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Abstract

We introduce a novel image segmentation algorithm
that uses translational symmetry as the primary fore-
ground/background separation cue. We investigate the
process of identifying and analyzing image regions that
present approximate translational symmetry for the pur-
pose of image fourground/background separation. In con-
junction with texture-based inpainting, understanding the
different see-through layers allows us to perform pow-
erful image manipulations such as recovering a mesh-
occluded background (as much as 53% occluded area) to
achieve the effect of image and photo de-fencing. Our
algorithm consists of three distinct phases– (1) automat-
ically finding the skeleton structure of a potential frontal
layer (fence) in the form of a deformed lattice, (2) separat-
ing foreground/background layers using appearance regu-
larity, and (3) occluded foreground inpainting to reveal a
complete, non-occluded image. Each of these three tasks
presents its own special computational challenges that are
not encountered in previous, general image de-layering or
texture inpainting applications.

1. Introduction

We address a novel problem of detecting, segmenting,
and inpainting repeating structures in real photos (Figure
1). The understanding of the different image layers coupled
with texture-based inpainting allows us to perform useful
image manipulations such as recovering a heavily occluded
background from a foreground occluder that occupies the
majority of the image area. The novelty of our application is
to computationally manipulate this type of space-covering,
fence-like, near-regular foreground patterns that are often-
times unwanted and unavoidable in our digital imagery.
Common examples include zoo pictures with animals in
their respective wired cages (Figure 1 (a)), children’s ten-
nis/baseball games that can only be observed behind fences,

(a) Leopard in a Zoo (b) Leopard in the wild

(c) People in an airport (d) People on a deck
Figure 1. (a) and (c) are real world photos with a foreground near-
regular layer. (b) and (d) are recovered background of the input
photos using our detection-classification-inpainting algorithm.

reflections of near-by buildings, shadows of frames (Figure
4), or fantastic views that can only be watched through a set
of glass windows (Figure 1 (c)).

Traditional texture filling tools such as Criminisi et
al. [4] require users to manually mask out unwanted im-
age regions. Based on our own experience, for images such
as those in Figure 1 this process would be tedious (taking
hours) and error-prone. Simple color-based segmentations
are not sufficient. Interactive foreground selection tools
such as Lazy Snapping [12] are also not suited to identi-
fying these thin, web-like structures. Painting a mask man-



ually, as in previous inpainting work, requires copious time
and attention because of the complex topology of the fore-
ground regions. Effective and efficient photo editing tools
that can help to remove these distracting, but unavoidable,
near-regular layers are desirable. By providing such image
editing tools, a user will have the capability to reveal the
most essential content in a photo without unwanted intru-
sions (Figure 1).

These repeated image structures can be described as
near-regular textures which are deformations from regular,
wallpaper-like patterns [17]. Near-regular textures possess
an underlying lattice– a space-covering quadrilateral mesh
that unambiguously specifies the topology of the texture and
allows all texels (unit tiles) to be put into accurate corre-
spondence with each other. Since our goal in this paper is
de-layering, the near-regular textures we encounter are usu-
ally embedded in irregular backgrounds (Figure 1 (b) and
(d)).

We propose an image de-fencing algorithm consisting
three distinct phases: (1) automatically finding the skele-
ton structure of a potential frontal layer in the form of a de-
formed lattice; (2) classifying pixels as foreground or back-
ground using appearance regularity as the dominant cue,
and (3) inpainting the foreground regions using the back-
ground texture which is typically composed of fragmented
source regions to reveal a complete, non-occluded image.
The three phases are intertwined with non-trivial computa-
tional constraints. Each of these three tasks presents its own
special computational challenges that are not encountered
in previous general image de-layering or texture inpainting.
Our results demonstrate the promise as well as great chal-
lenges of image de-fencing.

One basic assumption in this work is that if each layer
in a 3D scene is associated with certain level of regular-
ity, then the most regular layer that can be observed in its
completeness is the frontal layer. The argument for the va-
lidity of this assumption is simply: otherwise (if the regu-
lar layer is occluded by something else), its regularity will
no longer be observed. This observation is also consistent
with the Gestalt principles of perception that stress the im-
portance of perceptual grouping using symmetry. Different
from contour and continuity cues which are also empha-
sized in Gestalt theory, the regularity or translational sym-
metry cues we use are discrete. It is precisely owing to this
non-continuous nature that this discrete symmetry or regu-
larity cue can lead our algorithm through cluttered scenes to
segment out and distill the ‘hollow’, repeated patterns that
have similar pixels only in certain discrete, corresponding
regions. In a way, the structure (the lattice) of the fore-
ground is being lifted from the image to form the bases for
our foreground mask regions.

Our work differs in several aspects from existing work.
First of all, unlike classic inpainting where the user pro-

vides masks, phase I of our algorithm automatically dis-
covers the deformed lattice that characterizes the transla-
tionally repeated pattern and in phase II the mask is auto-
matically generated from the lattice according to local color
and global color variations on corresponding pixels. Sec-
ondly, different from Hays et al. [9] where the main goal is
to find those near-regular textures that share locally similar
texels, the focus in our current work is to discover the non-
obvious, fence-like patterns placed over drastically varying
background textures (e.g. Figure 1). Last but not least,
the source texture region is seriously fragmented compared
with existing inpainting work that is usually done using
large, continuous areas of source textures. Furthermore, the
ratio of foreground (to be filled) area to background area in
our work is much higher than the usual 10-15% previously
reported[4]. The ratios in our work range from 18% to 53%.
All these differences pose extra computational challenges.

The contribution of this work includes the identi-
fication of a new and real application sitting on the
boundary of computer vision and computer graphics:
image de-fencing; a unique translation-symmetry based
foreground/background classifier; a demonstration of the
promising results from our proposed automatic detection-
classification-inpainting procedure; and the discovery of the
limitations of both the lattice detection [9] and the popular
inpainting algorithms [4] for photos with near regular tex-
ture patterns. We demonstrate both success and failure ex-
amples at different stages of image de-fencing, emphasizing
the fact that automatic image de-fencing, for the most part,
remains an unsolved novel problem.

2. Related work

2.1. Finding Image Regularity

There is a long history of research concerning the identi-
fication of regular and near-regular patterns in images. No-
table, recent works include Tuytelaars et al. [25] and Schaf-
falitzky et al. [22] identify regular patterns under perspec-
tive distortion. Leung and Malik [11] finds connected, vi-
sually similar structures in photographs under arbitrary dis-
tortion. Forsyth [7] finds and clusters visually similar, fore-
shortened textons with less regard for their geometric ar-
rangement. Liu et al. [16] present a robust method for find-
ing the lattice of regular textures. We employ Hays et al. [9]
to automatically find near-regular lattices in real world im-
ages.

Liu et al. [17] demonstrated several image regularity ma-
nipulations based on knowing a lattice of a near-regular tex-
ture but required the lattice to be specified, in part, interac-
tively. Tsin et al. [24] and Liu et al. [17] both use regular-
ity as a cue to perform texture synthesis, manipulation and
replacement using real photos. Lin and Liu [13, 14] and
White and Forsyth [26] extend this to video.



Our work also attempts to replace a near-regular tex-
ture but our goals are different. Previous work replaces a
near-regular texture with an arbitrary, user-provided texture
while preserving lighting and curvature regularity thus giv-
ing the appearance of a new texture on the exact same sur-
face. We are selectively replacing a ‘partial’ near-regular
texture with the surrounding irregular texture to give the im-
pression that the regular surface never existed (Figure 1).

2.2. Photo Manipulation

With the growth of digital imaging there has been con-
siderable research interest in intelligent photo processing.
For instance, [2, 6, 19] all deal with enhancing or correct-
ing photographs involving flash, for example, [8] deals with
correcting red-eye automatically. These types of artifacts
are common but relatively easy to mitigate at capture time
with indirect flash lighting. But in some situations it might
be impossible to avoid the types of occlusions we segment
and remove. While those papers aim to correct artifacts that
appear because of the imaging and lighting process, Agar-
wala et al. [1] describes an interactive framework in which
higher-level photographic manipulations can be performed
based on the fusion of multiple images. In addition to re-
pairing imaging artifacts, users can interactively improve
composition or lighting with the help of multiple exposures.
In a similar vein, our method can correct the unfortunately
occlusions in photo composition such as a subject behind
a fence. In many situations, such as a zoo, these types of
compositions may be unavoidable.

2.3. De-layering

This work can be viewed as solving the figure/ground
image labelling problem based on a single, strong cue– reg-
ularity, rather than an ensemble of cues as in [20]. In [3] and
[15] video is automatically decomposed into distinct layers
based on the occlusion of moving objects and the group-
ing of coherent motions. Defocus Video Matting [18] dis-
tinguishes foreground and background automatically based
on multiple, differently focused but optically aligned im-
ages. GrabCut [21] and Lazy Snapping [12] are user as-
sisted, graph-cut based methods for segmenting foreground
from background. Our approach is one of the few methods
aimed at foreground/background segmentation based on a
single image.

3. Approach

Our method has three distinct yet inter-related phases–
1) Finding a lattice 2) Classifying pixels as foreground or
background 3) Filling the background holes with texture in-
painting.

3.1. Finding a Lattice

In order to understand the regularity of a given image
we seek a lattice which explains the relationship between
repeated elements in a scene. We use the method imple-
mented in [9], which is an iterative algorithm trying to
find the most regular lattice for a given image by assign-
ing neighbor relationships among a set of interest points,
and then using the strongest cluster of repeated elements to
propose new, visually similar interest points. The neighbor
relationships are assigned such that neighbors have maxi-
mum visual similarity. More importantly, higher-order con-
straints promote geometric consistency between pairs of
assignments. Finding the optimal assignment under these
second-order constraints is NP-hard so a spectral approxi-
mation method [10] is used.

No specific restrictions on the type of visual or geometric
deformations present in a near-regular texture are imposed
in [9], but with increasing irregularity it becomes more diffi-
cult to find a reasonable lattice. When a see-through regular
structure is overlaid onto an irregular background, such as
in our examples (Figures 1,4,5, and 6), finding a lattice is
especially challenging. If the regularity is too subtle or the
irregularity too dominant the algorithm will not find poten-
tial texels. To alleviate this we lower the threshold for visual
similarity used in [9] for the proposal of texels. Since the
near-regular structures in our test cases tend to have rela-
tively small geometric deformations, the algorithm can still
find the correct lattice even with a large number of falsely
proposed texels that might appear with a less conservative
texel proposal method.

The final lattice is a connected, space-covering mesh of
quadrilaterals in which the repeated elements contained in
each quadrilateral (hereafter ‘texels’) are maximally simi-
lar. The lattice does not explicitly tell us which parts of
each texel are part of a regular structure or an irregular back-
ground. However, the lattice does imply a dense correspon-
dence between all texels which allows us to discover any
spatially distinct regular and irregular subregions of the tex-
els which correspond to foreground and background respec-
tively.

3.2. Foreground/background separation

We put all of our texels into correspondence by calculat-
ing a homography for each texel which brings the corners
into alignment with the average-shaped texel. After align-
ing all the texels we compute the standard deviation of each
pixel through this stack of texels (Figure 2). We could clas-
sify background versus foreground based on a threshold of
this variance among corresponded pixels but a more accu-
rate classification is achieved, when we consider color in-
formation in each texel in addition to their aggregate statis-
tics. We couple each pixel’s color with the standard de-



Figure 3. Unknown regions of the mask are filled in one pixel at a time by finding the most similar mask and image pair in the already
determined regions. For a particular query pair (upper right) distance is computed to all labeled pairs of textons. The best match for this
particular texton is highlighted, and the center pixel of the query texton’s mask will take the value from this best match.

Figure 2. (a) A stack of aligned texels. (b) Standard deviation is
calculated along each vertical column of pixels. (c)The standard
deviation and color of all pixels is clustered to discover foreground
and background.

viation of each color channel at its offset in the aligned
texel. This gives us as many 6-dimensional examples as
we have pixels within the lattice. There is a constant, rela-
tive weighting between the standard deviation and the color
features for k-means. The standard deviation is weighted
more heavily. Different values of k are used for k-means
for different examples, from 2 to 4. We cluster these ex-
amples with k-means and assign whichever cluster ends up
having the lowest variance centroid to be the foreground and
the rest background. From this classification we construct
a ‘mask’ in image space which corresponds to foreground,
background, and unknown.

3.3. Image De-fencing – Background Texture Fill

We can estimate a plausible background by applying tex-
ture based inpainting to all pixels which have been labeled
as foreground. We use the method of Criminisi et al. [4],
which modifies Efros and Leung [5] by changing the or-
der in which pixels are synthesized to encourage continu-
ous, linear structures. The modified synthesis order pro-
foundly improves inpainting results even for regions that
are relatively thin such as ours. Patch-based image comple-
tion methods[23] are less appropriate for our inpainting task
because our target regions are perhaps a single patch wide
which obviates the need for sophisticated patch placement
strategies as explored in [23]. Also our source regions offer
few complete patches to draw from. On the other end of
the inpainting spectrum, diffusion-based inpainting meth-
ods also work poorly. Our target regions are wide enough
such that the image diffusion leaves obvious blurring.

A mask which appears to cover a foreground object per-
fectly can produce surprisingly bad inpainting results due
to a number of factors: the foreground objects are often
not well focused because our scenes often have consider-
able depth to them, sharpening halos introduced in post-
processing or in the camera itself extend beyond the fore-
ground object, and compression artifacts also reveal the
presence of an object beyond its boundary. All of these
factors can leave obvious bands where a foreground object
is removed. In order to remove all traces of a foreground
object we dilate our mask considerably before applying in-
painting.

Our inpainting task is especially challenging compared
to previous inpainting work by [4]. We typically have a



Figure 4. The procedure of de-fencing is shown step-by-step through two examples, where one instance of the ‘fence’ is composed of
shadow.

large percentage of the image to fill in, from 18 to 53 per-
cent after dilation (about 3 pixels per image, e.g. the pipe
image was 53% masked out Figure 4), and the boundary be-
tween our source regions and our masked-out regions has a
very large perimeter. These factors conspire to give us few
complete samples of source texture with which to perform
the inpainting - a new problem rarely happened in previous
inpainting applications where large regions of source tex-
tures with simple topology are available.

4. Experimental Results

We have tested our algorithm on a variety of pho-
tos obtained from the Internet. Figure 4 shows vari-
ous stages of the detection-classification-inpainting process.
First a lattice is found using [9] (4b). Our novel fore-
ground/background classifier then uses the amount of regu-
larity in the aligned texels to compute a rough mask for the
pixels covered by the lattice (4c). We extend this classifica-
tion into nearby regions (4d) and fill the foreground regions
with texture inpainting (4e).

Figure 5 shows some promising results, including the in-
termediate results of the photos shown in Figure 1 (In 1a
the repeated structure is itself occluded by another object);
while Figures 6 and 7 show failure results at lattice detec-
tion and image inpainting stages respectively. A total of
44 images with various fence-like structures are tested, 31
of them failed to obtain a complete lattice at the lattice de-
tection step (Figure 6). For those with correctly detected
lattice, 6 images are left with much to be desired in their
inpainting results (Figure 7).

5. Discussion and Conclusion
We have introduced and explored the novel use of

translational symmetry for image de-fencing and photo-
editing with inpainting. The results (Figures 4 and 5)
demonstrate the plausibility of using regularity as a fore-
ground/background segmentation cue. A near-regular struc-
ture can be automatically detected and segmented out of
cluttered background.

Automatic lattice detection from real images [9] has
met some serious challenges in this application: detection
of see-through, near-regular structures from adverse back-
ground clutters. We have observed the failure cases (Figure
6) often are accompanied by sudden changes of colors in
the background (e.g. peacock, moose); obscuring objects in
front of the fence (e.g. building), and irregular background
geometry.

Based on our experimental results, and contrary to our
initial expectations, we observe that the mesh-like regions
are actually more difficult to texture fill than large, circular
regions of similar area. This is because the mesh-like re-
gions are wide enough to show errors with incorrect struc-
ture propagation, but they have dramatically larger perime-
ter than a single large region and thus there are many more
structures which need to be correctly propagated and joined.
Mistakes in structure propagation can be seen in our results
such as the shadowed wall in Figure 4e. The fragmentation
of the source regions caused by the complex topology of
the regular structures is also problematic: there are no long,
consecutive texture strips for the texture filling algorithm to
use so the texture filling is forced to have low coherence and
thus the quality of inpainting suffers. The high ratio of fore-
ground area to background area as well as the fragmented
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Figure 5. Several relatively promising image de-fencing results demonstrate the effectiveness of the proposed, translation symmetry-based
detection-classification-inpainting method.

background source textures present special challenges for
existing inpainting methods. Further study on how to im-
prove the state of the art inpainting methods to suit this type
of source-texture-deprived situations will lead to more fruit-
ful results.
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