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Abstract Progress in scene understanding requires reason-
ing about the rich and diverse visual environments that make
up our daily experience. To this end, we propose the Scene
Understanding database, a nearly exhaustive collection of
scenes categorized at the same level of specificity as human
discourse. The database contains 908 distinct scene cate-
gories and 131,072 images. Given this data with both scene
and object labels available, we perform in-depth analysis of
co-occurrence statistics and the contextual relationship. To
better understand this large scale taxonomy of scene cat-
egories, we perform two human experiments: we quantify
human scene recognition accuracy, and we measure how typ-
ical each image is of its assigned scene category. Next, we
perform computational experiments: scene recognition with
global image features, indoor versus outdoor classification,
and “scene detection,” in which we relax the assumption that
one image depicts only one scene category. Finally, we relate
human experiments to machine performance and explore the
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relationship between human and machine recognition errors
and the relationship between image “typicality” and machine
recognition accuracy.
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1 Introduction

Scene understanding is the gateway to many of our most val-
ued behaviors, such as navigation, recognition, and reasoning
with the world around us. By “scene” we mean a place within
which a person can act, or a place to which a person could
navigate. In this paper we hope to address many questions
about the “space of scenes” such as: How many kinds of
scenes are there? How can scene categories be organized?
Are some exemplars better than others? Do scenes co-occur
in images? How do the spatial envelope properties corre-
late with the social functions of scenes? How do the current
state-of-the-art scene models perform on hundreds of scene
categories encountered by humans, and how do these compu-
tational models compare to human judgments about scenes?

Given that most of the places we experience are built by
and for people, the number of scene classes or partitions
one can make of the world is in constant evolution: there
may be finer-grained categories emerging from economical
or functional constraints (e.g., compact apartment) or cate-
gories with only one exemplar (e.g., a specific space station)
(Bunge and Fitzpatrick 1993). Despite this variability, there
is a core number of places that people tend to encounter in
the world, that form the basis of categorical knowledge for
the field of scene understanding. The list proposed here rep-
resents a lower bound on the number of places that can be
named.
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Whereas most computational work on scene and place
recognition has used a limited number of semantic categories,
representing typical indoor and outdoor settings (Lazebnik
et al. 2006; Fei-Fei and Perona 2005; Renninger and Malik
2004; Vogel and Schiele 2007; Oliva and Torralba 2001;
Barnard et al. 2003; Torralba et al. 2003), access to large
quantities of images on the Internet now makes it possible
to build comprehensive datasets of images organized in cat-
egories (Griffin et al. 2007; Torralba et al. 2008; Deng et
al. 2009) in order to capture the richness and diversity of
environments that make up our daily experience.

Although the visual world is continuous, most environ-
mental scenes, like objects, are visual entities that can be
organized in functional and semantic groups. Like objects,
particular environments will trigger specific actions, such as
eating in a restaurant, drinking in a pub, reading in a library,
and sleeping in a bedroom. However, when faced with envi-
ronments from a given basic-level semantic category (e.g.
kitchen), people may behave differently and have different
expectations depending on the specifics of the place (e.g.
a house kitchen, a restaurant kitchen, an industrial kitchen).
Therefore, it is critical for artificial vision systems to discrim-
inate the type of environments at the same level of specificity
as humans. Here, we provide a fine-grained taxonomy and
dataset representing the diversity of visual scene categories
that can be encountered in the world (Fig. 1), and we provide
computational benchmarks for large-scale scene categoriza-
tion tasks.

This paper has the following four objectives. First, we
propose a method to, as thoroughly as possible, determine
the number of different scene categories. We identify all the
scenes and places that are important enough to have unique
identities in discourse, and build a large scale dataset of scene
image categories. Second, we perform experiments to mea-
sure how accurately humans can classify exemplars of scenes
into hundreds of categories, how “typical” particular scenes
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Fig. 1 Examples of scene categories in our SUN database

are of their assigned scene category, and how scene categories
relate in terms of high-level semantic properties. Third, we
evaluate the scene recognition and indoor vs outdoor classi-
fication on this large scale scene database using a combina-
tion of many image features. Finally, we introduce the scene
detection task with the goal of determining which scene cate-
gories are present in local image regions. Where appropriate,
we explore the relationship between human experiments and
machine performance.

2 Building the SUN Database

In this section we describe our procedure to build a large-
scale database of scenes. We provide a rough estimate of the
number of common scene types that exist in the visual world
and build an extensive image database to cover as many of
these as possible. We refer to this dataset as the SUN (Scene
UNderstanding) database1 Xiao et al. (2010).

2.1 Constructing Scene Taxonomy

In order to define a list of scene categories, we follow a pro-
cedure similar to (Biederman 1987) process for determining
the number of objects by counting object names in the dic-
tionary. Here, we used WordNet (Fellbaum 1998), an elec-
tronic dictionary of the English language containing more
than 100,000 words. We first selected the 70,000 words that
correspond to non-abstract terms and that are available in the
Tiny Images dataset (Torralba et al. 2008). We then manu-
ally selected all of the terms that described scenes, places
and environments (any concrete noun which could reason-
ably complete the phrase “I am in a place”, or “Let’s go to
the place”). Most of the terms referred to entry-level places
(Tversky and Hemenway 1983; Rosch 1973; Rosch et al.
1976; Jolicoeur et al. 1984). In the categorization literature,
“entry-level” refers to the level of categorization most com-
monly used in everyday situations, (e.g., “kitchen” or “class-
room”). In reference to visual scenes, these entry-level terms
would refer to a set of environments that share visual sim-
ilarities and objects, which may lead to similar interactions
and activities. We did not include specific place names (like
Grand Canyon or New York) or terms that did not seem to
evoke a specific visual identity (territory, workplace, out-
doors). Non-navigable scenes (such as desktop) were not
included, nor were vehicles (except for views of the inside
of vehicles) or scenes with mature content. We included spe-
cific types of buildings (skyscraper, house, hangar), because,
although these can be seen as objects, they are known to
activate scene-processing-related areas in the human brain

1 All the images and scene definitions are available at
sundatabase.mit.edu or sun.cs.princeton.edu.
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(Epstein and Kanwisher 1998). We also included many
vocabulary terms that convey significance to experts in par-
ticular domains (e.g. a baseball field contains specialized
subregions such the pitcher’s mound, dugout, and bullpen;
a wooded area could be identified as a broadleaf forest, rain-
forest, or orchard, depending upon its layout and the partic-
ular types of plants it contains). To the WordNet collection
we added a few categories that seemed like plausible scenes
but were missing from WordNet, such as jewelry store and
mission.

This gave about 2,500 initial scene words, and after man-
ually combining synonyms (provided by WordNet) and sep-
arating scenes with different visual identities (such as indoor
and outdoor views of churches), this was refined to a final
dataset of 908 categories.

It is possible to use a similar procedure to get an esti-
mate of the number of object words in the WordNet database.
As with the scenes, we started with the 70,000 non-abstract
terms from WordNet. We then selected a random 2 % of the
words and determined what proportion of these were objects.
Including synonyms, there are about 2,500 scene words and
about 27,000 object words; that is to say, there are about 10
times as many object words as there are scene words. This dif-
ference reflects the fact that there are more subordinate-level
terms in the object domain (e.g., names for each individual
species of plant and animal) and more synonyms for the same
object (an individual species has both a scientific name and
one or more common names).2 What this analysis makes
clear is that there are far more words for objects than scenes,
and likely more distinct categories of objects than there are
distinct categories of scene. Although we can think of scenes
as distinct combinations of objects, there are far fewer scene
categories than there are possible configurations of objects.
This is because not all distinct object configurations give
rise to different scene categories, and most scene categories
are flexible in terms of their constituent objects (e.g., living
rooms can contain many different types of objects in various
configurations).

2.2 Collecting Images

Once we have a list of scenes, the next task is to collect
images belonging to each scene category. Since one of our
goals is to create a very large collection of images with vari-
ability in visual appearance, we collected images available
on the Internet using online search engines for each scene
category term. Similar procedures have been used to create
object databases such as Caltech 101 Fei-Fei et al. (2004),

2 This difference also explains why our count is much higher than (Bie-
derman 1987) estimate of about 1,000 basic-level objects – we included
all object words in our count, not just basic-level terms.

Caltech 256 Griffin et al. (2007), Tiny Images Torralba et al.
(2008) and ImageNet Deng et al. (2009).

For each scene category, images were retrieved using
a WordNet term from various search engines on the web.
When a category had synonyms, images for each term
were retrieved and then the images were combined. Only
color images of 200 × 200 pixels or larger were kept.
For similar scene categories (e.g. “abbey”, “church”, and
“cathedral”) explicit rules were formed to avoid overlap-
ping definitions. Images that were low quality (very blurry or
noisy, black-and-white), clearly manipulated (distorted col-
ors, added text or borders, or computer-generated elements)
or otherwise unusual (aerial views, incorrectly rotated) were
removed. Duplicate images, within and between categories,
were removed. Then, a group of participants (n = 9, including
some of the authors) manually removed all the images that
did not correspond to the definition of the scene category.

For many of the 908 SUN categories an image search
returns relatively few unique photographs. The success of
each search depends upon how common the scene category
is in the world, how often people photograph that type of
scene (and make their photos available on the Internet), and
how often the photos are labeled with the category name or
a synonym from our list. For example, the SUN database
contains more images of living rooms than airplane cabins;
this is probably because airplane cabins are encountered less
often, and even when people do take photos inside airplanes,
they don’t necessarily label the image as “airplane cabin.”
Because it is much more difficult to find images for some
scene categories than for others, the distribution of images
across scene categories in the database is not uniform (Fig. 2).
Examples of scene categories with more images are living
room, bedroom, and bookstore. Examples of under-sampled
categories include airlock, editing room, grotto, launchpad,
naval base, oasis, ossuary, salt plain, signal box, sinkhole,
sunken garden, and winners circle.

To provide data for research of objects in scenes, using
LabelMe (Russell et al. 2008), we have also labeled objects

Fig. 2 Visualization of the scene categories based on the number of
images in each category. Larger font size indicates more images in
the corresponding category. Color is used randomly for visualization
purpose only (Color figure online)
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Fig. 3 Examples from 19,503 fully annotated images in SUN

in a large portion of the image collection with polygonal
outlines and object category names. We describe the details
for object labeling protocol in a separate technical report
Barriuso and Torralba (2012). To date, there are 326,582
manually segmented objects for the 5,650 object categories
labeled. Example annotations are shown in Fig. 3.

2.3 Taxonomy and Database Limitations

Estimating the number of categories that compose a set of
items from a finite sample is a challenging task (see Bunge
and Fitzpatrick (1993) for a review). In the case of scene cat-
egories, this number might be infinite as there might always
be a new, very rare, category with a specific function not
considered before. Our dataset is not be an exhaustive list of
all scene categories, but we expect that the coverage is large
enough as to contain most of the categories encountered in
everyday life.

It is important to acknowledge that the procedure used
here is not the only way to create a list of scene categories
and collect images. There are different ways to define and
categorize “scenes”, which would generate different organi-
zations of the images, and different categories, than the one
used here. For instance, an alternate strategy would be to
record the visual experience of an observer and to count the
number of different scene categories viewed. We had seven
participants (including two of the authors) write down, every
30 min, the name of the scene category in which they were
located, for a total of 284 h across participants. During that
time, the participants reported a total of 54 distinct places.
All the scenes provided were already part of the produced
from WordNet which we take as an indication of the com-
pleteness of the list provided by WordNet. This procedure is
unlikely to produce a complete list of all scene categories,
as many scene categories are only viewed on rare occasions
(e.g., cloister, corn field, etc.) and would be dependent on
the individual daily activities. However, this method would
have the advantage of producing a list that would also pro-
vide information about the real frequency of environments
encountered under normal viewing conditions.

Figure 4b shows the sorted distribution of scenes obtained
in this way. In this plot, the vertical axis corresponds to the
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Fig. 4 a Sorted distribution of scene classes in the SUN database. b
Sorted distribution of scene classes encountered while recording daily
visual experience. c Sorted distribution of object counts in the SUN data-
base. The dashed line corresponds to the previous list function A/rank,
where the constant A is the max of each curve

percentage of time spent in each scene type (which is an
indication of the number of images that would be collected
if we recorded video). Note that the distribution looks quite
different from the one in Fig. 4a. For comparison, we also
show the distribution of objects in the SUN dataset (Spain
and Perona 2008). The distributions in Fig. 4b and 4c look
similar and can be approximated by a Zipf law with the form
A/rank, where A is a constant and the number of instances
of a category is inversely proportional to its rank in the sorted
list.

There are also different ways to sample the visual world
in order to create a collection of images for each category.
For example, one might decide that different views of the
same place qualify as different scenes, or one might choose
to subdivide scenes based on spatial layout or surface fea-
tures (e.g., forests with or without snow). Our goal here is
to propose an initial list that is extensive enough as to cover
most of plausible scene categories. Like estimating the num-
ber of visual object categories, counting the number of scene
categories is an open problem and here we are providing a
first estimate.

It should also be noted that this database is biased to a
U.S. / English-speaking perspective of scenes, because the
database was constructed around the set of English-language
scene names. Likewise, all the human experiments we report
on this database were conducted in English and some (par-
ticularly the scene typicality ratings) were restricted to U.S.-
based participants. There is no doubt an important role of
culture in the way people perceive and categorize scenes,
but trying to build a scene dataset that encompasses all lan-
guages and cultures is beyond the scope of this paper. Instead,
it seems a reasonable starting point to focus on scene cate-
gorization in a particular group.

3 Analyzing the SUN Database

The SUN database is the first dataset with a large coverage
of natural scenes with objects. Therefore, it provides us the
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Fig. 5 Object annotation in the SUN database. At left is a visualiza-
tion of the object categories based on the number of annotations in each
category. Larger font size indicates more examples of that object cate-

gory. Color is used randomly for visualization purpose only. At right
are examples of the 12,839 annotated chairs in the SUN database (Color
figure online)
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Fig. 6 Per-image object statistics in the SUN database

unprecedented opportunity to obtain the natural statistics for
objects and scenes, and study their relationship. In this sec-
tion, we conduct in-depth analysis in these aspects.

3.1 Statistics of Scenes

The final dataset contains 908 categories and 131,072
images3. Figure 4a shows the distribution of the number of
images collected for each scene category in the SUN data-
base, where the categories are sorted in decreasing order of
available images.

3.2 Statistics of Objects

A visualization of label counts is shown in Fig. 5. The most
common objects are those which appear frequently in a large
number of scene categories, so the most common objects
in the database are structural regions (wall, window, floor,
ceiling, and sky), followed by ubiquitous objects like chairs,
people, trees, and cars. Objects which occur only in particular
scene categories, like soccer goal or X-ray machine, are of

3 The number of images is continuously growing as we run our scripts
to query more images from time to time.

course much less common. As with scenes, the distribution
of objects in the database is a function of how common the
object is in the world, the likelihood that a photographer will
choose to include the object in a scene, and the likelihood
that it will be labeled with a particular term.

Our object annotation dataset differs from other popu-
lar object datasets, such as ImageNet and PASCAL VOC.
These databases were created by finding images for specific
object categories, but the SUN database was created by col-
lecting scene categories—we did not have object recogni-
tion in mind. Therefore, the statistics of objects in the SUN
database might be expected to better match the statistics of
objects in real-world settings. Figure 6 shows the distribu-
tion of images over different numbers of object instances and
object types. Figure 6a shows that on average, there are 16.8
object instances in each image, ranging from one object in a
sky picture to 190 object instances in a mosque picture which
shows a crowd of people. In comparison, the average number
of instances per image is 1.69 in the PASCAL dataset, 1.59 in
the ImageNet ILSVRC, and 1.91 in the normalized ILSVRC
(Russakovsky et al. 2013). Figure 6b shows that on average,
there are 9.46 different object categories in a single image,
with the most diverse image being a kitchen photo that has
46 different object categories in the same image. In general,
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indoor spaces such as bedrooms, kitchens, and dining rooms
have a greater variety of object categories, which makes the
object detection task more challenging. On the other hand,
some outdoor natural spaces, such as savannas and ice floes,
have very few possible object categories, which makes the
standard object detection task easier. In comparison, PAS-
CAL VOC 2012 and ImageNet ILSVRC 2013 have 1.5 object
categories and 2.7 object instances per image, respectively.

Another important difference in the SUN database is the
distribution of object sizes in the image (shown in Fig. 7).
Following the criteria used in Russakovsky et al. (2013), the
object scale in an image is calculated as the ratio between
the area of a ground truth bounding box around the object
and the area of the image. Using the bounding box measure,
the average scale per class on the PASCAL dataset is 0.241
(Russakovsky et al. 2013), and on the ImageNet ILSVRC
is 0.358 (Russakovsky et al. 2013), while it is 0.0863 in the
SUN database. In our database, many object categories are
not well-approximated by bounding boxes because the object
is thin or highly deformable (e.g. rope), or because the object
is a region (wall, sky), so we also calculate object scale using
the annotated outline of the object. In this case, object scale
is the ratio between the area of the bounding polygon and
the area of the image. If we calculate object scale using the
ground truth bounding polygon, the average scale per class
is 0.0550.

By annotating all of the objects in each image and with
a large collection of images across a wide variety of natural
scenes, we have a unprecedented opportunity to study object
scale in real-world viewing conditions. Object detection lit-
erature (e.g. PASCAL) has typically been limited to objects
over some minimum size (such as tables, cars, and chairs).
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Although significant progress has been made in detecting
these categories, it does not necessarily represent progress on
the majority of object categories. Our statistics on a large col-
lection of natural scene images in Fig. 7 show that more than
80 % of object categories have average pixel areas smaller
than 10 % of the image. For example, the average size of a
“fork” in the SUN database is 0.09 % of the image. Of course,
one could take a closer view of a fork and it would fill more of
the image, but in general, people typically encounter objects
like forks at a very small scale. As Fig. 7 shows, objects at
this scale can be recognized in the context of a scene. From
the histogram, we can see that 72 % of the object categories in
the SUN database have smaller average scale than the typical
PASCAL object scale, and 94 % of the object categories have
smaller scale than than typical ImageNet object scale. These
statistics highlight the importance of recognizing these small
objects, and expose the bias towards larger objects in most
object detection literature. While the progress on detecting
these larger objects has been impressive, we must remem-
ber great variety of small object categories when designing
object recognition systems.

3.3 Scene-Object Co-Occurance

Other popular recognition datasets typically only have either
object or scene annotated, such as Pascal VOC, ImageNet,
LabelMe and 15-scene dataset. Our SUN database uniquely
provides a complete annotation for both objects and scenes
on the same set of images, covering a large number of both
categories. This provides us the unprecedented opportunity
to obtain the natural statistics between objects and scenes
and to study the interesting relationship among object and
scenes.

Figure 8a shows, for all of the labeled object categories,
the number of scenes in which each object category appears.
Some object categories appear in only one scene category,
while common objects such as “wall” appear in 330 differ-
ence categories. Leveraging object-scene co-occurrence can
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be a powerful tool for recognition: some objects are very
strong predictors of scene category. For example, if an object
detector can find a bathtub in an image, based on the co-
occurrence statistics of the SUN database, we can be 100 %
certain that the image must be a bathroom scene. Naturally,
extremely rare objects are very highly predictive (e.g., “xylo-
phone” appears only once in the database, so it is 100 %
predictive of its scene category), but since these objects are
unlikely to occur in other settings, they are less useful for
scene classification. Figure 8b illustrates how often a object
category occurs within the same image.

Just as objects can provide information about scene cate-
gory, scene category is a strong predictor of object identity.
For example, if a scene is known to be an example of the
“bank indoor” category, we can be 100 % certain that it will
include a “floor” object. Similarly, if the scene category is
“barn” we can be 100 % certain that it will include a “sky”
object. (Note that this is a statement about the database and
not all possible images of these scenes: it is possible, though
uncommon, to take a picture of a barn which does not include
any sky.)

Using the object annotations, we can define the similarity
of two images based on the histogram intersection of object
instances in the two images, and see whether images from
a single scene category tend to be more similar using this
metric. Figure 9 shows four pairs from the ten most similar
pairs of images in the SUN database. The first two exam-
ples are pairs that share a scene category, which shows that
in some cases, the object histogram can be used to detect
similar scene categories. However, the third and the fourth
example show that the object histogram does not necessarily
find nearest neighbors from the same scene category. Both
the “stage indoor” image and the “mosque outdoor” image
have a lot of people, and both the “market indoor” image
and the “archive” image have many boxes, which causes the
histogram measure to view these pairs as highly similar. Just
knowing the types of objects in a scene is unlikely to provide
enough information to classify scenes at a fine-grained level:
scene layout and visual features of the objects are necessary
to distinguish, for example, a fortress from a hospital, or a
hospital from a storefront.

Fig. 9 Four example pairs of most similar images based on object
histogram

4 Behavioral Studies Using the Sun Database

In this section, we study (1) human scene classification per-
formance on the SUN database, (2) human estimates of the
“typicality” of every image with respect to its scene category.

4.1 Scene Categorization

We ask human participants to classify images from the data-
base into one of 397 scene categories in an alternative forced
choice setting. For this experiment, we have two goals: (1) to
show that our database is constructed consistently and with
minimal overlap between categories (2) to give an intuition
about the difficulty of 397-way scene classification and to
provide a point of comparison for computational experiments
(Sect. 5.2).

Measuring human classification accuracy with 397 cate-
gories is challenging. We don’t want to penalize humans for
being unfamiliar with our specific scene taxonomy, nor do we
want to train people on the particular category definitions and
boundaries used in our database (however, such training was
given to those who built the database). To help participants
know which labels are available, we provide the interface
shown in Fig. 10. Participants navigate through a three-level
hierarchy to arrive at a specific scene type (e.g. “bedroom”)
by making relatively easy choices (e.g., “indoor” versus “out-
door natural” versus “outdoor man-made” at the first level).
The 3-level tree contains then 397 leaf nodes (SUN cate-
gories) connected to 15 parent nodes at the second level that
are in turn connected to three nodes at the first level (super-
ordinate categories). The mid-level categories were selected
to be easily interpreted by workers, have minimal overlap,
and provide a fairly even split of the images in each super-
ordinate category. When there was any confusion about the
best super-ordinate category for a category (e.g., “hayfield”
could be considered natural or man-made), the category was
included in both super-ordinate categories. This hierarchy is
used strictly as a human organizational tool, and plays no
roll in the experimental evaluations (although we do report
machine classification performance on the different levels of
the hierarchy, simply for completeness). For each leaf-level
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attic

basement

bathroom

bedroom

bow_window/indoor

chicken_coop/indoor

childs_room

Fig. 10 Graphical user interface of Amazon’s Mechanical Turk task
for 397-category alternative forced choice
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SUN category the interface shows a prototypical image from
that category.

We measure human scene classification accuracy using
Amazon’s Mechanical Turk (AMT). For each SUN category
we measure human accuracy on 20 test scenes, for a total of
397 × 20 = 7940 trials. We restricted these HITs to partici-
pants in the U.S. to help avoid vocabulary confusion.

The accuracy of all AMT workers is shown in Fig. 11.
On average, workers took 61 s per HIT and achieved 58.6 %
accuracy at the leaf level. This is quite high considering that
chance is 0.25 % and numerous categories are closely related
(e.g., “church”, “cathedral”, “abbey”, and “basilica”). How-
ever, a significant number of workers have 0 % accuracy—
they do not appear to have performed the experiment rigor-
ously. If we instead focus on the “good workers” who per-
formed at least 100 HITs and have accuracy greater than
95 % on the relatively easy first level of the hierarchy the
leaf-level accuracy rises to 68.5 %. These 13 “good workers”
accounted for just over 50 % of all HITs. For reference, an
author involved in the construction of the database achieved
97.5 % first-level accuracy and 70.6 % leaf-level accuracy. In
the remainder of the paper, all evaluations and comparisons
of human performance utilize only the data from the good
AMT workers.

Figure 12 and 13 show the SUN categories for which the
good workers were most and least accurate, respectively.
For the least accurate categories, Fig. 13 also shows the
most frequently confused categories. The confused scenes
are semantically similar—e.g. abbey and church, bayou and
river, and sandbar and beach. Within the hierarchy, indoor

Fig. 11 Histogram of the scene recognition performances of all AMT
workers. Performance is measured at the intermediate (level 2) and leaf
(level 3) levels of our hierarchy

bathroom(100%)      beauty salon(100%)      bedroom(100%)         building(100%)           closet(100%)        dentists office(100%)    florist shop (100%)      gas station(100%)

greenhouse (100%)

playground(100%)

podium (100%)

phone booth(100%)

gymnasium(100%)

highway(100%)

     stadium football   
          (100%)        riding arena(100%)

tennis court (100%)
wind farm(100%) veterinarians office

(100%) hospital room(96%) ice skating rink (96%) skatepark(96%)

sauna(96%)        subway interior(96%)

Fig. 12 SUN categories with the highest human recognition rate

Fig. 13 Top row SUN categories with the lowest human recognition
rate. Below each of these categories, in the remaining three rows, are
the most confusing classes for that category

Fig. 14 The cumulative sum of the n largest entries in each row of the
confusion matrix. The box indicates the 25th to 75th percentiles at each
n

sports and leisure scenes are the most accurately classified
(78.8 %) while outdoor cultural and historical scenes were
least accurately classified (49.6 %). Even though humans per-
form poorly on some categories, the confusions are typically
restricted to just a few classes (Fig. 14).

Human and computer performance are compared exten-
sively in Sect. 5.2. It is important to keep in mind that the
human and computer tasks are not completely equivalent.
The “training data” for AMT workers was a text label, a
single prototypical image, and their past visual experience
with each category (which could be extensive for everyday
categories like “bedroom” but limited for others). The com-
putational model had 50 training examples per category. It is
also likely that human and computer failures are qualitatively
different—human misclassifications are between semanti-
cally similar categories (e.g. “food court” to “fast food restau-
rant”), while computational confusions are more likely to
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include semantically unrelated scenes due to spurious visual
matches (e.g., “skatepark” to “van interior”). In Fig. 15 we
analyze the degree to which human and computational con-
fusions are similar. The implication is that the human con-
fusions are the most reasonable possible confusions, having
the shortest possible semantic distance. But human perfor-
mance isn’t necessarily an upper bound – in fact, for many
categories the humans are less accurate than the best compu-
tational methods (Fig. 16).

Fig. 15 For each feature, we plot the proportion of categories for which
the largest incorrect (off-diagonal) confusion is the same category as
the largest human confusion

Fig. 16 Categories with similar and disparate performance in human
and “all features” SVM scene classification. Human accuracy is the left
percentage and computer performance is the right percentage. From
top to bottom, the rows are (1) categories for which both humans and
computational methods perform well, (2) categories for which both
perform poorly, (3) categories for which humans perform better, and
(4) categories for which computational methods perform better. The “all
features” SVM tended to outperform humans on categories for which
there are semantically similar yet visually distinct confusing categories,
e.g., sandbar and beach, baseball stadium and baseball field, landfill and
garbage dump

4.2 Typicality of Scenes

In the computer vision literature, the organization of visual
phenomena such as scenes into categories is ubiquitous. Each
particular instance is assumed to be an equally good repre-
sentative of the category. This is a useful high level model
for many computational experiments, but most theories of
categorization and concepts agree that category membership
is graded - some items are more typical examples of their
category than others (Tversky and Hemenway 1983). The
most typical examples of a category show many advantages
in cognitive tasks: for example, typical examples are more
readily named when people are asked to list examples of a
category, and response times are faster for typical examples
when people are asked to verify category membership (Rosch
1973).

To study the typicality of scenes, we ran a task on Ama-
zon’s Mechanical Turk to ask human annotators to choose
most and least typical examples from a list of images Ehinger
et al. (2011). Participants were told that the goal of the exper-
iment was to select illustrations for a dictionary. Each trial
consisted of three parts. First, participants were given the
name of a scene category from the database, a short defin-
ition of the scene category, and four images. Workers were
asked to select which of the four images matched the cate-
gory name and definition (one of the four images was drawn
from the target category and the other three were randomly
selected from other categories). The purpose of this task was
to ensure that participants read the category name and defin-
ition before proceeding to the rating task. Next, participants
were shown 20 images in a 4 × 5 array. These images were
drawn randomly from the target category, and did not include
the image which had served as the target in the previous task.
Images were shown at a size of 100×100 pixels, but holding
the mouse over any image caused a larger 300 × 300 pixel
version of that image to appear. An example of this display is
shown in Fig. 17. Workers were asked to select, by clicking
with the mouse, three images that best illustrated the scene
category. In the third part of the task, workers were shown the

Fig. 17 The display seen by participants in the typicality rating task
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same 20 images (but with their array positions shuffled) and
were asked to select the three worst examples of the target
scene category.

For this experiment we used the 706 scene categories from
our SUN database that contained at least 22 exemplars4. On
each trial, the set of 20 images was drawn randomly from
the set of images in the target category. These random draws
were such that each image appeared at least 12 times, and
no more than 15 times over the course of the experiment.
This resulted in 77,331 experimental trials. Each trial was
completed by a single participant. 935 people participated in
the experiment5. Participants could complete as many trials
as they wished; the average number of trials completed per
participant was 82.7 trials (median 7 trials).

Participants’ performance was evaluated using two mea-
sures: (1) performance on the 4AFC task, and (2) whether
they selected different images as the best and worst exam-
ples on a single trial. In general, participants performed well
on the 4AFC task, with an average correct response rate of
97 % (s.d. 0.13 %). Participants also reliably selected differ-
ent images as the best and worst examples of their category:
participants marked an image as both best and worst on only
2 % of trials (s.d. 0.10 %); the likelihood of re-selecting an
image by chance is 40 %. We identified 19 participants (2 %
of total participants) who re-selected the same images as both
best and worst on at least 25 % of trials, which suggests that
they were selecting images at random with no regard for
the task. Together these participants had submitted 872 trials
(1.13 % of trials), which were dropped from further analysis.

A typicality score was obtained for each image in the
dataset. The typicality score was calculated as the number
of times the image had been selected as the best example of
its category, minus a fraction (0.9) of the number of times it
was selected as the worst example, divided by the number of
times the image appeared throughout the experiment:

typicality = #of “best” votes − 0.9 × #of “worst” votes

number of appearances
.

Taking a fraction of the worst votes allows the number of
best votes to be used as a tie-breaker for images that per-
formed similarly. A typicality score near 1 means an image
is extremely typical (it was selected as the best example of
its category nearly every time it appeared in the experiment),
and a typicality score near −1 means an image is extremely
atypical (it was nearly always selected as a worst example).
Although the fraction 0.9 was chosen arbitrarily, any value
in the range 0.500–0.999 gives essentially the same results:

4 Category size ranged from 22 images in the smallest categories to
2360 in the largest. A total of 124,901 images were used in the experi-
ment.
5 All workers were located in the United States and had a good per-
formance record with the service (at least 100 HITs completed with an
acceptance rate of 95 % or better). Workers were paid $0.03 per trial.

(a) Most typical beaches (b) Least typical beaches

(c) Most typical bedrooms (d) Least typical bedrooms

Fig. 18 Example images rated as the most and least typical by partic-
ipants from Amazon’s Mechanical Turk

changing this value changes the range of possible scores, but
doesnt significantly change the rank order of scores within
a category (90 % of images move by less than 5 percentile
points). Examples of the most and least typical images from
various categories are shown in Fig. 18.

5 Scene Recognition on the SUN Database

In this section we explore how discriminable the SUN cate-
gories and exemplars are with a variety of image features and
kernels paired with One-vs-Rest Support Vector Machines.

5.1 Scene Features

We selected or designed several state-of-the-art features that
are potentially useful for scene classification: GIST, SIFT,
and HOG (which are all local gradient-based approaches),
SSIM (which relates images using their internal layout of
local self-similarities), and Berkeley texton. As a baseline, we
also include Tiny Image (Torralba et al. 2008), and straight
line histograms. To make our color and texton histograms
more invariant to scene layout, we also build histograms
for specific geometric classes as determined by Hoiem et al.
(2007). The geometric classification of a scene is then itself
used as a feature, hopefully being invariant to appearance but
responsive to layout.

GIST The GIST descriptor (Oliva and Torralba 2001)
computes a wavelet image decomposition. Each image loca-
tion is represented by the output of filters tuned to different
orientations and scales. We use a Gabor-like filters steerable
pyramid with eight orientations and four scales applied to
the intensity (monochrome) image. To capture global image
properties while keeping some spatial information, we take
the mean value of the magnitude of the local features aver-
aged over large spatial regions. The square output of each
filter is averaged on a 4 × 4 grid. This results in an image
descriptor of 8 × 4 × 16 = 512 dimensions. GIST features
(Oliva and Torralba 2001) are computed using the code avail-
able online and we use an exponential χ2 kernel. To estab-
lish a comparison between these hand designed features and
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features that learned from data, we ue the state-of-the-art
Convolutional Neural Networks feature Overfeat (Sermanet
et al. 2013).

HOG2×2 The histogram of oriented edges (HOG) descrip-
tors are widely use for pedestrian and object detection. HOG
decomposes an image into small squared cells (typically
8 × 8 pixels), computes a histogram of oriented gradients
in each cell, normalizes the result using a block-wise pat-
tern (with 2 × 2 square HOG blocks for normalization), and
return a descriptor for each cell. HOG exists in two major
variants: the original Dalal-Triggs variant Dalal and Triggs
(2005) and the UoCTTI variant Felzenszwalb et al. (2007).
Dalal-Triggs HOG Dalal and Triggs (2005) works with undi-
rected gradients only and does not do any compression, for
a total of 36 dimension. UoCTTI HOG Felzenszwalb et al.
(2007) computes instead both directed and undirected gra-
dients as well as a four dimensional texture-energy feature,
but projects the result down to 31 dimensions. In may appli-
cations, UoCTTI HOG tends to perform better than Dalal-
Triggs HOG. Therefore, we use UoCTTI HOG in our exper-
iments, computed using the code available online provided
by Felzenszwalb et al. (2007). In Xiao et al. (2010), we argue
that stacking the features from multiple HOG cells into one
feature is very important, because the higher feature dimen-
sionality provides more descriptive power, and significantly
improves the performance in our experiments. In our exper-
iment, we tried different sizes of windows for stacking the
HOG features, and only report the best performing one. 2×2
neighboring HOG descriptors are stacked together to form a
124 dimensional descriptor. The stacked descriptors spatially
overlap. The confusion matrixThe descriptors are quantized
into 300 visual words by k-means. With this visual word
representation, three-level spatial histograms are computed
on grids of 1 × 1, 2 × 2 and 4 × 4. Histogram intersection
Lazebnik et al. (2006) is used to define the similarity of two
histograms at the same pyramid level for two images. The
kernel matrices at the three levels are normalized by their
respective means, and linearly combined together using equal
weights.

Dense SIFT As with HOG2×2, SIFT descriptors are
densely extracted (Lazebnik et al. 2006) using a flat rather
than Gaussian window at two scales (4 and 8 pixel radii) on a
regular grid at steps of 1 pixels. First, a set of orientation his-
tograms are created on 4×4 pixel neighborhoods with 8 bins
each. These histograms are computed from magnitude and
orientation values of samples in a 16×16 neighboring region
such that each histogram contains samples from a 4 × 4 sub-
region of the original neighborhood region. The magnitudes
are further weighted by a Gaussian function with equal to one
half the width of the descriptor window. The descriptor then
becomes a vector of all the values of these histograms. Since
there are 4 × 4 histograms each with 8 bins the vector has
128 elements. This vector is then normalized to unit length in

order to enhance invariance to affine changes in illumination.
To reduce the effects of non-linear illumination a threshold
of 0.2 is applied and the vector is again normalized. The
three descriptors are stacked together for each HSV color
channels6, and quantized into 300 visual words by k-means.
Next, kernels are computed from spatial pyramid histograms
at three levels by the same method above for HOG2×2. SIFT
descriptors are computed using the VLFeat library Vedaldi
and Fulkerson (2008) and we also use a histogram intersec-
tion kernel as in Lazebnik et al. (2006).

LBP Local Binary Patterns (LBP) Ojala et al. (2002) is a
multi-resolution approach to gray-scale and rotation invari-
ant texture classification based on local binary patterns and
nonparametric discrimination of sample and prototype distri-
butions. The method is based on recognizing that certain local
binary patterns are fundamental properties of local image tex-
ture, and their occurrence histogram has proven to be a pow-
erful texture feature. We can regard the scene recognition
as a texture classification problem and therefore apply this
model to our problem. Ahonen et al. (2009) also extended this
approach to be a rotation invariant image descriptor, called
Local Binary Pattern Histogram Fourier (LBP-HF). We try
this descriptor to examine whether rotation invariance is suit-
able for scene recognition. For both LBP and LBP-HF, we
use histogram intersection kernel.

Texton A traditional and powerful local image descriptor
is to convolve the image with Gabor-like filter bank Shotton
et al. (2006). Therefore, we use eight oriented even and odd
symmetric Gaussian derivative filters and a center surround
(difference of Gaussians) filter, as the popular image segmen-
tation framework Arbelaez et al. (2007, 2011). We use a filter
bank containing 8 even and odd-symmetric filters and one
center-surround filter at 2 scales. The even-symmetric filter
is a Gaussian second derivative, and the odd-symmetric filter
is its Hilbert transform. We build a 512 entry universal texton
dictionary Martin et al. (2001) by clustering responses to the
filter bank. For each image we then build a 512-dimensional
histogram by assigning each pixel’s set of filter responses to
the nearest texton dictionary entry. We compute an exponen-
tial kernel from χ2 distances.

Sparse SIFT As in “Video Google” Sivic and Zisser-
man (2004), we build SIFT features at Hessian-affine and
MSER Matas et al. (2004) interest points. We cluster each
set of SIFTs, independently, into dictionaries of 1,000 visual
words using k-means. An image is represented by two his-
tograms counting the number of sparse SIFTs that fall into
each bin. An image is represented by two 1,000 dimension

6 Note that we use color for dense SIFT computation and train the fea-
ture codebook using SUN database that contains color images only. The
15-scene dataset from Lazebnik et al. (2006) contains several categories
of grayscale images, which do not have color information. Therefore,
the result of our color-based dense SIFT on the 15-scene database (see
Fig. 19a) is much worse than what is reported in Lazebnik et al. (2006).
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(a) 15 scene categories on 15-scene dataset [25].
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(b) 397 scene categories on SUN database.

1 5 10 20 50
50

55

60

65

70

75

80

85

90

95

100

Overfeat [94.1]
All w/o Overfeat [93.5]
HOG2x2 [89.9]
Texton [89.6]
Dense SIFT [89.4]
Geo Texton [88.8]
SSIM [88.6]

All [94.2] LBP [87.6]
Geo Map [87.5]
GIST [86.9]
LBP-HF [85.7]
Tiny Image [82.7]
Sparse SIFT [79.4]
Line Hists [71.5]
Geo Color [70.0]

(c) Indoor-vs-outdoor binary classification on SUN database.
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(d) 16-way classification at the second-level hierarchy on SUN.

Fig. 19 a Classification accuracy on the 15 scene dataset (Oliva and
Torralba 2001; Lazebnik et al. 2006; Fei-Fei and Perona 2005). b Clas-
sification accuracy on the 397 well-sampled categories from SUN data-

base. c Classification accuracy for indoor-vs-outdoor task using SUN
database. d Classification accuracy for the 16 categories at the second
level of the scene hierarchy using SUN database

histograms where each SIFT is soft-assigned, as in Philbin et
al. (2008), to its nearest cluster centers. Kernels are computed
using histogram intersection.

SSIM Self-similarity descriptors Shechtman and Irani
(2007) are computed on a regular grid at steps of five pix-
els. Each descriptor is obtained by computing the correlation
map of a patch of 5 × 5 in a window with radius equal to 40

pixels, then quantizing it in 3 radial bins and 10 angular bins,
obtaining 30 dimensional descriptor vectors. The descriptors
are then quantized into 300 visual words by k-means. After
that, kernels are computed from spatial histograms at three
levels using exponential χ2.

Tiny Image The most trivial way to match scenes is to com-
pare them directly in color image space. Reducing the image
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dimensions drastically makes this approach more computa-
tionally feasible and less sensitive to exact alignment. This
method of image matching has been examined thoroughly by
Torralba et al. (2008) for the purpose of object recognition
and scene classification. Inspired by this work we use 32 by
32 color images as one of our features. Images are compared
with an exponential χ2 kernel.

Line Hists We find straight lines from Canny edges using
the method described in Video Compass Kosecka and Zhang
(2002). For each image we build two histograms based on the
statistics of detected lines– one with bins corresponding to
line angles and one with bins corresponding to line lengths.
We use a histogram intersection kernel to compare these
unnormalized histograms. This feature was used in Hays and
Efros (2008).

Geo Map We compute the geometric class probabilities for
image regions using the method of Hoiem et al. (2007). We
use only the ground, vertical, porous, and sky classes because
they are more reliably classified. We reduce the probability
maps for each class to 8 × 8 and use an RBF kernel. This
feature was used in Hays and Efros (2008).

Geo Texton & Geo Color Inspired by “Illumination Con-
text” Lalonde et al. (2007), we build color and texton his-
tograms for each geometric class (ground, vertical, porous,
and sky). Specifically, for each color and texture sample, we
weight its contribution to each histogram by the probability
that it belongs to that geometric class. These eight histograms
are compared with χ2 distance.

Overfeat Overfeat Sermanet et al. (2013) is a state-of-the-
art Convolutional Neural Network (CNN) for feature learn-
ing. Note that deep CNN algorithms typically require a lot
of training data due to the huge number of parameters for
learning. We cannot train these models using a small number
of images (e.g. 1 image per category as our curves shown
in Fig. 19). Therefore, we use the off-the-shelf Overfeat fea-
tures learned from ImageNet dataset Deng et al. (2009). We
normalize the feature and use a χ2 kernel to train a Sup-
port Vector Machine with these learned ImageNet features
Razavian et al. (2014).

5.2 Scene Categorization

For comparison with previous works, we show results on the
15 scene categories dataset (Oliva and Torralba 2001; Lazeb-
nik et al. 2006; Fei-Fei and Perona 2005) in Fig. 19a. The
performance on the 397-category SUN database is shown in
Fig. 19b. For each feature, we use the same set of training
and testing splits. For trials with fewer training examples,
the testing sets are kept unchanged while the training sets
are decreased. The “All” classifier is built from a weighted
sum of the kernels of the individual features. The weight of
each constituent kernel is proportional to the fourth power of

Fig. 20 Pattern of confusion across categories. The classes have been
ordered to reveal the blocky structure. For clarity, the elements in the
diagonal have been set to zero in order to increase the contrast of the
off-diagonal elements. On the Y axis we show a sample of the scene
categories. Confusions seem to be coherent with semantic similarities
across classes. The scenes seem to be organized as natural (top), urban
(center) and indoor (bottom)

its individual accuracy determined through cross-validation.
The confusion matrix of the “All” combined classifier is
shown in Fig. 20. Classification results for selected categories
are shown in Fig. 21. The best 397-way scene classification
performance with all features, 42.7 %, is still well below the
human performance of 68 %. In Fig. 16 we examine the cate-
gories for which human and machine accuracy is most similar
and most dissimilar. It is interesting to note that with increas-
ing amounts of training data, the performance improvement
is more pronounced with the SUN dataset than the 15 scene
dataset, probably because the performance for the 15-scene
categorization is saturating, while the tasks for 397-way clas-
sification is more challenging and more training data would
be very helpful. The results in Fig. 19 also show that the
combination of the hand-designed features have comparable
performance with Overfeat learned from ImageNet. Don-
ahue et al. (2013) report slightly better results on the SUN
database (40.94 %) with another deep convolutional network
algorithm, DeCAF, trained on the ImageNet dataset. The best
performance on this benchmark that we are aware of is based
on Fisher vector (Sánchez et al. 2013), where they achieve
impressive 47.2 % accuracy using 50 images per category
for training.

Also, humans have fewer confusions than any of the
descriptors (the errors concentrate among fewer confusing
categories). This is shown in Fig. 14. The plot shows the
median value of the 397 cumulative sums of the n largest
entries in each row of the confusion matrix. For n = 1, the
value corresponds to the median of the largest value of each
row of the confusion matrix. For n = 2, the value corresponds
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Fig. 21 Selected SUN scene classification results using all features
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to the median of the sums of the two largest values of each
row, and so on. Humans have far fewer confusing categories
than the best performing descriptor. For humans, the 3 largest
entries in each row of the confusion matrix sum to 95 %,
while the “all feature” SVM needs 11 entries to reach 95 %.
Note that this analysis does not relate directly to accuracy—
a method might have relatively few entries in its confusion
matrix, but they could all be wrong. In Fig. 22 and Fig. 15
we examine the similarity in scene classification confusions
between humans and machines. The better performing fea-
tures not only tend to agree with humans on correct classifica-
tions, they also tend to make the same mistakes that humans
make.

To study indoor-vs-outdoor classification, we use the
scene hierarchy (Sect. 2 and Fig. 23) to divide the 397 scene
categories into two classes: indoor and outdoor. Then, we
evaluate the same set of features and report their perfor-
mance in Fig. 19c. There are two categories, promenade
deck and ticket booth, that are considered to be both indoor
and outdoor in our scene hierarchy. Therefore, we exclude
these two categories in our evaluation. We can see that the
order of performance for different features are quite differ-
ent, probably due to the great difference of the task com-
pared to 397-way scene classification. The overall perfor-
mance is 94.2 %, which suggests that this task is nearly
solved. Fig. 24 shows some errors made by the classi-
fier. We can see that the definition of indoor-vs-outdoor is
ambiguous in some places, such as images which show both
indoor elements and outdoor scenes through a window or
a door. Therefore, the accuracy on this task might be actu-
ally higher than what the evaluation suggests. Furthermore,
we train a 16-way classifier at the second level of the scene

      pasture                 field wild(19%)  athletic field/outdoor(10%)   corral(10%)             field wild(15%)  desert/vegetation(10%)

general store indoor  bazaar indoor(16%) apse indoor(5%) amusement arcade(10%)   fire station (10%) florist shop indoor(10%) 

squash court     tennis court indoor(10%) catacomb(10%)             oilrig(10%)            wheat field (10%)    bowling alley(5%)

stadium/baseball      baseball field(92%)       hayfield(10%)            bullring(10%)    stadium/football(10%) stadium/football(15%) 

         beach                     coast(16%)             highway(10%)              dock(10%)               fairway (10%)             coast(10%)

bus interior       subway interior(24%)  podium indoor(10%)      jail indoor(10%)         jail indoor(10%)   subway interior(15%)

True category  Humans      Tiny image         Gist           HOG2x2     All features

Fig. 22 Most confused categories for the 397 categories classification
task

outdoor natural                                                  indoor

shopping & dining    workplace     home & hotel  vehicle interior  sports & leisure      cultural

water & snow  mountains & desert forest & field

transportation  historical place        parks          industrial   houses & gardens  commercial markets

SUN
outdoor manmade

man-made

Full hierarchy available at http://vision.princeton.edu/projects/2010/SUN/hierarchy/

Fig. 23 The first two levels of a hierarchy of scene categories

(a) Outdoor images mis-classified as indoor scenes.

(b) Indoor images mis-classified as outdoor scenes.

Fig. 24 Typical errors for the indoor-vs-outdoor classification

hierarchy shown (in Fig. 23), and the results are shown in
Fig. 19d.

As might be expected, performance on this mid-level task
is lower than performance on the indoor-outdoor discrimina-
tion, but higher than performance on the 397-category classi-
fication. The difficulty of a scene classification task increases
as the categories become more fine-grained: there are more
categories available and it is harder to find a combination of
features which reliably distinguishes them. Accuracy on the
16-way mid-level scene classification on the SUN database
is also lower than the 15-way classification on the 15-scene
database, even though these tasks involve nearly the same
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Fig. 25 Performance of the SVM classifier as a function of image
typicality. Images are sorted according to their typicality score from
least typical (4th quartile) to most typical (1st quartile)

number of categories. This is because the mid-level cate-
gories used in the SUN hierarchy are heterogeneous and not
always well-separated; examples of these categories include
“shops and restaurants”, “offices, labs, construction, and fac-
tories (workspaces)”, “rooms in a home”, and “educational,
religious, or cultural spaces”. This is a contrast to the “basic
level” categories of the 15-scene database, which are, by
comparison, homogeneous and very clearly separated (e.g.
“office”, “city”, “forest”).

5.3 Recognition and Typicality of Scenes

What is the scene classification performance as a function
of scene typicality? Figure 25 shows that classification per-
formance for individual images varies with their typicality
scores, using the combined kernel with all features: the most
typical images were classified correctly about 50 % of the
time, and the least typical images were classified correctly
only 23 % of the time. Images were divided into four groups
corresponding to the four quartiles of the distribution of typ-
icality scores across the database. These groups contained
5,020, 4,287, 5,655, and 4,908 images (groups are listed in
order from fourth quartile—lowest typicality—to first quar-
tile). A one-way ANOVA comparing these quartile groups
shows a significant effect of image typicality quartile on
classification accuracy7; Bonferroni-corrected post-hoc tests
show that the differences between each quartile are signifi-
cant.

Image typicality is also related to the confidence of the
SVM classifier. The confidence reflects how well the classi-

7 F(3, 19846) = 278, p < .001.

Fig. 26 Confidence of the SVM classifier as a function of image typ-
icality. Images are sorted according to their typicality score from least
typical (4th quartile) to most typical (1st quartile)

fier believes the image matches its assigned category8. Figure
26 shows the SVM confidence as a function of image typi-
cality for correctly- and incorrectly-classified images. Con-
fidence increases with increasing typicality, but this pattern
is stronger in correctly-classified images.9

In summary, scenes which people rate as more typical
examples of their category are more likely to be correctly
classified by the algorithms based on global image descrip-
tors. Although we cannot claim that the features used in these
algorithms are the same features which humans use to per-
form the same classification task, this nevertheless indicates
that more typical examples of a scene category contain more
of the diagnostic visual features that are relevant for scene
categorization. It also shows that typical images of scene cat-
egories can be reliably identified by state of the art computer
vision algorithms.

5.4 Scene Detection

Imagine that you are walking in a street: scene recognition
will tell you that you are in the street, and object recognition
will allow you to localize people, cars, tables, etc. But there
are additional detection tasks that lie in between objects and
scenes. For instance, we want to detect restaurant terraces, or
markets, or parking lots. These concepts also define localized
regions, but they lack the structure of objects (a collection of

8 Due to the difficulty of the one-versus-all classification task, confi-
dence was low across all classifications, and even correctly-classified
images had average confidence scores below zero.
9 A 4 × 2 ANOVA gives significant main effects of image typicality
(F(3, 19842) = 79.8, p < .001) and correct vs. incorrect classification
(F(1, 19842) = 6006, p < .001) and a significant interaction between
these factors (F(3, 19842) = 43.5, p < .001).
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Fig. 27 These scenes of a beach, a village, and a river are all from a
single image (Fig. 28)
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Fig. 28 There are many complementary levels of image understand-
ing. One can understand images on a continuum from the global scene
level (left) to the local object level (right). Here, we introduce the inter-
mediate concept of local subscenes (middle), and define a task called
Scene Detection

parts in a stable geometric arrangement) and they are more
organized than textures.

Here, we refer to these scenes within scenes as “sub-
scenes” to distinguish that them from global scene labels.
A single image might contain multiple scenes (e.g. Figs. 27
and 28), where a scene is a bounded region of the environ-
ment that has a distinct functionality with respect to the rest.
For instance, a street scene can be composed of store fronts, a
restaurant terrace, and a park. To be clear, we are not describ-
ing a part-based model of scenes—subscenes are full fledged,
potentially independent scenes that create their own context.
The objects and the actions that happen within subscenes
have to be interpreted in the framework created by each local
scene, and they might be only weakly related to the global
scene that encompasses them. However, the dominant view
in the literature is that one image depicts one scene category
(with some exceptions (Vogel and Schiele 2004; Boutell et
al. 2004). Also, while our approach takes scene representa-
tions and makes them more local, complementary work from
Sadeghi and Farhadi (2011) comes from the other direction
and detects object arrangements called “visual phrases”. Fur-
thermore, scene detection is also related to scene viewpoint
recognition (Xiao et al. 2012).

As scenes are more flexible than objects, it is unclear what
the right representation will be in order to detect them in com-
plex images. Here, we use the scene classification framework
to directly classify image crops into subscene categories. We
refer to this task as “scene detection”. Our terminology is
consistent with the object detection literature Everingham et
al. (2009) where object classification or recognition involves
classifying entire images, while object detection requires
localizing objects within an image.

We choose a set of 47 scene categories that commonly
co-occur within images (e.g. ocean with coast, alley with

crosswalk, shelving with office area, river with harbor, vil-
lage with plaza, etc.), and use our SUN database as training
examples. It may seem odd to train a localized detector from
entire images, but we do not expect scenes to vary signifi-
cantly when they photographed as single images or in a larger
context: this is similar to training an object detector with more
close-up views of objects.

To test scene detection, we create a database of 1000
images that have spatially localized subscenes (called the
Scene Detection database). We use pairs of category related
keywords to search for relevant images from online sources
such as Flickr, Picasa, Google, and Bing. We manually filter
the results to ensure that images (1) are large enough such
that crops are still of sufficient resolution (2) depict rele-
vant scenes and (3) are not distorted with respect to lighting,
viewpoint, or post-processing.

Unlike objects, scenes don’t necessarily have clear, seg-
mentable boundaries. The key idea to reliably annotate
ground truth subscenes is to examine only the local image
region without distraction from the surrounding context (for
instance “sibling” or “parent” scenes of different categories).
We do this by cropping out image regions at 3 different scales
and assigning scene labels to those crops in isolation. An
annotator does not know what the entire image looks like
(the crop may in fact be almost the entire image, or it may
be a small region). We use a somewhat sparse set of 30 par-
tially overlapped crops for each image in the Subscene Data-
base. For each crop, we annotate its categories in an Amazon
Mechanical Turk task performed by three different workers.

The annotators are presented with visual examples and
text guidelines for all 47 categories, as well as a “none of the
above” option for crops that do not fit any category or are
not scenes. We gave the workers the following instructions:
Choose a place name from the list that best describes the
image, and if the image does not fit any description, select
“none of the above”. To ensure accurate annotation, we had
each crop labeled three times. We define an annotation to
be “consistent” if at least two of the three annotators agreed
and no annotators selected “none of the above”. 962 differ-
ent Mechanical Turk workers annotated subscenes, taking
an average of 30 seconds per annotation (or two and a half
minutes to label the five subscenes each task presents). Fig-
ures 29 and 30 visualize the annotation results. The anno-
tations are generally quite accurate, especially where the

(a) beach (b) village (c) harbor&dock (d) river

Fig. 29 Masks generated from the labels of Mechanical Turk workers.
The brightness of each region is proportional to the degree of consis-
tency in annotations
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Fig. 30 Example subscene patches annotated by observers. Left ran-
dom samples of consistently annotated crops for several classes. Right
samples of crops that are not scenes, having been annotated “none of
the above”

workers were consistent with each other. After the annota-
tion, an author went through the results and removed any
obvious mistakes. The error rate in the experiment was less
than one percent.

We use the same algorithms as scene classification to train
a detector. All testing is done on the scene detection dataset.
To evaluate the detection performance, we use a simple crite-
rion to plot the precision-recall curves: a detection is consid-
ered correct if the predicted label matches the human label.
To generate testing images, we use sparse sliding windows
because there usually aren’t exact boundaries for subscenes.
We uniformly generate about 30 crops at 3 different scales—
the same windows that we have ground truth annotations
for. We do not perform non-maximum suppression as in the
object domain. Therefore, for each crop, there are 47 class
prediction scores. We take the negative of the minimum score
among all 47 class prediction scores as the score for the “non-
scene” class, i.e. the 48th class.

In order to evaluate the detection performance, we use a
simple criteria. As we have human labels for all the possible
crops that we will consider during the detection stage, we
consider a detection correct if the predicted label matches
the human label. This task is harder than the recognition task
as many crops are not considered to contain clearly defined
scenes. In the test set there are a total of 26,626 crops, and
12,145 of those correspond to non-scenes. Figure 31 shows
some examples with multiple scenes detected. To evaluate the
performance, we use precision-recall curves: for each class
and for each decision threshold we compute how many of the
crops labeled according to each category are retrieved and
with what precision. The average precision over all classes
for the combined model is 19.224. Figure 32 shows examples
of precision-recall curves for a few selected classes (perfor-
mances are typical). These results show that although it is
hard to specify the spatial extent of a subscene, the scene
detector is still able to detect areas that are consistent with
human annotation. Such results would be useful for general
scene parsing tasks, such as object detection.

Fig. 31 Subscene localization result. This figure shows the two most
confident detections for several images. The detections with a red
bounding box are incorrect detections and the green bounding boxes
denote correct detections (Color figure online)

Fig. 32 Scene detection results for some classes and their recall pre-
cision curves. Green boxes indicate correct detection, and red boxes
indicate wrong detection (Color figure online)

6 Conclusion

To advance the field of scene understanding, we need datasets
that encompass the richness and variety of environmental
scenes and knowledge about how scene categories are orga-
nized and distinguished from each other. In this work, we
propose a large dataset of 908 scene categories. We evalu-
ate state-of-the-art algorithms, and study several questions
related to scene understanding. All images, object labels,
scene definitions, and other data, as well as the source code,
are publicly available online. Future works include going
beyond 2D images and reasoning about scenes in 3D (Xiao
et al. 2013; Zhang et al. 2014; Song and Xiao 2014).
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