Geometry in the Deep Learning Era




Agenda

* Quiz 2 recap

* Multi-view geometry recap
« “Classical” Stereo

e Dust3r

« VGGT

* DepthAnything V3



Quiz 2




Fundamental matrix

Let p be a point in left image, p’in right image

Epipolar relation
* p maps to epipolar line I’
« p’maps to epipolar line /

Epipolar mapping described by a 3x3 matrix F

p" Fp =0



How to test for outliers?
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Epipolar lines




Keep only the matches at are “inliers” with

respect to the “best” fundamental matrix
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“Classical” 3D from two images

* Depth Estimation from Stereo Matching
e Keypoint matching and structure-from-motion gave us sparse
matches.

» Stereo / Multi-view Stereo gives us dense correspondences and
depths.



Stereo Matching




Stereo image rectification




Stereo image rectification

e Reproject image planes
onto a common plane
arallel to the line
etween camera centers
.\\\ \\\\\\\\\

* Pixel motion is horizontal
after this transformation

At

e Two homographies (3x3
transform), one for each
iInput image reprojection

» C. Loop and Z. Zhang. Computing
Rectifying Homographies for Stereo
Vision. [EEE Cont. Computer Vision

and Pattern Recognition, 1999.



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Rectification example




The correspondence problem

e Epipolar geometry constrains our search, but we still have a
difficult correspondence problem.



Fundamental Matrix + Sparse correspondence

Photo Tourism

Exploring photo collections in 3D

Noah Snavely Steven M. Seitz  Richard Szeliski
University of Washington Microsoft Research

SIGGRAPH 2006




Fundamental Matrix + Dense correspondence

The Visual Turing Test for Scene Reconstruction
Supplementary Video

Qi Shan” Riley Adams™  Brian Curless’

Yasutaka Furukawa® Steve Seitz™*

+University of Washington *Google

3DV 2013




SIFT + Fundamental Matrix + RANSAC

Despite their scale invariance and robustness to appear-
ance changes, SIFT features are /ocal and do not contain
any global information about the image or about the loca-
tion of other features in the image. Thus feature matching
based on SIFT features is still prone to errors. However,
since we assume that we are dealing with rigid scenes,
there are strong geometric constraints on the locations of
the matching features and these constraints can be used to
clean up the matches. In particular, when a rigid scene is
imaged by two pinhole cameras, there exists a 3 x 3 matrix
F, the Fundamental matrix, such that corresponding points
x; and x, (represented in homogeneous coordinates) in two
images j and k satisfy':

T, _
X, Fx; =0. (3)

A common way to impose this constraint is to use a greedy
randomized algorithm to generate suitably chosen ran-
dom estimates of F and choose the one that has the larg-
est support among the matches, i.e., the one for which the
most matches satisfy (3). This algorithm is called Random
Sample Consensus (RANSAC)® and is used in many com-
puter vision problems.

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Sparse to Dense Correspodence

Input images StM points MVS points

Colosseum

St. Peter'’s

Building Rome in a Day
By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M. Seitz, Richard Szeliski
Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Structure from motion (or SLAM)

e Given a set of corresponding points in two or more
images, compute the camera parameters and the 3D

point coordinates i
‘)

\ .
A
| -

Camera 1 ‘)

Camera 3

Camera 2 ?
Rl’tl ® 132,1(_2 ? °® R3,t3

Slide credit:
Noah Snavely



Bundle adjustment — the core optimization problem

inside classical Structure-from-Motion
e Non-linear method for refining structure and motion

e Minimizing reprojection error
2

E(P,X) = i ZH:D(XU, PX)
i=1 j=1

X;




How do we get dense stereo correspondences?



Correspondence problem

Multiple match
e Hypothes?s1 hypOtheseS
o Hypothesis 2 . .
satisfy epipolar
constraint, but
which is correct?

O Hypothesis 3

O, Left image Right image

Figure from Gee & Cipolla 1999



Correspondence problem

- Beyond the hard constraint of epipolar geometry, there are “soft” constraints to
help identify corresponding points
- Similarity
- Uniqueness
- Ordering
- Disparity gradient

- To find matches in the image pair, we will assume
- Most scene points visible from both views
- Image regions for the matches are similar in appearance



Dense correspondence search

F=S" HON. ABRAIIAM LINCOLN, President of United States.

For each epipolar line
For each pixel / window in the left image
« compare with every pixel / window on same epipolar line
in right image
 pick position with minimum match cost (e.g., SSD,
normalized correlation)

Adapted from Li Zhang



Correspondence search with similarity constraint

Left Right

scanline

Matching cost h
/\I/\J; disparity

- Slide a window along the right scanline and compare
contents of that window with the reference window in
the left image

- Matching cost: SSD or normalized correlation




Correspondence search with similarity constraint

Left Right

scanline

SSD



Correspondence search with similarity constraint

Left | Right

scanline

Norm. corr



Correspondence problem

S0F
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* Clear correspondence between intensities, but also noise and ambiguity

Source: Andrew Zisserman



Correspondence problem

Neighborhoods of corresponding points are
similar in intensity patterns.

Source: Andrew Zisserman



Correlation-based window matching




Correlation-based window matching




Correlation-based window matching

right image band (x’)

Cross
correlation

disparity = x/ - x






Correlatlon based wmdow matching
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Textureless regions are
non-distinct; high
ambiguity for matches.




Effect of window size

epipolar
line

Source: Andrew Zisserman



Effect of window size

W=3 W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.

Figures from Li Zhang



_ Left image | _Right image




Results with window search

Window-based matching Ground truth
(best window size)



Better solutions

- Beyond individual correspondences to estimate disparities:

- Optimize correspondence assignments jointly
- Scanline at a time (e.g. dynamic programming)
- Full 2D grid (e.g. graph cuts)
- Approximate 2D solution (e.g. semi-global matching)



Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

_ Left image | _Right image




Skipping over details of Dynamic Program Scanline Stereo

Example: 5x5 windows
NCC match score

Rt
Computed dispariiss

Black pixsls: bad disparity valuss,

o no maching paich i right image.
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#5554 dding Intra-Scanline Consistency
So far, each left image patch has been matched.
independently zlong the right epipolar line.
‘This ean lead to errors.

We would like to enforce some consistency
among matches in the same row (scanline).

70

S Disparity Space Image (DST)

Left mape sl

Ener cach vestor of

75

S Lowest Cost Path
‘We would like to choose the “best” path.

Wnt one with lowest “cost” (Lowest sum of
dissimilarity scores elong the path)

= An Optimal Scanline Strategy

+ We want to find best path, tak
account ordering constraint and the
possibility of occlusions.

‘Algorithm we will discuss now & from
Cox, Hingorani, Rao, Maggs, “A Maximum
Likelihood Sterco Algorithm,” Computer
Vision and Image Understanding, Vol 63(3),
May 1996, pp.542-36

e Disparity Space Image
First we introduce the concept of DSI.
“The D1 for e 0w reprases parwise match scores
PE——
Pixel 1
) wshsene
o conterd
i
Pect - sty

[P ———

‘Constraints on Path

Tt is common to impose an ordering constraint
on the path. Intuitively. the path is not llowed
o “double badk” on ftself.

ST Cox etal. Stereo Matching




Robert Collins

CSE486, Penn State Matching using EpipOlar Lines

Left Image Right Image

For a patch 1n left image

Compare with patches along

same row in right image

Match Score Values



Robert Collins

CSE486, Penn State E Xa mp le

Result of DP alg with occlusion filling.



Robert Collins

CSE486, Penn State E Xa mp le

Result of DP alg with occlusion filling. Rsult without

* -




Robert Collins

CSE486, Penn State E Xa mp le

Result of DP alg with occlusion filling. Ground truth




Stereo with 2D smoothness constraint

F=F" HON. ABRAIIAM LINCOLN, President of United States. |

- —

- What defines a good stereo correspondence?
1. Match quality
Want each pixel to find a good match in the other image

2. Smoothness

If two pixels are adjacent, they should (usually) move about
the same amount



EFE=aF

data

(]19]29D)+ﬂE

smooth

(D)

By =S (W) =W, + D@)) | |Ewmon = 2. £(DE)=D()))

; neighbors i, j

- Energy functions of this form can be minimized using
graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate
Eneragv Minimization via Graph Cuts. PAMI 2001  source: Steve Seitr



http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf

Results with window search

Window-based matching Ground truth
(best window size)



Better results. ..

Graph cut method Ground truth

Boykov et al., Fast Approximate Energy Minimization via Graph Cuts,
International Conference on Computer Vision, September 1999.



http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf

Semi-global matching

E(D):Z(C(PaDp g Z Py T[|Dp — Dq| = 1]
q€Np

P
+ Z Py T[|Dp — Dq| > 1})

qc€Np

Approximate the full smoothness optimization by
considering 8 or 16 directions in two or three

passes.

Optimization looks like scanline, dynamic .
programming stereo, but with a 2d notion of AR
smoothness

Stereo Processing by Semi-Global Matching and Mutual Information. Hirschmuller,
PAMI 2007. 3500+ citations
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https://vision.middlebury.edu/stereo/eval3/
IS veiveion| Datesets - Code + submit

Middlebury Stereo Evaluation - Version 3

Mouseover the table cells to see the produced disparity map. Clicking a cell will blink the ground truth for comparison. To change the table
type, click the links below. For more information, please see the description of new features.

Submit and evaluate your own results.
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Stereo Depth Estimation Challenges

- Low-contrast ; textureless image regions

- Occlusions

- Violations of brightness constancy (e.g., specular reflections)

- Really large baselines (foreshortening and appearance change)
- Camera calibration errors



Active stereo with structured light

« Project “structured” light patterns onto the object
» Simplifies the correspondence problem
» Allows us to use only one camera

camera

[+

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/

Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/



http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

IPhone X

1Phone 12 switched to lidar
(time of flight)



Self-driving efforts use both lidar and stereo




msmdnet

SMD—stereo cicero—stereo NPU—-IAP—-Stereo



Can we train a deep network to go
straight from images to 3d in one
forward pass?



DUSt3R: Geometric 3D Vision Made Easy

Shuzhe Wang*, Vincent LeroyT, Yohann Cabon’, Boris Chidlovskiit and Jerome Revaud®
*Aalto University TNaver Labs Europe

shuzhe.wang@aalto.fi firstname.lastname@naverlabs.com

Camera calibration

Monocular
Depth estimation <
Multi-View
—> DUSt3R — Pixel correspondences
Pairwise (relative)
Camera pose estimation
Multi-View

Dense 3D reconstruction
Visual Localization

Unconstrained Corresponding pointmaps
image collections (dense 2D « 3D mappings)

Figure 1. Overview: Given an unconstrained image collection, i.e. a set of photographs with unknown camera poses and intrinsics, our
proposed method DUSt3R outputs a set of corresponding pointmaps, from which we can straightforwardly recover a variety of geometric
quantities normally difficult to estimate all at once, such as the camera parameters, pixel correspondences, depthmaps, and fully-consistent
3D reconstruction. Note that DUSt3R also works for a single input image (e.g. achieving in this case monocular reconstruction). We also
show qualitative examples on the DTU, Tanks and Temples and ETH-3D datasets [1, 51, 108] obtained without known camera parameters.
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Figure 2. Architecture of the network F. Two views of a scene (I', I”) are first encoded in a Siamese manner with a shared ViT encoder.
The resulting token representations F'* and F'* are then passed to two transformer decoders that constantly exchange information via
cross-attention. Finally, two regression heads output the two corresponding pointmaps and associated confidence maps. Importantly, the two
pointmaps are expressed in the same coordinate frame of the first image I'*. The network F is trained using a simple regression loss (Eq. (4))






More than 2 images — not a single forward pass



Outdoor Indoor Co3Dv2 [94] RealEstate10K

Methods Train  DDAD[4]] KITTI [35] BONN[80] NYUD-v2[115] TUM[119] Methods
Rel] 1251 Rell 1251 Rell 61051 Rell 61251 Rell 151 RRA@15 RTA@15 mAA(30) mAA(30)

DPT-BEiT[91] D 1070 84.63 945  89.27 - - 540  96.54 1045 89.68

NeWCRFs[174] D 959 892 543 9154 - - 622 9558 1463  82.95 RelPose [177] S7.1 - i -

Monodepth2 [37] SS 2391 7522 1142 8690 5649 3518 1619 7450 3120 47.42 Colmap+SPSG [26, 100] 36.1 27.3 253 45.2

SC-SfM-Learners [6] SS 1692 7728 1183 8661 21.11 7140 13.79 7957 2229  64.30 . ) _

SC-DepthV3 [121] SS 1420 8127 1179 8639 12.58 8892 1234 84.80 1628  79.67 PixSIM [59] 33.7 32.9 30.1 49.4

MonoViT[182] SS - - 09.92  90.01 - - - - - PosReg [140] 53.2 49.1 45.0 -

RobustMIX [92] T - - 1825  76.95 - - 11.77 9045 1565 86.59 g - )

SlowTv [117] T 1263 7934 (6.84) (56.17) - - 11.59 8723 1502 80.86 PoseDiffusion [140] 80.5 .8 66.5 43.0

DUSt3R 224-NoCroCo T 1963 7003 20.10 7121 1444 8600 1451 81.06 2214 6626 DUSt3R 512 (w/ PnP) 943 88.4 77.2 61.2

DUSt3R 224 T 1632 7758 1697 77.89 1105 8995 1028 8892 17.61 7544

DUSt3R 512 T 1388 81.17 1074 86.60 8.08 9356 650 9409 1417 79.89 DUSt3R 512 (w/ GA) 96.2 86.3 76.7 67.7

Table 2. Left: Monocular depth estimation on multiple benchmarks. D-Supervised, SS-Self-supervised, T-transfer (zero-shot). (Parentheses)
refers to training on the same set. Right: Multi-view pose regression on the CO3Dv2 [94] and RealEst10K [186] with 10 random frames.



GT GT GT Align KITTI ScanNet ETH3D DTU T&T Average

Pose Range Intrinsics rel] 771 rell Tt rell 77 rel] 71T rell 71 rell 7 Ttime(s)]
COLMAP [106, 107] v X 12.0 58.2 14.6 342 164 55.1 0.7 965 27 950 9.3 67.8 ~ 3 min

@) 26.9 527 380 225 89.8 232 20.8 69.3 257 764 40.2 48.8 =~ 3 min

Methods

<

COLMAP Dense [106, 107]
MVSNet [161] 227 36.1 246 204 354 314 (1.8)(86.0) 83 73.0 18.6 494 0.07
MYVSNet Inv. Depth [161] 18.6 30.7 227 209 216 356 (1.8)(86.7) 65 746 142 49.7 0.32
(b) Vis-MVSSNet [176] 9.5 554 89 335 108 433 (1.8) (87.4) 4.1 872 7.0 614 0.70
MVS2D ScanNet [160] 21.2 87 (27.2) (5.3) 274 48 172 9.8 292 44 244 6.6 0.04
2266 0.7 323 11.1 99.0 11.6 (3.6) (64.2) 258 28.0 775 23.1 0.05

MVS2D DTU [160]

DeMon [136] 16.7 134 75.0 0.0 19.0 16.2 237 115 176 183 304 11.9 0.08

DeepV2D KITTI [131] (20.4) (16.3) 25.8 8.1 30.1 94 246 82 385 96 279 103 143
61.9 52 (3.8) (60.2) 18.7 28.7 92 274 335 38.0 254 319 215

MVSNet [161]
¢ MVSNet Inv. Depth [161] 296 8.1 652 285 603 58 (28.7) (489) 514 146 470 21.2 0.28
Vis-MVSNet [176] 103 544 849 156 515 174 (374.2) (1.7) 21.1 65.6 108.4 31.0 0.82
MVS2D ScanNet [160] 734 0.0 (45) (54.1) 30.7 144 50 579 564 11.1 340 275 0.05
MVS2D DTU [160] 933 0.0 515 1.6 780 0.0 (1.6) (92.3) 875 0.0 624 18.8 0.06
X 71 419 74 384 9.0 42.6 27 82.0 50 751 6.3 56.0 0.06

X X X X X X X X[X X X X X|X X

Robust MVD Baseline [110]
DeMoN [136] IIt|| 15.5 152 120 210 174 154 21.8 16.6 13.0 232 16.0 18.3 0.08
DeepV2D KITTI [131] med (3.1)(74.9) 23.7 11.1 27.1 10.1 248 8.1 34.1 9.1 226 227 207
DeepV2D ScanNet [131] med 10.0 36.2 (44) (54.8) 11.8 29.3 7.7 33.0 8.9 464 8.6 399 357
(d) DUSt3R 224-NoCroCo med 15.14 21.16 7.54 40.00 9.5140.07 3.56 62.8311.123790 9.3740.39 0.05
med 15.39 26.69 (5.86) (50.84) 4.7161.74 276 7732 5.5456.38 6.8554.59 0.05

v
v
v
v
v
v
v
v
DeepV2D ScanNet [131] v
v 14.0 35.81568.0 5.7507.7 8.3(4429.1) (0.1)118.2 50.71327.4 20.1 0.15
v
v
v
v
v
X
X
X
X
DUSt3R 224 X

X med 9.11 39.49 (4.93) (60.20) 2.9176.91 3.52 69.33 3.1776.68 4.7364.52 0.13

X X X X X X[IX X X X X X X X X|N N N NN/
R N RN N N N N NN N ENENE NN N EN

DUSt3R 512

Table 3. Multi-view depth evaluation with different settings: a) Classical approaches; b) with poses and depth range, without alignment; c)
absolute scale evaluation with poses, without depth range and alignment; d) without poses and depth range, but with alignment. (Parentheses)
denote training on data from the same domain. The best results for each setting are in bold.









VGGT: Visual Geometry Grounded Transformer
- Are we approaching a 3D foundation model?

Jianyuan Wang, Minghao Chen, Nikita Karaey,
Andrea Vedaldi, Christian Rupprecht, David Novotny



~ Spaces vggt ¥ like Running on ZERO = Logs App Files Community 8 Settings $in )

m VGGT: Visual Geometry Grounded Transformer
| & Project
Upload a video or a set of images to create a 3D reconstruction of a scene or object. VGGT takes these images and generates all key 3D attributes, including extrinsic and intrinsic camera parameters, point maps, depth maps, and 3D point tracks.
Getting Started:
1. Upload Your Data: Use the "Upload Video" or "Upload Images" buttons on the left to provide your input. Videos will be automatically split into individual frames (one frame per second).
2. Preview: Your uploaded images will appear in the gallery on the left.
3. Reconstruct: Click the "Reconstruct” button to start the 3D reconstruction process.
4. Visualize: The 3D reconstruction will appear in the viewer on the right. You can rotate, pan, and zoom to explore the model, and download the GLB file. Note the visualization of 3D points may be slow for a large number of input images.

5. Adjust Visualization (Optional): After reconstruction, you can fine-tune the visualization using the options below (click to expand):

del U E 1 3 I ) ' ; c } € 1 al € n n Gl f essin €

3D Reconstruction (Point Cloud and Camera Poses)




Reconstruction: Core of 3D
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Video Source: COLMAP, Schénberger et al. 2016



Previous Frameworks
COLMAP DUSt3R
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Optimization:



Optimization: Bottleneck for 3D in the Deep Era
* Time-consuming

* Poor Compatibility with Deep Learning
* Not inherently "plug-and-play"

« Often non-differentiable @

« Complexity
« Scary for non-experts



Let’'s Reconstruct in One Go!

Reconstruction
Cameras, Depths, Points, and Correspondences

Images

CETURE
RESICENT




VGG Transformer
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What 1s DPT?

Reassembless Fusion
T‘# AN N NN
Reassembleqs Fusion

\\\\\ —b[ Residual Conv Unit
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Transformer

i

Reassembleg Fusion
Transformer [ Residual Conv Unit ]
Read } Resampleg
Reassembley Fusion T ’ Y

Transformer
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Figure 1. Left: Architecture overview. The input image is transformed into tokens (orange) either by extracting non-overlapping patches
followed by a linear projection of their flattened representation (DPT-Base and DPT-Large) or by applying a ResNet-50 feature extractor
(DPT-Hybrid). The image embedding is augmented with a positional embedding and a patch-independent readout token (red) is added.
The tokens are passed through multiple transformer stages. We reassemble tokens from different stages into an image-like representation
at multiple resolutions (green). Fusion modules (purple) progressively fuse and upsample the representations to generate a fine-grained
prediction. Center: Overview of the Reassembles operation. Tokens are assembled into feature maps with % the spatial resolution of the
input image. Right: Fusion blocks combine features using residual convolutional units and upsample the feature maps.
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What 1s DPT?

MiDaS (MIX 6) DPT-Hybrid DPT-Large

PEES S

Figure 2. Sample results for monocular depth estimation. Compared to the fully-convolutional network used by MiDaS, DPT shows better
global coherence (e.g., sky, second row) and finer-grained details (e.g., tree branches, last row).
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Why Alternating-Attention”?

Global Frame

* Global Attention Attention Attention
 Ensures scene-level coherence

 Frame-wise Attention

 Eliminates frame index embedding
« For permutation equivariance
* For flexible input length

X L times



Why Alternating-Attention”?

Frame 0 ‘ ~QO—Embed(0) Model(
Frame 1 n —O)—Embed (1)

Frame 2 [l —O—Embed(2) Model( L

Not permutation equivariant




Why Alternating-Attention”?

Frame 0 ‘ —O)—Embed(0)
Frame 1 h —O)—Embed (1)

Frame 2 4 . —O)—Embed(2)

Frame 842 But model never sees Embed(842) during training



Why Alternating-Attention”?

Frame 0 ‘ —O)—Embed(0)

—O)—Embed (1)

Frame 1

—O)—Embed(2)

Frame 2

Replaces frame index embedding by Frame-wise Attention

Global Frame
Attention Attention

X L times



Training and Data

Training:

Q, Inference:

24%
17 Datasets
599, in Total
18%
Synthetic Captured SfM-Annotated

l \— —

Accuracy Generalization



Results



Qualitative

32 Views
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VGGT Is Accurate
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VGGT Is Accurate

Camera Estimation on RealEstate 10K

90
77.5

65

AUC@30[T]

52,5

with Optimization
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VGGT Is Accurate

1.8

1.35

0.45

Chamfer Distance [!]
o
©

Multi-view Depth Estimation on DTU

Known G.T. Cameras

Unknown Cameras
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VGGT Is Fast

Time [seconds!]

Camera Estimation on RealEstate 10K




14

Time (seconds)
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Runtime and Memory

Time vs Number of Input Frames
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Number of Input Frames
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Memory vs Number of Input Frames

1 10 20
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Number of Input Frames

 Memory usage scales roughly linearly with input frames

» The time usage is around O(N'%)

200




Zero-Shot and Finetuning
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Zero-shot Monocular Depth Estimation

100

75

50

25

Monocular depth estimation [0 1]

98.3 98.1 97.9 98.8 98.0 97.2 98.0
88.5 946 903 86.2
75.2
MiDaS DPT Metric3D v2 Depth Anything v2 MoGe VGGT
ETH3D 511 NYUv2 511

As good as SoTA experts — but VGGT was never trained for monocular
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Zero-shot Monocular Depth Estimation

Single View
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VGGT Helps Downstream Tasks

Dynamic Point Tracking

VGGT’s feature backbone
boosts CoTracker to SoTA

Novel View Synthesis

—

Input Images

L
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Ground Truth

Prediction
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VGGT enables NVS without camera inputs

retaining comparable quality
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VGGT Is General, Seamless and Practical

General Seamless Practical
Diverse images . Just a neural network . Fast and accurate
Single to hundreds of views . Standard components . Addresses all core 3D tasks



Let’'s Reconstruct in One Go!

Reconstruction
Cameras, Depths, Points, and Correspondences

You no longer have to be “Zisserman” for 3D Reconstruction

J
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Depth Anything 3:
Recovering the Visual Space from Any Views

Haotong Lin*, Sili Chen*, Jun Hao Liew*, Donny Y. Chen*, Zhenyu Li, Guang Shi,
Jiashi Feng, Bingyi Kang*'

ByteDance Seed

"Project Lead, *Equal Contribution

Abstract

We present Depth Anything 3 (DA3), a model that predicts spatially consistent geometry from an
arbitrary number of visual inputs, with or without known camera poses. In pursuit of minimal
modeling, DA3 yiclds two key insights: a single plain transformer (e.g., vanilla DINO encoder) is
sufficient as a backbone without architectural specialization, and a singular depth-ray prediction
target obviates the need for complex multi-task learning. Through our teacher-student training
paradigm, the model achieves a level of detail and gencralization on par with Depth Anything 2
(DA2). We establish a new visual gcometry benchmark covering camera pose estimation, any-view
geometry and visual rendering. On this benchmark, DA3 scts a new state-of-the-art across all
tasks, surpassing prior SOTA VGGT by an average of 35.7% in camera pose accuracy and 23.6%
in gcometric accuracy. Morcover, it outperforms DA2 in monocular depth estimation. All models
arc trained exclusively on public academic datasets.

Correspondence: Bingyi Kang
Project Page: depth-anything-3.github.io




Table 2 Comparisons with SOTA methods on pose accuracy. We report both Auc3 1 and Auc30 1 metrics. The
top-3 results are highlighted as first , second , and third .

HiRoom ETH3D DTU 75cenes ScanNet++
Methods Params Auc3 Auc30 Aucd Auc30 Aucd Auc30 Auc3 Auc30 Auc3 Auc30
DUSt3R 0.57B 17.6 54.3 4.30 27.3 4.00 74.3 6.90 61.6 8.10 33.9
Fast3R 0.65B 25.9 77.0 8.10 44 .4 9.50 79.1 19.0 78.6 17.9 72.5
MapAnything 0.56B 17.9 82.8 19.2 77.4 6.50 72.7 12.6 79.7 20.2 4.1
Pi3 0.96B 67.0 94.8 35.2 7.3 62.5 94.9 25.5 86.3 50.7 92.1
VGGT 1.19B 49.1 88.0 26.3 80.8 79.2 99.8 23.9 85.0 62.6 95.1
DA3-Giant 1.10B 80.3 95.9 48.4 91.2 94.1 99.4 28.5 86.8 85.0 08.1
DA3-Large 0.36B H&.7 94.2 32.2 86.9 70.2 96.7 29.2 86.6 60.2 94.7
DA3-Base 0.11B 19.0 83.2 15.1 74.6 60.1 95.9 20.1 82.9 25.1 83.4

DA3-Small 0.03B 9.49 75.2 8.99 62.1 30.6 91.2 14.0 78.7 10.9 71.9




Table 3 Comparisons with SOTA methods on reconstruction accuracy. For all datasets except DTU, we report
the F-Score (F11). For DTU, we report the chamfer distance (CD |, unit: mm). w/o p. and w/ p. denote without
pose and with pose, indicating whether ground-truth camera poses are provided for reconstruction. The top-3 results
are highlighted as first , second , and third .

HiRoom ETH3D DTU 7Scenes ScanNet++

Methods Params

w/op. w/p. w/op. w/p. w/op. w/p. w/op. w/p. w/op. w/p.
DUSt3R 0.57B 30.1 39.5 19.7 18.8 7.60 7.97 26.6 39.8 18.9 27.3
Fast3R 0.65B 40.7 48.2 38.5 50.3 6.88 8.20 41.0 49.8 37.1 53.7
MapAnything  0.56B 32.4 69.2 54.8 71.9 7.91 3.97 44.8 59.2 39.4 71.3
Pi3 0.96B 75.8 85.0 72.7 80.6 3.28 1.72 44.2 57.5 63.1 73.3
VGGT 1.19B 56.7 70.2 57.2 66.7 2.05 1.44 47.9 51.4 66.4 70.7
DA3-Giant 1.10B 85.1 95.6 79.0 87.1 1.85 1.85 53.5 56.5 77.0 79.3
DA3-Large 0.36B 69.5 87.1 65.8 75.2 2.08 1.23 56.3 49.2 67.9 75.7
DA3-Base 0.11B 25.9 71.4 49.5 66.7 2.87 2.36 49.9 50.6 47.2 67.8

DA3-Small 0.03B 18.3 02.2 41.6 63.4 5.83 2.49 41.0 46.8 32.3 93.8
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