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Abstract. In this paper, we discover and annotate visual attributes for
the COCO dataset. With the goal of enabling deeper object understand-
ing, we deliver the largest attribute dataset to date. Using our COCO
Attributes dataset, a fine-tuned classification system can do more than
recognize object categories – for example, rendering multi-label classifica-
tions such as “sleeping spotted curled-up cat” instead of simply “cat”. To
overcome the expense of annotating thousands of COCO object instances
with hundreds of attributes, we present an Economic Labeling Algo-
rithm (ELA) which intelligently generates crowd labeling tasks based on
correlations between attributes. The ELA offers a substantial reduction
in labeling cost while largely maintaining attribute density and variety.
Currently, we have collected 3.5 million object-attribute pair annota-
tions describing 180 thousand different objects. We demonstrate that
our efficiently labeled training data can be used to produce classifiers
of similar discriminative ability as classifiers created using exhaustively
labeled ground truth. Finally, we provide baseline performance analysis
for object attribute recognition.

Keywords: Dataset creation · Attributes · Crowdsourcing · Multilabel
recognition

1 Introduction

Traditionally, computer vision algorithms describe objects by giving each
instance a categorical label (e.g. cat, Barack Obama, bedroom, etc.). However,
category labels provide a limited approximation of the human understanding of
natural images. This categorical model has some significant limitations: (1) We
have no way to express intra-category variations, e.g. “fresh apple” vs. “rotten
apple.” (2) A categorical representation alone cannot help us to understand the
state of objects relative to other objects in a scene. For example, if there are
two people arguing in a scene, knowing that they are both ‘people’ won’t help
us understand who is angry or who is guilty. (3) The categorical model pre-
vents researchers from responding to complex questions about the contents of a
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natural scene. This final limitation is a particular obstacle in Visual Question
Answering [1] or the Visual Turing Test [2].

To alleviate these limitations, we aim to add semantic visual attributes [3,4]
to objects. The space of attributes is effectively infinite but the majority of
possible attributes (e.g., “This man’s name is John.”, “This book has historical
significance.”) are not interesting to us. We are interested in finding attributes
that are likely to visually distinguish objects from each other (not necessarily
along categorical boundaries). In this paper, we expand on the type of attributes
introduced by Farhadi et al.

Fig. 1. Examples from COCO Attributes. In the figure above, images from the COCO
dataset are shown with one object outlined in white. Under the image, the COCO
object label is listed on the left, and the COCO Attribute labels are listed on the right.
The COCO Attributes labels give a rich and detailed description of the context of the
object.

Outline: In Sect. 3, we explain how we determine which attributes to include
in our dataset. To determine the attribute taxonomy for COCO, we implement
a crowd-in-the-loop content generation system. Section 4 illustrates the burden
of taking a náıve approach to attribute labeling. In that section we exhaustively
label all of our discovered attributes for a subset of 6500 object instances. This
‘exhaustive’ sub-dataset is then used to bootstrap our economic labeling pipeline
described in Sect. 5. Section 6 presents some baseline classification results on
COCO Attributes.

The COCO dataset contains 500,000 images and 2M individually annotated
objects. Given the scale of this dataset, it is economically infeasible to annotate
all attributes for all object instances. The Economic Labeling Algorithm (ELA)
introduced in Sect. 5 approximates the exhaustive annotation process. The ELA
selects a subset of attributes that is likely to contain all of the positive labels for
a novel image. By labeling the attributes most likely to be positive first, we are
able to reduce the number of annotations required without greatly sacrificing
overall label recall. We annotate objects from 29 of the most-populated COCO
object categories with nearly 200 discovered attributes.

Currently, our COCO Attributes dataset comprises 84,044 images, 188,426
object instances, 196 object attributes, and 3,455,201 object-attribute annota-
tion pairs. The objects in the dataset vary widely, from cars to sandwiches to cats
and dogs. In Sect. 3 we employ proven techniques, such as text-mining, image
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comparison tasks, and crowd shepherding, to find the 196 attributes we later use
to label the dataset [5–9].

Our contribution is straightforward — we obtain attribute labels for thou-
sands of object instances at a reasonable cost. For the sake of estimating an
upper bound on the cost of annotating attributes across the COCO dataset,
let us assume several figures relating to the number of annotations and cost
per annotation using the widely employed Amazon Mechanical Turk platform
(AMT).

Let’s assume that crowd workers are asked to annotate 50 images per
human intelligence task (HIT). Our dataset contains approximately 200 visual
attributes. For COCO Attributes, we annotate attributes for a subset of the
total COCO dataset, approximately 180,000 objects across 29 object categories.
The cost of exhaustively labeling 200 attributes for all of the object instances
contained in our dataset would be: 180k objects × 200 attributes)/50 images
per HIT × ($0.07 pay per HIT + $0.014 Amazon fee) = $60,480. If we annotate
each attribute for the top 10 % of object instances mostly likely to contain a par-
ticular attribute, the overall annotation cost would drop to a reasonable $6,048.
But how do we discover the most informative and characteristic attributes for
each object in the COCO dataset? We present our answer to this question in
Sect. 5.

To verify the quality of the COCO Attributes dataset, we explore attribute
classification. In Sect. 6, we show that a CNN finetuned on our ELA labeled
training set to predict multi-label attribute vectors performs similarly to classi-
fiers trained on exhaustively labeled instances.

2 Related Work

To our knowledge, no attribute dataset has been collected containing both the
number of images and the number of object attributes as our COCO Attributes
dataset. Existing attribute datasets concentrate on either a small range of object
categories or a small number of attributes.

One notable exception is the Visual Genome dataset introduced in Krishna
et al. [10], which also aims to provide a dataset of complex real-world interactions
between objects and attributes. Visual Genome contains myriad types of anno-
tations, all of which are important for deeper image understanding. For COCO
Attributes, we focus on making the largest attribute dataset we possibly can. In
that regard we have been able to collect more than double the number of object-
attribute pair annotations. COCO Attributes and the Visual Genome dataset
together open up new avenues of research in the vision community by providing
non-overlapping attribute datasets. Creating COCO Attributes is an experiment
in economically scalling up attribute annotation as demonstrated in attribute lit-
erature such as the CUB 200 dataset [11], the SUN Attribute dataset [8], Visual
Genome, and other well-cited works of attribute annotation [12,13].

Initial efforts to investigate attributes involved labeling images of animals
with texture, part, and affordance attributes [3,4,14]. These attributes were
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chosen by the researchers themselves, as the interesting attributes for animals
were clear at the time of publication. COCO dataset images are more compli-
cated than those in Farhadi et al. [14]. They often have multiple objects, object
occlusions, and complicated backgrounds. Attributes are necessary to differen-
tiate objects in COCO scenes or describe the variety in instances of the same
category. As a result, the COCO Attributes are more detailed and descriptive
than those in earlier datasets.

Other attribute datasets have concentrated on attributes relating to people.
Kumar et al. [15] and Liu et al. [16] introduced datasets with face attributes and
human activity affordances, respectively. The influential Poselets dataset [17]
labeled human poses and has been crucial for the advancement of both human
pose and attribute estimation.

Vedaldi et al. [18] used a specialized resource for collecting attributes. They
collected a set of discriminative attributes for airplanes by consulting hobby-
ist and expert interest websites. It is possible that the best method for col-
lecting high-quality attributes is to use a more sophisticated crowd, reserving
the general-expertise crowd to label the dataset. We explore bootstrapping the
attribute discovery process by mining discriminative words from a corpus of
descriptive text written by language ‘experts’ — novels and newspapers. Similar
methods have been demonstrated successfully in [5,12,13]. We use the descrip-
tive words found in these texts to seed a crowd pipeline that winnows the large
variety of seed words down to the attributes that visually describe the COCO
objects.

Several datasets have collected attributes for the purpose of making visual
search more tractable. The Whittlesearch [19] dataset contains 14,658 shoe
images with 10 instance-level relative attributes. Parikh and Grauman [20] show
that predicted attributes can be used to better describe the relative differences
between objects of the same and different categories. This paper furthers the
attribute annotation and recognition research begun in those papers by concen-
trating on scaling up the size of the attribute dataset.

A number of past projects sought to bootstrap dataset annotation using
active learning [21–24]. The ELA method presented in Sect. 5 takes a different
approach. The ELA is also iterative, exploiting correlation and information gain
in a partially labeled training set, but does not use an intermediate classifier.
The ELA uses no visual classification.

Vijayanarasimhan and Grauman [21] and Patterson et al. [24] show that
the crowd in combination with active learning can rapidly converge on a visual
phenomena. However, these active learning systems may be missing the most
visually unusual examples. While we seek to annotate COCO Attributes with
maximum efficiency, we choose not to make the visual approximation inherently
imposed by an active learning pipeline.

Admittedly, our Efficient Labeling Algorithm (ELA) has the possible bias
that may occur when we label a subset of the total number of attributes. Section 5
describes the trade-offs among visual diversity, label accuracy, and annotation
cost.
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We identify additional cost-saving annotation strategies by imitating suc-
cesses in multi-class recognition [25,26]. Deng et al. define the Hierarchy and
Exclusion (HEX) graph, which captures semantic relationships between object
labels [26]. HEX graphs describe whether a pair of labels are mutually exclusive,
overlap, or subsume one or the other. In Deng et al. HEX graphs are used for
object classification. We use the hierarchy of the COCO objects to inform our
economic labeling algorithm (ELA), described in Sect. 5.

This paper introduces a large new dataset and a novel way to cheaply col-
lect annotations without introducing visual bias. In Sect. 3, we use the crowd
to curate our collection of attributes. Section 4 presents a baseline for exhaus-
tive annotation. Section 5 introduces the ELA and shows how we improve on
the cost of the exhaustive baseline. Section 5 demonstrates that a dataset col-
lected with the ELA protocol has similar annotation density to an exhaustively
labeled dataset. Section 6 contrasts classifiers trained on ELA generated labels
and exhaustive labels to show that labeling bias is minimal. Finally, Sect. 6 com-
pares recognizing attributes individually or in a multilabel setting.

3 Attribute Discovery

The first stage of creating the COCO Attributes dataset is determining a tax-
onomy of relevant attributes. For COCO Attributes, we search for attributes
for all of the object categories contained under the COCO super-categories of
Person, Vehicle, Animal, and Food. These categories are person, bicycle, car,
motorcycle, airplane, bus, train, truck, boat, bird, cat, dog, horse, cow, sheep,
elephant, bear, zebra, giraffe, banana, apple, orange, broccoli, carrot, hot dog,
pizza, donut, cake, and sandwich. We must determine the attributes that would
be useful for describing these objects.

When annotating the COCO objects, we will use a universal taxonomy of
attributes versus a category specific taxonomy. Objects from all categories will
be annotated with all attributes. Of course, some attributes won’t occur at all
for certain categories (we didn’t observe any “furry” cars), but other attributes
like “shiny” manifest across many categories. Certain attributes may have very
different visual manifestation in different categories, e.g. an “saucy” pizza and
an “saucy” person don’t necessarily share the same visual features. We aim to
find a large corpus of attributes that will describe both specific categories and
often be applicable to several unrelated categories.

Asking Amazon Mechanical Turk (AMT) workers to describe the objects
from scratch might result in terms that do not generalize well to other objects in
the same hierarchical group or are too common to be discriminative, for example
‘orange’ does not help us describe the difference between oranges. To bootstrap
the attribute discovery process, we mine a source of English text likely to contain
descriptive words – the New York Times Annotated Corpus [27]. This corpus
contains all of the articles published by the NYT from 1987–2008. We extract
all adjectives and verbs occurring within five words of one of our object words.
This results in hundreds of descriptive words. Unfortunately, not all of these
candidate attributes describe visually recognizable phenomena.
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(a) Attribute Discovery
User Interface (UI).

(b) Exhaustive
Annotation UI.

(c) Economic
Annotation UI.

Fig. 2. Amazon Mechanical Turk (AMT) Task Interfaces used in the creation of COCO
Attributes.

In order to filter the attributes mined from the NYT corpus, and indeed
add a few new ones, we design an AMT Human Intelligence Task (HIT). Our
attribute discovery HIT, shown in Fig. 2a, encourages AMT workers to submit
visual attributes by asking them to discriminate between two images. In this
experiment, we show workers two randomly selected COCO objects from the
same category. The worker types in several words that describe one of the images
but not the other. To help focus our workers and guide them to make better
suggestions, we show a random subsampling of the attributes discovered via the
NYT corpus or submitted in previous HITs.

In the end, approximately 300 unique terms were submitted by AMT workers
to describe the 29 different categories. The authors manually condensed the com-
bined list of NYT corpus attributes and AMT worker attributes. Attributes that
do not refer to a visual property were also removed, e.g. ‘stolen’ or ‘unethical’.
The final attribute list comprises 196 attributes.

4 Exhaustive Annotation

In annotating our attributes we would like to avoid asking redundant questions
(e.g. asking if a person is “sitting” when they’re already labeled as “standing”).
To intelligently avoid these situations we need to understand the correlations
among attributes. We first build an exhaustively annotated dataset that has a
ground truth label obtained via the crowd for every possible object-attribute
pair. Our exhaustively labeled dataset serves as a training set for the ELA
method we will introduce in Sect. 5. A portion of the exhaustively labeled set is
set aside as a validation set to measure the performance of the ELA.

To create the exhaustively labeled part of the COCO Attributes dataset, we
employ the annotation UI shown in Fig. 2b for AMT. The object instances in
this part of the dataset were chosen as follows: for all categories we exhaustively
annotate 10 % of object instances that are larger than 32× 32 px. AMT workers
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are shown 10 images per HIT and 20 possible attributes subsampled from the
total 196. Workers are asked to check all attributes that apply to the object
outlined in white. The attributes are roughly grouped by type, such as action
word, emotion, surface property, etc.

To improve annotation quality, we implement several quality control tech-
niques. We require that workers complete an annotation quiz in order to begin
working on HITs. The quiz looks identical to the UI in Fig. 2b. The worker is
required to score 90 % recall of the attributes present in that HIT. Labels are
repeated by three workers in order to establish a consensus value for each label.
Workers are discarded if their work is checked by the authors and found to be
poor. The authors completed > 4,000 annotations. Workers are flagged for a
check when they disagree too frequently with the authors’ or trusted worker
annotations. We define “too frequently” as disagreeing more often than a stan-
dard deviation away from the average disagreement of trusted workers. Trusted
workers are established by the author’s manual review.

We annotate a total of 20,112 object instances with all 196 attributes (5000
person instances and approximately 500 instances of every other object). If two of
the three annotations for an attribute are positive, we consider it a true positive.

Responding to comments from our workers, we pay $0.10 per exhaustive
annotation HIT. In total, this portion of the dataset cost: 20112 images × 196
attributes)/avg. 196 annotations per HIT × ($0.10 pay per HIT + $0.02 Amazon
fee) × 3 workers repeat each annotation ≈ $7,240. If we continued this annotation
policy to annotate the remaining ‘person’, ‘animal’, ‘vehicle’, and ‘food’ objects
from COCO (285k instances), the total annotation cost would be $102,600.
Using the ELA, we will be able to accomplish this task for only $26,712. That
is the price of labeling the remaining 265 K object instances, querying 10 % of
the attributes, and using our ELA MTurk HIT that shows 50 images per task
(265k object × 20 attributes/50 images per HIT × $0.084 Amazon Fee × 3
workers = $26,712).

5 Economic Labeling

Attributes in many domains are sparse. With 196 attributes, we find that across
all 29 object categories, the average number of positive attributes per object
is 9.35. Ideally, we could identify the most likely attributes that are positive
for each object and only ask the AMT workers to annotate (or verify) those
attributes. Annotating a new dataset with a huge number of possible attributes
would then be relatively inexpensive. Unfortunately, we do not possess an oracle
capable of identifying the perfect set of attributes to ask about.

Without the benefit of an attribute oracle, we apply a method of selecting
attributes that are likely to be positive for a given object instance. We begin
with the set of COCO Attributes A. For an unlabeled object, we calculate the
probability P (ai = 1|y) that an attribute ai ∈ A is true given the category y.
Equation (3) calculates this likelihood as the mean of the probability of that
attribute in all observations of the object category Iy (Eq. 1) and the probability
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of that attribute in the sibling object categories x that are part of the same super
category S as y (Eq. 2). The object super categories and their child relationships
are defined as part of the COCO dataset.

P (ai = 1|Iy) =
N1

ai,Iy

NIy

(1)

To avoid a zero count for a rare attribute for object category y, we count the
occurrences of ai in all instances Ix of the sibling categories x of y, for x ∈ S.
The hierarchical super-category S contains K sub-categories.

P (ai = 1|IS) =

∑K
x=1 N

1
ai,Ix

∑K
x=1 NIx

(2)

We calculate the probability of ai given y by the average of P (ai = 1|Iy) and
P (ai = 1|IS).

P (ai = 1|y) =
1
2

∗ (P (ai = 1|Iy) + P (ai = 1|IS)) (3)

For example, Eq. 3 would calculate the probability of ‘glazed’ given ‘donut’
by calculating the percent of images where ‘glazed’ and ‘donut’ or ‘glazed’ and
<other food category> were present for the same object in the set of exhaustively
labeled examples. If an attribute such as ‘dirty’ never co-occurs with ‘horse’, Eq. 3
uses just the percent of images where ‘dirty’ co-occurred with any other animal
category like ‘cat’ and ‘dog’.

To select the most likely attribute for the object instance â, given the set all
of the labeled instances of category Iy, we use by Eq. (4).

â = arg max
ai∈A

P (ai = 1|y) (4)

Essentially, our economic labeling algorithm follows these steps: (1) Obtain
an exhaustively annotated training set T . (2) For each object instance Ij in
the unlabed dataset D, label the most likely attribute from T calculated using
Eq. (3). (3) Select the subset of labeled object instances from T that share the
object category y of Ij . (4) Annotate the attribute â (Eq. (4)) for object Ij . (5)
Repeat this process until each object in D has at least N attributes labeled,
resulting in the labeled attribute dataset D′. After the first round of labeling,
step (3) is slightly changed so that y represents all object instances of category
y that also share the attributes labeled in the previous iterations ân−1. This
process is more precisely described in Algorithm 1.

There is one stage of the ELA that presents a tricky problem. What should be
done if the subset of T returned by the function MatchingSubset in Algorithm 1
is empty? We explore four possible alternatives for overcoming the problem of
an uninformative subset.

Our four alternative varieties of the AltMatchingMethod method are only
used if either the matching subset is empty or the remaining attributes from
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Input: Dataset D of unlabeled images, fully labeled training set T , labels to annotate A
Output: Labeled dataset D′

1 for Ij ∈ D do
2 � Ij is an unlabeled image from D
3 while NumLabels(Ij) < N do
4 � Repeat annotation until N labels are acquired
5 DS = MatchingSubset(Ij , D)
6 if isEmpty(DS) then
7 DS = AltMatchingMethod(Ij , D)
8 end
9 Qn = SelectAttributeQuery(DS)

10 Ij [n] = Annotate(Qn)

11 end

12 end

13 return D′

Algorithm 1. Economic Labeling Algorithm (ELA)

the matching subset have no positive labels. Otherwise, the ELA continues to
ask for annotation of the most popular attributes in decreasing order. For our
experiments, we also deemed a matching subset to be “empty” if it contained
fewer than 5 matching instances.

The first alternative is the Random method, which randomly selects the next
attribute to label from the set of unlabeled attributes. The second strategy is the
Population method, which proceeds to query the next most popular attribute
calculated from the whole labeled set T .

Our third alternative, Backoff, retreats backward through the previously cal-
culated subsets until a subset with a positive attribute that has not been labeled
is found. For example, if a dog instance is annotated first with ‘standing’ and
then with ‘not furry’, there may be no matching dog instances in the training
that have both of those labels. The Backoff method would take the subset of
training instances labeled ‘dog’ and ‘standing’, calculate the second most pop-
ular attribute after ‘furry’, and ask about that second most popular attribute.
The Backoff method is similar to the Population method except that the Popu-
lation method effectively backs off all the way to the beginning of the decision
pipeline to decide the next most popular attribute.

The fourth method we explore is the Distance method. This alternative
uses the current subset of annotated attributes as a feature vector and finds
the 100 nearest neighbors from the set T , given only the subset of currently
labeled attributes. For example, if a partially labeled example had 10 attributes
labeled, the nearest neighbors would be calculated using the corresponding 10-
dimensional feature vector. The next most popular attribute is selected from the
set of nearest neighbors.

In order to compare these alternative methods, we split our exhaustively
labeled dataset into test and train sets. We use 19k object instances for the
training set and 1k object instances for test. The object instances are randomly
selected from all 29 object categories. In our simulation, we use the ELA methods
to generate the annotated attributes for the test set. For each object instance in
the test set, we begin by knowing the category and super-category labels. For
example, given a test image we might know that it is a ‘dog’ and an ‘animal’.
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(a) All Categories (b) Animals (c) Vehicles

Fig. 3. Mean Recall Comparison of Alternative ELA methods. (a) plots the mean recall
of the test dataset alternatively labeled with each ELA method and stopped for a range
of query limits. All categories were included in this comparison. The Distance method
is the clear winner, obtaining 80 % recall for only 20 attribute queries, approximately
10 % of the total number of attributes. (b) and (c) show the mean recall across all test
instances of their type of category. The vehicle categories achieve a higher recall with
fewer queries than the animal categories. This may be due to the smaller subset of
attributes relevant to vehicles than to animals.

We proceed by following the steps of the ELA up to a limit of N attribute
queries. We determine the response to each query by taking the ground truth
value from the test set. In this way we simulate 3 AMT workers responding
to an attribute annotation query and taking their consensus. After N queries,
we calculate the recall for that instance by comparing the number of positive
attribute annotations in the ELA label vector to the exhaustive label vector. If
we use the ELA to label a ‘dog’ instance up to 20 queries and obtain 8 positive
attributes, but the ground truth attribute vector for that dog has 10 positive
attributes, then the recall for that instance is 0.8.

We compare the four alternative methods in Fig. 3. Each method is tested
on 1k object instances, and the mean recall score averages the recall of all test
instances. In all of the plots in Fig. 3, the four methods preform approximately
the same for the first 10 attribute queries. This is to be expected as none of
the methods will perform differently until the partially labeled instances become
sufficiently distinctive to have no matching subsets in the training set.

After approximately 10 queries, the methods begin to diverge. The Random
method shows linear improvement with the number of queries. If these plots
were extrapolated to 196 queries, the Random method would achieve a recall
of 1.0 at query 196. The other methods improve faster, approaching perfect
recall much sooner. The Backoff method initially out-performs the population
method, indicating that at early stages querying the popular attributes from a
more specific subset is a better choice than querying the most popular attributes
overall. This distinction fails to be significant after more queries are answered.

The best performing method is the Distance method. This method comes
closer to selecting the best subset of attribute queries both for the full hierarchy
and for the animal and vehicle sub-trees. The success of the Distance method
indicates that the most likely next attribute for a given image may be found by
looking at examples that are similar but not exactly the same as a given object.



COCO Attributes 95

Based on the Distance method results in Fig. 3, we use a different number of
attribute queries per object type to annotate COCO Attributes. We ask enough
questions to ensure that each object type’s attributes have mean recall of 80 %,
e.g. 30 for animals, 17 for vehicles, etc. We ask for 20 attributes on average
according to Fig. 3a.

To further examine the performance of the ELA with the Distance method,
we plot a selection of per attribute recall scores in Fig. 4. The attributes in
Fig. 4 are sorted by ascending population in the dataset. One would expect the
more popular attributes to have higher recall than the less popular attributes
for a lower number of attribute queries. This is not strictly the case however.
‘Stretching’, for example, is a popular attribute, but does not obtain higher
than 0.9 recall until 100 queries. This indicates that ‘stretching’ is not strongly
correlated with other attributes in the dataset. Conversely, even at 20 attribute
queries many of the rarer attributes still have a reasonable chance of being
queried.

Fig. 4.Mean Recall Across all Categories for 50 Attributes. This plot shows the recall of
the ELA-Distance method for annotating 50 randomly selected attributes from the full
set of 196. The recall is calculated across all instances of the exhaustively labeled test
set. The attributes are sorted by their popularity in the exhaustively labeled dataset.
Mean chance recall is 0.092, and varies from 0.03 to 0.1 across attributes. The ELA
beats chance recall for all attributes.

We also attempt hybrid versions of the methods described above. We repeat
the simulation shown in Fig. 3 by first annotating the top 10 most popular
attributes, and then continuing with the alternate methods. In this way we
might be able to to discover unusual objects early, thus making our method
more robust. However, the performance of the hybrid methods were barely dif-
ferent than that shown in Fig. 3.

Figure 4 shows where the ELA does cause a bias by missing the “tail” of rare
attributes with too few attribute queries. But this is not a visual bias linked
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Fig. 5. Examples from COCO Attributes. These are positive examples of the listed
attributes from the dataset. Examples such as the man cuddling a horse or the dog
riding a surfboard shows how this dataset adds important context to image that would
otherwise be lost by only listing the objects present in an image.

to a particular feature or classifier as would be the case with an active learning
approach. It would be problematic if dataset errors were linked to a particular
feature and future approaches were implicitly penalized for being different from
that feature. The ELA and visual active learning could be used together, but
in this paper we focus only on characterizing the potential bias incurred by a
non-visual approximate annotation method.

Attribute Annotation using the ELA

For ELA attribute annotation, we ask workers to label one attribute at a time.
We cannot use the UI from Fig. 2b. Instead we ask the AMT workers to select all
positive examples of a single attribute for a set of images from a given category,
example shown in Fig. 2c. We elect to ask for fewer annotations per HIT in the
ELA stage (50 object-attribute pairs) than in the exhaustive stage (200 object-
attribute pairs). This choice was made to lessen worker fatigue and improve
performance. The difference in worker performance for the exhaustive and ELA
HITs is discussed more in the supplemental materials.

Thus far we have collected approximately 3.4M object-attribute pairs. Apart
from the exhaustive labels we used to bootstrap ELA annotation, we have col-
lected at least 20 attributes for 24,492 objects at a cost of $2,469 (∼ 24k objects
× 20 attributes/50 attributes per HIT × 3 repeat workers × $0.084 per HIT).
If we used the exhaustive annotation method, this would have cost $8,817.

In the end, the COCO Attributes dataset has a variety of popular and
rare attributes. 75 % of attributes have more than 216 positive examples in the
dataset, 50 % have more than 707, and 25 % have more than 2511. Figure 5 shows
some qualitative examples from COCO Attributes.

6 Attribute Classification

Ultimately, attribute labels are only useful if visual classifiers can be built from
them. To verify the detectability of our attributes, we trained independent clas-
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Fig. 6. Average Precision vs. Chance. Performance is shown for 100 randomly selected
attributes. Attribtues are sorted in descending order by their population in the dataset.
Each yellow square represents an SVM that was trained using pre-trained CNN features
to recognize that particular attribute. Each blue triangle represents the AP for that
attribute calculated on the full multi-label test set predictions of our fine-tuned CNN.
(Color figure online)

sifiers for each attribute, agnostic of object category. Figure 6 shows AP scores
of 100 randomly selected attribute classifiers.

To train the attribute classifiers, features for each object instance’s bound-
ing box were extracted using the pre-trained Caffe hybridCNN network released
with the publication of the Places Dataset [28,29]. For the features used in
these classifiers, we take the output of the final fully connected layer, randomly
subsample 200 dimensions, and apply power normalization as per the recommen-
dations of [30]. We then train a linear SVM using a set of object instances that
have 20 or more attributes annotated with the ELA. Subsampling the FC7 acti-
vations to 200D actually leads to higher performance than using all activations
(4096D), with an average increase of 0.012 AP across all attribute classifiers.
Chance is calculated as the ratio of true positives to total training examples for
each attribute.

As a counterpoint to recognizing attributes in isolation, we trained a multi-
label CNN to simultaneously predict all attributes for a novel test image. We
created this network by fine-tuning the BVLC reference network from the Caffe
library [29]. Our attribute network uses a sigmoid cross-entropy loss layer instead
of a softmax layer to optimize for multi-label classification, as suggested by
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previous research in multi-label and attribute classification [31–33]. The fine-
tuning was accomplished with SGD with momentum slightly higher than the
reference net, but with learning rate lower and regularization stronger to account
for the sparsity of positive labels in the training set. This network is trained with
a the full, multi-label attribute vector for each object in the train and test sets.
Unlabeled attributes are assumed to be negative after 20 rounds of ELA.

In Fig. 6 the objects in the training set for all classifiers shown are members
of the COCO ‘train2014’ set, and test instances are members of the ‘val2014’
set. In order to compare the individual SVMs and the multilabel CNN, we used
the same training and test sets for all classifiers. The train/test sets were com-
posed of 50k object instances labeled with the ELA with 20 or more attributes.
All unlabeled attributes were assumed false for both the SVMs and CNN. The
train/test set split was 30k/20k and contained instances from COCO train and
val sets respectively.

Figure 6 compares the per attribute AP over the test set predictions from
our multi-label CNN to the independent SVMs trained independently for each
attribute. This plot shows that exploiting the correlations between attributes
often improves classifier performance for the CNN compared to the independent
SVMs, especially for rarer attributes. Overall attributes the mean chance score is
0.08 AP, mean SVM performance is 0.18 AP, and mean CNN performance is 0.35
AP. This experiment shows the benefits of exploiting multilabel co-occurrence
information with a 0.17 mAP over using pre-trained features.

7 Future Work

Work on COCO Attributes is ongoing. Workers are continuously submitting new
ELA HITs for the remaining ‘person’, ‘animal’, ‘vehicle’, and ‘food’ instances
from the COCO dataset. The set of objects could easily be expanded to com-
prise more of the COCO categories. More categories would necessitate more
attributes, but our attribute discovery process combined with the ELA are capa-
ble of scaling up the annotation effort effectively. Further analysis of alternative
selection methods could result in improved recall for low numbers of attribute
queries. This economical annotation method begs to be used on larger dataset
annotation efforts.
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