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Figure 1: Various painterly renderings of a pink flower (top left). Painterly renders representing (top row) “watercolor”, “Van Gogh”,
“Impressionism”, (bottom row) “Abstract”, “Pointillism”, “Flower” and “Abstract” styles. Figure 3 shows some of the brush strokes used.

Abstract

We present techniques for transforming images and videos into
painterly animations depicting different artistic styles. Our tech-
niques rely on image and video analysis to compute appearance
and motion properties. We also determine and apply motion infor-
mation from different (user-specified) sources to static and mov-
ing images. These properties that encode spatio-temporal varia-
tions are then used to render (or paint) effects of selected styles
to generate images and videos with a painted look. Painterly an-
imations are generated using a mesh of brush stroke objects with
dynamic spatio-temporal properties. Styles govern the behavior of
these brush strokes as well as their rendering to a virtual canvas.
We present methods for modifying the properties of these brush
strokes according to the input images, videos, or motions. Brush
stroke color, length, orientation, opacity, and motion are determined
and the brush strokes are regenerated to fill the canvas as the video
changes. All brush stroke properties are temporally constrained to
guarantee temporally coherent non-photorealistic animations.

1 Expressive Painterly Animation

The computer graphics community, in addition to concentrating on
photorealistic rendering, strives for automatic methods to gener-
ate non-photorealistic and “expressive” renderings [Lansdown and
Schofield 1995]. The need for non-photorealistic rendering and an-
imation is obvious to anyone who has marvelled at artistic works
where complex scenes and objects are rendered using pen and brush
strokes, using lines, colors, and etches. In this paper, we present an
automatic image-based rendering approach to generate expressive,
artistic, and painterly animations. Our method enables the synthe-
sis of painterly animations by using video analysis to manipulate
spatio-temporally coherent brush strokes. Our method also sup-
ports merging motions from different sources to generate moving
images from static pictures.

To undertake automatic non-photorealistic rendering of moving
images, we need to take into account both the spatial (across each
frame) and temporal (from one frame to another) information. To-
wards this end, we propose a framework for generating and ma-
nipulating a mesh of dynamic brush strokes by analyzing individ-
ual frames as well as motion between frames. Each of these brush
strokes has properties such as opacity, color, length, width, orien-
tation, and motion (see Figure 2). We also employ a higher-level
concept of style to control the behavior of brush strokes and thus
produce a spectrum of painterly styles.

In our work we borrow from earlier contributions by Litwinow-
icz [1997] and Hertzmann et al. [2000]. We introduce several tech-
niques that allow for significantly improved results in transforming
video into painterly animations. (1) Each brush stroke property is
constrained over time to ensure that smooth, temporally constrained
animations are produced. Brush stroke generation and deletion are



Figure 2: Each Brush stroke is an object with the following prop-
erties: Anchor point in image coordinates, angle of orientation in
degrees, width in pixels, lengths in both directions from the an-
chor point in pixels, color (R, G, B) for the current and past sev-
eral frames, and opacity. In addition the brush stroke knows if it is
“New” and/or if it is “Strong.” Anchor, angle, width, and lengths
are kept in floating point coordinates.

performed smoothly through time by modifying brush stroke opac-
ity. By adding these temporal constraints to the spatial constraints
discussed in previous work we create non-photorealistic techniques
that animate elegantly across multiple frames without noticeable
artifacts. (2) We employ radial basis functions (RBFs) to globally
orient brush strokes across time and space. (3) We use edge de-
tection at varying frequencies to guide the creation of new brush
strokes and the refinement of fine details. (4) We improve render-
ing quality beyond previous works by decoupling output resolution
from input dimensions and by using real brush stroke textures along
with a simple lighting model. (5) Finally, we emphasize the artis-
tic versitility of motion by synthesizing motion information for still
images to produce animated stills as well as transplanting motion
from video segments onto stills. Our methods are robust, allowing
us to generate videos and images of many different user selected
artistic styles.

2 Related Work

We are primarily interested in generating videos that show various
forms of non-photorealistic moving images. Our work relies on
our ability to analyze images and videos to modify the properties
of our brush strokes, which are then rendered (painted) to generate
a new image or video. Along these lines, our work benefits from
all the earlier efforts aimed at using brush strokes as the key el-
ements for rendering style (see the web site maintained by Craig
Reynolds [WWW] for an elaborate overview of stylistic depiction
in computer graphics).

Our work is closely related to some very important first steps in
analyzing imagery to generate non-photorealistic rendering. Early
work in this area is that of Litwinowicz [1997], who used image
and video analysis to generate Impressionistic effects. This sys-
tem allows a user to select brush stroke size and style and have the
program automatically process a segment of video. Optical flow
and edge detection are used manipulate a mesh of persistent brush
strokes. Additionally, the user can choose to have the brush strokes
follow the contours of an image or fix themselves to a global an-
gle. Advanced versions of this approach, with significant manual
intervention, have been used in painterly effects in the feature film
“What Dreams May Come” [Ward 1998]. Our approach signifi-
cantly adds to this approach by more thoroughly addressing tempo-
ral coherence.

Hertzmann [1998] introduced a method to automatically paint
still images with various stroke sizes and shapes and then extended
the technique to video [2000]. This work tries to address the prob-
lem of temporal incoherence in Litwinowicz [1997] by only updat-
ing the properties of brush strokes that lie in video regions that show
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Figure 3: Pairs of brush stroke textures and alpha masks. (A) Four
brush strokes used for four different layers of impressionism. (B)
Four brush strokes used for pointillism. (C) Four brush strokes for
the “flower” style. (D) Three brush strokes used for Van Gogh.

significant change. However, flickering and scintillation of brush
strokes remains a problem. A comparison between this technique
and our own is contained within the accompanying video. The no-
tion of synthesizing flow fields for painterly animation is touched
upon in this work and we build on that.

DeCarlo and Santella [2002] presented an algorithm to stylize
photographs by running inputs through (well-known) image pre-
processing algorithms to segment the image into regions that could
be given a fixed color. Our work differs from this effort as we are
more concentrated on video and specifically on brush strokes, while
their approach is perhaps the state-of-the-art in shaded styles on still
images.

Klein et al. [2002] present a tool to aid in generating non-
photorealistic animations from video. Similar to our approach, this
tool undertakes a spatio-temporal analysis of video. A novel aspect
of their work is the use of a set of “rendering solids” where each
rendering solid is a function defined over an interval of time. This
allows for the effective and interactive rendering of NPR styles. We
believe our approach, inspired largely by the actual process of paint-
ing, produces renderings more faithful to the historical art styles we
seek to imitate.

Hertzman [2001] presented a versatile technique to learn non-
photorealistic transformations based on pairs of unpainted and
painted example images. These learned transformations can then
be applied to new inputs. This has been extended to video pro-
cessing only recently [Haro and Essa 2002]. These learning meth-
ods hold great promise and can generalize to solve many problems.
However, we do not believe they capture certain painterly styles as
faithfully as our more domain-specific approach. Our approach also
allows more user control of rendering styles.

Recently Hertzmann [2002] introduced a new method for adding
a physical appearance to brush strokes. The basic idea is to add
height fields to brush strokes to allow for lighting calculations. The
resulting highlights and shading give the paint strokes a more real-
istic appearance. We have adopted a similar approach in our ren-
dering technique.

Finally, our work allows us to extract motion information from
one source and apply it to another image (or video) to show moving
images. In some instances, we rely on the work of van Wijk [2002]
to synthesize flow information and apply it to images and videos.
This allows non-photorealistic effects to show motion along the
lines of Motion Without Movement. [Freeman et al. 1991].



Figure 4: Brush stroke layers and the canvas. The canvas here is twice the size of input image. The Layers are independent meshes of brush
strokes which successively refine the input frame.

3 Brush strokes, Styles, Layers, & Canvas

In order to produce a painterly animation one must first pick a style.
Here a style is an encapsulation of parameters that control the anal-
ysis of input frames, the behavior of brush strokes, and the render-
ing of output. We extend the concept of style from [Hertzmann
1998] by adding several parameters shown in Table 1. Styles and
the brush stroke textures that accompany them are created by a user
and can be saved for reuse.

In order to emulate the coarse to fine painting process customary
to styles like Impressionism, we extend the concept of Layers (in-
troduced in [Hertzmann 1998]). Layers are disjoint groups of brush
strokes representing successive passes of refinement in a painting.
As used here, brush strokes are created within a Layer only when
perceptually necessary- as determined by the presence of edges at
the frequency band corresponding to each Layer.

Each brush stroke has several dynamic properties that are in-
fluenced by the analysis of input frames (see Figure 2). Our
brush stroke definition most closely resembles that of Litwinow-
icz [1997]. However, we take special care in modifying brush stroke
properties so as to maintain temporal coherency. Previous tech-
niques left brush stroke properties largely unconstrained between
frames and produced animations with scintillation and flickering.
We add a new brush stroke property, opacity, which intuitively cor-
responds to the confidence a painter would have in creating a re-
finement stroke. Giving brush strokes dynamic opacity also allows
us to smoothly create and delete brush strokes.

Output is rendered onto an arbitrarily large canvas. Using a can-
vas of higher resolution than an input frame is analogous to a painter
filling an entire canvas according to a small reference photograph.
It allows the output rendering to retain the structural coherency of
the input frame while still displaying considerable artistic styling.
Painting at the same resolution as your input, as done in previous
works, has the effect of blurring details as input pixels are summa-
rized into larger brush strokes. The only way to faithfully reproduce
fine input details would be to use degenerately small brush strokes
which would add no painterly detail. Layers and canvas are shown
in Figure 4.

Table 1: Relevant style parameters used to generate artistic renders
of videos and images.

The following parameters are defined for each Layer
brush width, wb Width of the brush stroke;

regeneration width, wr The minimum radius of unoccupied space on the canvas for
which a new brush stroke will be created to fill. Making it larger than the actual
width of a brush stroke will allow the canvas to show through. Making it smaller
will make the brush strokes appear more crowded;

brush texture, Tb Which set of brush texture and alpha mask to use in rendering;

derivative of a brush stroke’s opacity over time, δOpacity Effectively keeps a
brush stroke from changing opacity too quickly. Typically about 10 percent of
the range of opacity per frame;

derivative of a brush stroke’s length over time, δLength Typically 1 pixel per
frame or less for small brush strokes;

derivative of a brush stroke’s angle over time δθ Typically 1 degree per frame or
less for large brush strokes;

The number of previous frames to average color over for each brush, Cs,max

Larger values produce extremely smooth renders in which the colors seem
to wash around as brush strokes move to regions of different colors. Smaller
values are responsive to color change at the risk of being noisy. A value of
about 5 typically works well;

Palette Reduction, Pr The depth of palette to use during color extraction. In some
styles it is more appropriate to use a small palette of colors. Brush strokes will
still blend together to produce intermediate shades during rendering;

Noise, ν The amount of noise to add to the current frame for this layer. Useful for
pointillism and Van Gogh.

The following parameters do not vary between layers
contrast stretch Whether or not to stretch the contrast of the output frame in order

to utilize the full dynamic range of the color space. Typically set to true, as
painters, especially the impressionist, are renowned for seeking to maximize
color variation;

histogram equalize Whether or not to equalize each channel of the final rendering.
This warps the colors of the output image, making the images look more ab-
stract. It also maximizes the coverage of the color space;

median filter Whether or not to median filter the output frame. This causes the out-
put to stylistically resemble a watercolor painting. Thus each style can have a
watercolor variant



Figure 5: (top row, left to right) Original image, low frequency edges, mid frequency edges, high frequency edges. (bottom row, left to right)
Base layer, first layer of refinement, second layer of refinement, third layer of refinement. The dark green in the edge images are the detected
edges at each frequency. The light green border is the area, proportional to wr, that brush strokes will be created to fill. Note how smoothly
shaded and out of focus regions are less refined while remaining perceptually similar to the input.

4 Approach

Now we describe in some detail each step in our process to extract
information from images and video and then render brush strokes
on to a canvas in a painterly manner. The stages of processing that
we describe next follow the the initial steps taken by the user to
define or choose a style for a given video sequence. The outer loop
of our process, containing steps B through F, runs for each input
frame.

A. Initialization: First all layers are initialized. The number of
layers will depend on the style selected. Each layer contains an
(initially empty) array of brush strokes. The layers will be filled, as
necessary, in the regeneration and refinement step.

B. Motion: We are interested in determining the movement, in
image space, of each pixel from frame to frame. The goal of this
is to give brush strokes motion such that they appear to be sticking
to objects in the real world. If brush strokes are not moved from
frame to frame in this manner an undesirable “stained-glass” ef-
fect results. This observation is a key in Litwinowicz [1997] and
Meier [1996]. Following this lead, we also look upon the immense
literature in computer vision on measuring pixel motion and use
optical flow measurement to estimate the motion between the cur-
rent and the previous frames. Where no previous frame exists (the
first frame in any sequence), this step is omitted. We employed our
implementation of Black and Anandan flow [1991]. For each brush
stroke, the estimated motion vector at its location is added to its
anchor point.

C. Regeneration and Refinement: In video sequences with
motion, optical flow will often push the brush strokes far enough
apart that the canvas would be visible between them. For this rea-
son, we must search for and fill gaps in our mesh of brush strokes.
Brush strokes in higher layers can also “fall off” the features they
are meant to be refining because of imperfections in optical flow. In
both these cases new brush strokes must be generated to refine the
features and prevent the canvas from showing through.

It is also necessary to remove certain brush strokes. Brush
strokes that have been pushed on top of each other are redundant
and cause visual clutter. Brush strokes which have strayed from
high-frequency features must also be removed. If unnecessary high-
frequency brush strokes are not removed, the upper layers could
eventually fill with brush strokes even if there are no high frequency
features needing to be refined.

On the bottom layer, the canvas is searched and new brush
strokes are created where gaps are found. Gaps are simply de-
fined as areas wr across that contain no brush stroke anchor point.
The canvas is searched in pseudo-random order (versus scanline) in
order to avoid certain mechanical looking artifacts that can result
if brush strokes are regenerated in sequence and end up perfectly
spaced. New brush strokes are added at the rear of the draw order
to maintain temporal coherency. They are also marked as “new.”

The same process is executed on the higher layers, but the re-
generation is restricted to areas near edges of the appropriate fre-
quency (see Sec. 4E). For example, brush strokes in the highest
layer are placed on or near the highest frequency edges in the in-
put frame. These brush strokes appear gradually. They are initially
nearly transparent and gain δOpacity each frame they remain on
top of an edge of appropriate frequency.

Within each layer, brush strokes centered on the same pixel as
another brush stroke higher in the draw order have their opacity
reduced by δOpacity, as they are largely redundant. Once their
opacity reaches zero they are deleted. Brush strokes pushed off the
canvas by optical flow are also removed. Lastly brush strokes which
have moved away from edges of the appropriate frequency, either
through imperfect optical flow or edges disappearing in the video,
are gradually made more transparent until they are removed or they
again approach an edge.

We believe proximity to edges is a more perceptually accurate
description of how an artist might refine a painting than what previ-
ous techniques employed. Hertzmann [1998] creates brush strokes
in higher layers when a rendered version of the lower layer differs
too much in color from the original image. In many styles, painters
worry more about refining the structural accuracy of an image rather
than correcting color in otherwise empty regions. (see Figure 6)



Figure 6: (Left) cropped portion of a painting by Spanish Impressionist Joaquin Sorolla Y Bastida. (Center Top) Input (Center Bottom)
Visualization of the RBF. Brush strokes on the third layer are rendered thinly, except for the “Strong” strokes which are wide. (Center Right)
Output. Notice how the smaller brush strokes wrap around the shape of the woman’s head, as in the painting on the left. Also notice how
large strokes are used for the background and fine strokes for the details. The color difference between the original photo and the render is
the result of colors being equalized and noise being added during the color extraction step as dictated by our Impressionist (Far Right) Detail
view.

D. Orientation: Painters typically paint by following contours
of features in an image. Instead of orienting each brush stroke
largely based on the local gradient estimates as suggested by [Hertz-
mann 1998; Litwinowicz 1997], we believe that brush stroke orien-
tation should be globally dictated only by the brush strokes lying on
the strongest gradients. We achieve this by using radial basis func-
tions (RBFs) to globally interpolate X and Y gradients from only
the strongest gradients [Bors 2001].

For each layer, the input image is blurred by a Gaussian ker-
nel of width proportional to wb. Gradients on that layer are then
estimated across the entire frame with a Sobel filter [Forsyth and
Ponce 2002]. “New” brush strokes that happen to fall on gradients
of magnitude greater than a stylistically determined threshold and
are not near other “Strong” brush strokes are themselves marked as
“Strong.” Once marked as “Strong,” a brush stroke can not lose the
designation. This is to avoid the potential temporal inconsistency
that would be caused by suddenly removing a basis point from the
RBF between frames.

These “Strong” brush strokes, typically numbering 10 to 200 per
layer, become the basis points for a radial basis function. In all
results shown a linear interpolant was used as we found it pro-
duced more aesthetically pleasing gradient estimations than thin-
plate or Gaussian bases. Typically, all layers contribute “Strong”
brush strokes to the same radial basis function in order to capture
the gradients at different frequency bands. The radial basis func-
tion is then solved and evaluated at the anchor point of each non-
“Strong” brush stroke. Each brush strokes angle is set as the arc
tangent of the interpolated Y and X gradients plus 90 degrees.

Brush strokes eligible to become “Strong” are limited to “New”
brush strokes to help maintain the distribution of basis points across
the canvas. For example, in a video sequence with an upward pan-
ning camera, there would be a lack of basis points at the top of
the frame because all of the existing basis points have been moved
down by the optical flow step described earlier. Thus, the new brush
strokes created in step C (at the top of the frame where there were
gaps) are the best candidates.

By orienting brush strokes based on only the strongest gradi-
ents, gradients at the edges of objects effectively dictate the internal
brush stroke orientations. We believe this produces not only more
coherent results (see Figure 7), but also more accurately describes

many historical painting styles.
As gradient calculations are very sensitive to things like video

noise, it is important to constrain the orientation of each brush
stroke. Brush strokes (“Strong” or not) are allowed to rotate only
δθ each frame, typically about 1 degree. Thus brush strokes are
less sensitive to noise but can gradually rotate to different orienta-
tions as they move or the video changes.

(A) (B)

Figure 7: RBF gradient interpolation. (A) Local Gradients. (B)
RBF gradients. Large strokes are Basis points. Notice the curves
and swirls that resemble the style of Van Gogh.

E. Edge Clipping: Artists try to maintain the structural coher-
ence of a painting by not allowing brush strokes to cross edges in an
image. To emulate this process we first detect edges in the frames
and then the brush strokes are clipped to these edges.

For all layers except the highest, the input is blurred by a Gaus-
sian kernel of standard deviation proportional to wb. Canny edge
detection is then run on the blurred images for the lower layers and



on the unblurred input image for the highest layer [Forsyth and
Ponce 2002]. We want the highest layer to capture as many high
frequency edges as possible. The edge images, used to guide re-
finement in step C, are used here to clip the brush stroke lengths.

The brush strokes are grown length-wise from their center until
they encounter an edge. This step is also similar to [Litwinowicz
1997] except that our brush stroke growth is constrained over time
to δLength. Temporal incoherencies between edge images of ad-
jacent frames, often caused by video noise, would otherwise cause
the brush strokes to scintillate as they change length rapidly.

F. Color Extraction: Each brush stroke’s color is determined by
averaging the color of the pixels underneath it in the source frame.
Color for each brush stroke is also averaged over the past Cs,max
frames, typically five, in order to prevent video noise or interlacing
from rapidly changing a brush stroke’s color.

Noise can also be added to the input frames during the color
extraction step in order to provide more random color variation
between brush strokes. This is especially helpful when trying to
imitate styles such as pointillism which depend on the perceptual
merging of adjacent brush strokes with vastly different pigment to
create an image.

Figure 8: Rendering with brush stroke textures used as height maps.
See the zoomed in pattern in the right image.

G Rendering: First the canvas is initialized to either a solid
color or a canvas texture. Brush strokes are then rendered accord-
ing to their draw order from bottom layer to top layer. To render
each brush stroke a real brush stroke texture is clipped, rotated, col-
ored, and alpha composited onto the canvas. These brush stroke
textures are created by hand by cropping brush strokes out of real
paintings of the style being emulated (see Figure 3). They are then
encapsulated in a style for later reuse.

The brush stroke textures (Figure 3) are pairs of gray-scale alpha
masks and textures. For each brush stroke to be rendered, the alpha
mask is clipped according to the brush strokes lengths by blacking
out parts of the alpha mask which should not be rendered. The hard
edge that results is then radially blurred to provide soft blending
between brush strokes. The texture and alpha mask are then both
rotated according to the angle of the brush stroke. The texture is
multiplied by the color of the brush stroke. The alpha mask is mul-
tiplied by the opacity of the brush stroke. Finally the texture (now
colored) and alpha mask are alpha composited onto the canvas on
top of the existing brush strokes.

Applying brush textures multiplicatively, as described above, has
the effect of darkening an image. The brush texture will also be al-
most imperceptible in darker regions of a rendering. A better way
to handle the textures is to treat them as height maps and then per-
form lighting calculations based on surface normals estimated from
the height map. As in Hertzmann [2002] we use our alpha masks to
build a color image. Our brush textures are not colored, but instead

alpha composited into a blank image in order to build a height field.
With the height field complete, surface normals can be estimated.
Lighting calculations are then performed at each pixel, using the
color image and surface normals as inputs.

It is not initially intuitive to substitute brush textures cropped
from paintings for brush height maps. However, it is sufficient to
produce the effects we desire: specular highlights and shading as
well as a consistent lighting direction for all brush strokes (Fig-
ure 8).

5 Adding User-specified Motions

Non-photorealistic animation is not restricted to video sources. By
synthesizing motion information with aid of tools like Image-Based
Flow Visualization [van Wijk 2002] a user can create animations
from still images that have a compelling sense of motion. Our tech-
nique accommodates this by accepting as inputs a still image and
any number of optical flow fields. An arbitrarily long sequence can
be created by treating the still image as the current frame while suc-
cessively applying the motion information. All of the styles carry
over, though it is sometimes interesting to increase Cs,max so that
color is averaged over many frames. By doing so a user can cre-
ate streamlines. A single frame from the resulting animation will
then give the impression of both the original image and the motion
information that was applied to it.

(Original) (with Streamlines)

Figure 9: Shuttle image with non-photorealistic streamlines added
to show movement.

Motion information does not need to be synthesized. Motion
information can be extracted from one video and then transplanted
or added into another video. Likewise motion information from
a video can be used to animate a still image. An example image
shown in Figure 9).

6 Results: Expressive Painterly Animation

The results of this work are best visualized in video. Video results
as well as additional still results can be found on our project web
page at http://www.cc.gatech.edu/cpl/projects/artstyling/.

Our technique is very robust. We produce painterly animations
from video segments that contain interlacing, are of low resolu-
tion, and span multiple scene transitions (see videos). Our tech-
nique produces poor results when motion estimation is poor. The
most common causes for this are large textureless regions or flu-
ids which optical flow can not track well. When motion estimation
fails, brush strokes cease to adhere to objects in the world and the
resulting animations can become unpainterly. However, these are
rare circumstances. For example, we are able to apply our tech-
nique to cell shaded animations where optical flow traditionally has
difficulty. Additionally, our method of animating still images is



based on the notion of applying motion information which does not
match the scene and we still produce painterly results.

Computational times for our process vary based on style param-
eters and the complexity of each input frame. Styles that require
multiple layers are slower as they tend to “over paint” the output.
This happens because successive refinements are placed on top of
existing paint and our rendering process is effectively fill rate lim-
ited. For the same reason, high frequency images, with many edges,
require more refinement and are slower to render. Overall, the pro-
cessing time for one megapixel output varies from 80 seconds a
frame for Pointillism to 300 seconds a frame for Impressionism.
This estimate is for video on which motion estimation must be per-
formed, which takes about one minute per frame at DVD resolution.
Rendering often takes up the majority of compute cycles and there
is much room for optimization there. Our system is implemented
on a Intel Pentium IV PC, using OpenCV libraries [Bradksi and
Pisarevsky 2000].

Our color plate shows several results from the processing of still
images. More images and videos generated using our approach are
available from our project web page.

7 Conclusions

We present a new approach that builds on and refines several ex-
isting techniques for generating painterly animations. The central
element in our work is a brush stroke with dynamic properties. Our
brush strokes are arranged in layers and their behaviors are gov-
erned by user defined and selected styles as well information ex-
tracted from the input image, video, or motion information. Our
primary contributions that extend the state of the art for painterly
rendering of images and video are:

• Our use of radial basis functions to globally interpolate brush
stroke orientation- This allows us to emulate styles like Van
Gogh better than previous techniques have demonstrated. It
also aids temporal coherency by preserving through time the
basis points that influence orientation.

• Using edges to guide painterly refinement- This grants us
greater stylistic freedom than previous methods. Colors in
many of our renders are greatly warped, yet the images are
still comprehensible because the paintings are structurally re-
fined.

• Handling of real brush stroke textures and lighting during ren-
dering as well as decoupling of canvas space from input space

• The discovery of new, relevant stylistic parameters

• Placing temporal constraints on brush stroke properties- Tem-
poral incoherency, which was in the past the chief detractor
of NPR video techniques, is avoided with much care in our
approach both by the addition of temporal constraints to pre-
viously researched brush stroke properties and by the addition
of new brush stroke properties like opacity.

• Flexible handling of motion information- Users may mix and
match or synthesize motion information for videos and still
images for non-photorealistic effects.

For future work, we are exploring the rendering solid concepts
of Klein et al. [2002]. The notion of decoupling input and output
frame rates is also interesting. There is also room to improve per-
formance by having the rendering step performed on graphics hard-
ware. Finally, we are looking into studying region-based methods
to extend beyond pixels to cell-based renderings.
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