrained varying (known) lighting conditions

; e oL ¥ L 4 |:..:: v
- 1 | ¥
d b " i d
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(b) Output renderings from novel viewpoints and lighting conditions

Figure 1: We optimize a Neural Reflectance and Visibility Field
(NeRV) 3D representation from a set of input images of a scene
illuminated by known but unconstrained lighting. Our NeRYV repre-
sentation can be rendered from novel views under arbitrary lighting
conditions not seen during training. Here, we visualize example
imnput data and renderings for two scenes. The first two output
rendered 1mages for each scene are from the same viewpoint, each



Mega-NeRF:
Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs

Haithem Turki!

Abstract

We use neural radiance fields (NeRFs) to build interac-
tive 3D environments from large-scale visual captures span-
ning buildings or even multiple city blocks collected pri-
marily from drones. In contrast to single object scenes (on
which NeRFs are traditionally evaluated), our scale poses
multiple challenges including (1) the need to model thou-

sands of images with varying lighting conditions, each of

which capture only a small subset of the scene, (2) pro-
hibitively large model capacities that make it infeasible to
train on a single GPU, and (3) significant challenges for
fast rendering that would enable interactive fly-throughs.
1o address these challenges, we begin by analyzing visi-
bility statistics for large-scale scenes, motivating a sparse
network structure where parameters are specialized to dif-
ferent regions of the scene. We introduce a simple geomet-
ric clustering algorithm for data parallelism that partitions

tvra1ni1ng 1mmaooc (av vaathovr niveolcl 1ntn AifEsovont NoRE ci11h

Deva Ramanan!+

lCarnegie Mellon University

Mahadev Satyanarayanan'
SArgo Al

g
2->mnmo
.

Training: Data Partitioning

Inference: View Synthesis

Figure 1. We scale neural reconstructions to massive urban scenes
1000x larger than prior work. To do so, Mega-NeRF decomposes a
scene into a set of spatial cells (left), learning a separate NeRF sub-
module for each. We train each submodule with geometry-aware
pixel-data partitioning, making use of only those pixels whose rays
intersect that spatial cell (top right). For example, pixels from im-



RegNeRF: Regularizing Neural Radiance Fields
for View Synthesis from Sparse Inputs

Michael Niemeyer!#3*

Mehdi S. M. Sajjadi’

IMax Planck Institute for Intelligent Systems, Tiibingen

Jonathan T. Barron® Ben Mildenhall®
Andreas Geiger'* Noha Radwan’

2University of Tiibingen

*Google Research

{firstname.lastname}@tue.mpg.de

Abstract

Neural Radiance Fields (NeRF) have emerged as a pow-
erful representation for the task of novel view synthesis
due to their simplicity and state-of-the-art performance.
Though NeRF can produce photorealistic renderings of un-
seen viewpoints when many input views are available, its
performance drops significantly when this number is re-
duced. We observe that the majority of artifacts in sparse
input scenarios are caused by errors in the estimated scene
geometry, and by divergent behavior at the start of training.
We address this by regularizing the geometry and appear-
ance of patches rendered from unobserved viewpoints, and
annealing the ray sampling space during training. We ad-
ditionally use a normalizing flow model to regularize the
color of unobserved viewpoints. QOur model outperforms
not only other methods that optimize over a single scene,
but in many cases also conditional models that are exten-
sively pre-trained on large multi-view datasets.

{barron, bmild, msajjadi, noharadwan}@google.com

(c) Same Novel Views Synthesized by Our Method

Figure 1. View Synthesis from Sparse Inputs. Whlle Neural

T WoawrnsB R i AL T e L ERETSTRTON. ST il stlisaiting.: swdV@lo . ol wul

s el W e



pixelNeRF: Neural Radiance Fields from One or Few Images

Alex Yu Vickie Ye Matthew Tancik Angjoo Kanazawa
UC Berkeley

Input Novel V|ews Input Novel views _ Input Novel views

YT F AR mome v

Input: 3 views of held-out scene * Output: Rendered new views

Figure 1: NeRF from one or few images. We present pixelNeRF, a learning framework that predicts a Neural Radiance Field (NeRF)
representation from a single (top) or few posed images (bottom). PixelNeRF can be trained on a set of multi-view images, allowing it to
generate plausible novel view synthesis from very few input images without test-time optimization (bottom left). In contrast, NeRF has no
generalization capabilities and performs poorly when only three input views are available (bottom right).



3D Gaussian Splatting for Real-Time Radiance Field Rendering

BERNHARD KERBL®, Inria, Université Cote d’Azur, France
GEORGIOS KOPANAS®, Inria, Université Cote d’Azur, France
THOMAS LEIMKUHLER, Max-Planck-Institut fiir Informatik, Germany
GEORGE DRETTAKIS, Inria, Université Cote d’Azur, France

/

]
.,' l}'
P .
‘ 91

InstantNGP (9.2 ‘fps) Plenoxels (8.2 fps) Mip-NeRF360 (0.071 fps) Ours (135 fps) Ours (93 fps)

. . . | | | _ | , Ground Truth
Tram: 7min, PSNR: 22.1 Train: 26min, PSNR: 21.9 Train: 48h, PSNR: 24.3 Tram: 6min, PSNR: 23.6 Tram: 5Tmin, PSNR: 25.2
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Ground Truth ' InstantNGP Plenoxels




Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Mecthod|Metric | SSIMT  PSNR' LPIPS! Train FPS Mem | SSIMT PSNR! LPIPS' Train FPS Mem | SSIMT PSNR' LPIPS! Train FPS Mem
Plenoxels 0.626 2308 0463 25m49s 6.79 21GB | 0719  21.08 0379  25m5s 130 23GB | 0795 2306 0510 27m49s 11.2 2.7GB
INGP-Base 0671 2530 0371  5m37s 117 13MB | 0723 2172 0330 5m26s 17.1 13MB | 0797 2362 0423  6m3ls 3.26 13MB
INGP-Big 0.699 2559 0331  7m30s 943 48MB | 0745 2192 0305 6m59s 144 48MB | 0817 2496 0390 8m 279 48MB
M-NeRF360 0.792" " 2769" 02371  48h 006 86MB | 0759 2222  0.257 48h  0.14 86MB | 0901 2940  0.245 48h 009 8.6MB
Ours-7K 0770 2560 0279  6m25s 160 523MB | 0767  21.20 0280 6m55s 197 270MB | 0.875 2778 0317  4m35s 172 386MB
Ours-30K | 0815 2721 = 0214 41m33s 134 734MB | 0.8 2314 0183  26m54s 154 411MB | 0903 2941 0243  36m2s 137 676MB




P Camera Point view

S }l {) 0:20/5:03

https://lyoutu.be/T _kXY43VZnk?si=Ro2JF-gCz08W8vQH



https://youtu.be/T_kXY43VZnk?si=Ro2JF-gCz08W8vQH
https://youtu.be/T_kXY43VZnk?si=Ro2JF-gCz08W8vQH
https://youtu.be/T_kXY43VZnk?si=Ro2JF-gCz08W8vQH
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