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Geometry in the Deep Learning Era



Agenda

• Quiz 2 recap

• Multi-view geometry recap

• “Classical” Stereo

• Dust3r

• VGGT

• DepthAnything V3



Quiz 2



Fundamental matrix

Let p be a point in left image, p’ in right image

Epipolar relation

• p maps to epipolar line l’

• p’ maps to epipolar line l

Epipolar mapping described by a 3x3 matrix F

l’l

p p’

𝑝′𝑇𝐹𝑝 = 0



How to test for outliers?



Epipolar lines



Keep only the matches at are “inliers” with 
respect to the “best” fundamental matrix



“Classical” 3D from two images

• Depth Estimation from Stereo Matching

• Keypoint matching and structure-from-motion gave us sparse 
matches.

• Stereo / Multi-view Stereo gives us dense correspondences and 
depths.
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Stereo Matching



Stereo image rectification



Stereo image rectification

• Reproject image planes 
onto a common plane 
parallel to the line 
between camera centers

• Pixel motion is horizontal 
after this transformation

• Two homographies (3x3 
transform), one for each 
input image reprojection

➢ C. Loop and Z. Zhang. Computing 
Rectifying Homographies for Stereo 
Vision. IEEE Conf. Computer Vision 
and Pattern Recognition, 1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example



The correspondence problem

• Epipolar geometry constrains our search, but we still have a 
difficult correspondence problem.



Fundamental Matrix + Sparse correspondence



Fundamental Matrix + Dense correspondence



SIFT + Fundamental Matrix + RANSAC

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski 

Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Sparse to Dense Correspodence

Building Rome in a Day

By Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, Richard Szeliski 

Communications of the ACM, Vol. 54 No. 10, Pages 105-112



Structure from motion (or SLAM)

• Given a set of corresponding points in two or more 
images, compute the camera parameters and the 3D 
point coordinates

Camera 1
Camera 2 Camera 3

R1,t1 R2,t2
R3,t3

? ? ? Slide credit: 

Noah Snavely

?



Bundle adjustment – the core optimization problem 
inside classical Structure-from-Motion

• Non-linear method for refining structure and motion

• Minimizing reprojection error

( )
2

1 1

,),( 
= =

=
m

i

n

j

jiijDE XPxXP

x1j

x2j

x3j

Xj

P1

P2

P3

P1Xj

P2Xj

P3Xj



How do we get dense stereo correspondences?
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Correspondence problem

Multiple match 

hypotheses 

satisfy epipolar 

constraint, but 

which is correct? 

Figure from Gee & Cipolla 1999
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Correspondence problem

• Beyond the hard constraint of epipolar geometry, there are “soft” constraints to 

help identify corresponding points

• Similarity

• Uniqueness

• Ordering

• Disparity gradient

• To find matches in the image pair, we will assume

• Most scene points visible from both views

• Image regions for the matches are similar in appearance
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Dense correspondence search

For each epipolar line

For each pixel / window in the left image

• compare with every pixel / window on same epipolar line 

in right image
• pick position with minimum match cost (e.g., SSD, 

normalized correlation)

Adapted from Li Zhang
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Matching cost

disparity

Left Right

scanline

Correspondence search with similarity constraint

• Slide a window along the right scanline and compare 

contents of that window with the reference window in 

the left image

• Matching cost: SSD or normalized correlation
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Left Right

scanline

Correspondence search with similarity constraint

SSD
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Left Right

scanline

Correspondence search with similarity constraint

Norm. corr
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Correspondence problem

Source: Andrew Zisserman

Intensity 

profiles
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Correspondence problem

Neighborhoods of corresponding points are  

similar in intensity patterns.

Source: Andrew Zisserman
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching
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Correlation-based window matching

???

Textureless regions are 
non-distinct; high 
ambiguity for matches.
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Effect of window size

Source: Andrew Zisserman
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W = 3 W = 20

Figures from Li Zhang

Want window large enough to have sufficient intensity 

variation, yet small enough to contain only pixels with 

about the same disparity.

Effect of window size
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Left image Right image
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Results with window search

Window-based matching

(best window size)

Ground truth
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Better solutions

• Beyond individual correspondences to estimate disparities:

• Optimize correspondence assignments jointly

• Scanline at a time (e.g. dynamic programming)

• Full 2D grid (e.g. graph cuts)

• Approximate 2D solution (e.g. semi-global matching)
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Scanline stereo

• Try to coherently match pixels on the entire scanline

• Different scanlines are still optimized independently

Left image Right image
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Skipping over details of Dynamic Program Scanline Stereo



Robert Collins 

CSE486, Penn State Matching using Epipolar Lines
Left Image Right Image

Match Score Values

For a patch in left image 

Compare with patches along

same row in right image



Robert Collins 

CSE486, Penn State Example

Result of DP alg with occlusion filling.



Robert Collins 

CSE486, Penn State Example
Result of DP alg with occlusion filling. Result without DP (independent pixels)



Robert Collins 

CSE486, Penn State Example
Result of DP alg with occlusion filling. Ground truth
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Stereo with 2D smoothness constraint

• What defines a good stereo correspondence?

1. Match quality

• Want each pixel to find a good match in the other image

2. Smoothness

• If two pixels are adjacent, they should (usually) move about 

the same amount 
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Optimizing for match quality and smoothness (in any direction)

I1
I2 D

• Energy functions of this form can be minimized using 

graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate 
Energy Minimization via Graph Cuts,  PAMI 2001
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Source: Steve Seitz

http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
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Results with window search

Window-based matching

(best window size)

Ground truth
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Better results… 

Graph cut method
Boykov et al., Fast Approximate Energy Minimization via Graph Cuts, 

International Conference on Computer Vision, September 1999.

Ground truth

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
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Semi-global matching

Stereo Processing by Semi-Global Matching and Mutual Information. Hirschmuller, 

PAMI 2007. 3500+ citations

• Approximate the full smoothness optimization by 
considering 8 or 16 directions in two or three 
passes.

• Optimization looks like scanline, dynamic 
programming stereo, but with a 2d notion of 
smoothness
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Semi-global matching
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https://vision.middlebury.edu/stereo/eval3/
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Stereo Depth Estimation Challenges

• Low-contrast ; textureless image regions

• Occlusions

• Violations of brightness constancy (e.g., specular reflections)

• Really large baselines (foreshortening and appearance change)

• Camera calibration errors



Active stereo with structured light

• Project “structured” light patterns onto the object

• Simplifies the correspondence problem

• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 

Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Kinect: Structured infrared light

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/

http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/
http://bbzippo.wordpress.com/2010/11/28/kinect-in-infrared/


iPhone X

iPhone 12 switched to lidar 

(time of flight)



Self-driving efforts use both lidar and stereo





Can we train a deep network to go 
straight from images to 3d in one 
forward pass?









More than 2 images – not a single forward pass











VGGT: Visual Geometry Grounded Transformer
- Are we approaching a 3D foundation model?

Jianyuan Wang, Minghao Chen, Nikita Karaev,

Andrea Vedaldi, Christian Rupprecht, David Novotny





Reconstruction: Core of 3D

Video Source: COLMAP, Schönberger et al. 2016 

…

1



Previous Frameworks

Bundle Adjustment

DUSt3R

Global Alignment

COLMAP

2



Optimization:

3

Bundle Adjustment Global Alignment



Optimization: Bottleneck for 3D in the Deep Era

• Time-consuming

• Poor Compatibility with Deep Learning
• Not inherently "plug-and-play"

• Often non-differentiable 

• Complexity 
• Scary for non-experts



3

Bundle Adjustment Global Alignment



Let’s Reconstruct in One Go!
…

Images Reconstruction
Cameras, Depths, Points, and Correspondences 

4

Neural 
Network



VGG Transformer

Camera Head

DPT

Cameras

Input

Point maps

Tracks

Depth maps

Concat

randomly init 

camera token

DINO

Frame

Attention

Global

Attention

×  𝐿 times

Alternating-Attention

5



What is DPT?



What is DPT?



VGG Transformer

Camera Head

DPT

Cameras

Input

Point maps

Tracks

Depth maps

Concat

randomly init 

camera token

DINO

Frame

Attention

Global

Attention

×  𝐿 times

Alternating-Attention

5



Why Alternating-Attention?

• Global Attention
• Ensures scene-level coherence

• Frame-wise Attention
• Eliminates frame index embedding

• For permutation equivariance

• For flexible input length

Frame

Attention

Global

Attention

×  𝐿 times

6



Why Alternating-Attention?

Frame 0

Frame 1

Frame 2

𝐸𝑚𝑏𝑒𝑑 0

𝐸𝑚𝑏𝑒𝑑 1

𝐸𝑚𝑏𝑒𝑑 2

Model(                                                )

≠

Model(                                                )

Not permutation equivariant

7



Why Alternating-Attention?

Frame 0

Frame 1

Frame 2

𝐸𝑚𝑏𝑒𝑑 0

𝐸𝑚𝑏𝑒𝑑 1

𝐸𝑚𝑏𝑒𝑑 2

…

Frame 842 But model never sees 𝐸𝑚𝑏𝑒𝑑 842  during training

7



Frame

Attention

Global

Attention

×  𝐿 times

Why Alternating-Attention?

Frame 0

Frame 1

Frame 2

𝐸𝑚𝑏𝑒𝑑 0

𝐸𝑚𝑏𝑒𝑑 1

𝐸𝑚𝑏𝑒𝑑 2

7

Replaces frame index embedding by Frame-wise Attention



Training and Data

8

 Training: 

2 to 24 frames

  Inference: 

1 to 300+ frames

Accuracy Generalization



Results



Qualitative

9



VGGT Is Accurate

10



VGGT Is Accurate

10
with Optimization



VGGT Is Accurate

Known G.T. Cameras Unknown Cameras
11



VGGT Is Fast

12

0.20.2

0.5
0.60.6

15

7

20

10

7 7



Runtime and Memory

14

• Memory usage scales roughly linearly with input frames

• The time usage is around 𝑂(𝑁1.5)



Zero-Shot and Finetuning



Zero-shot Monocular Depth Estimation

As good as SoTA experts – but VGGT was never trained for monocular

15



Zero-shot Monocular Depth Estimation

16



VGGT Helps Downstream Tasks

Dynamic Point Tracking

VGGT’s feature backbone 

boosts CoTracker to SoTA

Novel View Synthesis

VGGT enables NVS without camera inputs

retaining comparable quality

17



Works with “any” Internet 

image
From one to hundreds of images

General
Works with “any” Internet image

From one to hundreds of images

General
Works with “any” Internet image

From one to hundreds of images

General Seamless Practical

• Diverse images

• Single to hundreds of views

• Just a neural network 

• Standard components

• Fast and accurate

• Addresses all core 3D tasks 

VGGT Is General, Seamless and Practical

18



Let’s Reconstruct in One Go!

You no longer have to be “Zisserman” for 3D Reconstruction
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