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Abstract—Designing tensor fields in the plane and on surfaces is a necessary task in many graphics applications, such as painterly

rendering, pen-and-ink sketching of smooth surfaces, and anisotropic remeshing. In this article, we present an interactive design

system that allows a user to create a wide variety of symmetric tensor fields over 3D surfaces either from scratch or by modifying a

meaningful input tensor field such as the curvature tensor. Our system converts each user specification into a basis tensor field and

combines them with the input field to make an initial tensor field. However, such a field often contains unwanted degenerate points

which cannot always be eliminated due to topological constraints of the underlying surface. To reduce the artifacts caused by these

degenerate points, our system allows the user to move a degenerate point or to cancel a pair of degenerate points that have opposite

tensor indices. These operations provide control over the number and location of the degenerate points in the field. We observe that a

tensor field can be locally converted into a vector field so that there is a one-to-one correspondence between the set of degenerate

points in the tensor field and the set of singularities in the vector field. This conversion allows us to effectively perform degenerate point

pair cancellation and movement by using similar operations for vector fields. In addition, we adapt the image-based flow visualization

technique to tensor fields, therefore allowing interactive display of tensor fields on surfaces. We demonstrate the capabilities of our

tensor field design system with painterly rendering, pen-and-ink sketching of surfaces, and anisotropic remeshing.

Index Terms—Tensor field design, tensor field visualization, nonphotorealistic rendering, surfaces, remeshing, tensor field topology.

Ç

1 INTRODUCTION

MANY graphics applications make use of a second-order
symmetric tensor field, which is equivalent to a line

field that does not distinguish between the forward and
backward directions. In painterly rendering, for instance,
brushstroke orientations are guided by a line field that is
often chosen to be perpendicular to the image gradient field
[15], [12], [10]. In hatch-based illustration of smooth
surfaces, hatches usually follow one of the principle
directions of the curvature tensor [13], [11]. Similarly in
anisotropic remeshing, principle curvature directions are
used to build a quad-dominant mesh from an input mesh
[1], [16]. Both the line field used in painterly rendering and
the principle curvature directions for pen-and-ink sketching
and anisotropic remeshing can be expressed as the
eigenvectors of some symmetric tensor fields. In the
remainder of this paper, we will focus on symmetric tensor
fields only and will refer to them as tensor fields.

Tensor field design, the main topic of this paper, enables

applications such as painterly rendering and hatch-based

illustration to achieve different visual effects by using

different tensor fields. It also allows a user to modify an

existing tensor field to improve its quality. For instance, a

numerical estimate of the curvature tensor field on a
polygonal surface usually contains excessive degenerate
points, where anisotropy disappears. Degenerate points
often cause visual artifacts in hatch-based sketching [11],
and they require special care when performing anisotropic
remeshing in surrounding regions [1], [16], [7]. While tensor
field smoothing can remove a large percentage of degen-
erate points, it often “washes away” natural features in the
field. Tensor field design provides a user with explicit
control over the smoothness of a tensor field as well as the
number and location of the degenerate points that it
contains. Furthermore, tensor field design enables the
creation of synthetic features, such as textures, and real-
world semantics that are otherwise difficult to extract
through any automated process, such as the eyes in the
bunny model (see Fig. 14). A tensor field design system can
also be used to test the efficiency of tensor field visualiza-
tion algorithms. By creating tensor fields with known
configurations, it is straightforward to verify whether a
visualization algorithm has correctly identified these con-
figurations. Furthermore, tensor field design can be used in
teaching tensor analysis in which students learn important
concepts in tensor fields by creating example fields and
manipulating them.

There are several challenges to tensor field design. First,
such a system should enable a user to create a wide variety of
tensor fields with relatively little effort. Second, the user
needs to have control over tensor field topology, such as the
number and location of the degenerate points in the field.
Third, the system must support interactive design and
display of a tensor field. While there are many high-quality
offline visualization methods, interactive techniques have
been lacking. Finally, creating a continuous tensor field on a
3D mesh surface requires that we deal with the disconti-
nuities of surface normals at the vertices and across the edges.

To achieve these goals, we develop a two-stage tensor
field design system for both planar domains and curved
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surfaces. In the first stage, a user can quickly produce an
initial tensor field through a set of design elements. Every
element is used to create a basis tensor field over the
domain that has a degenerate point of an arbitrary tensor
index. All basis fields are then summed along with an input
field that is either zero or an application-dependent field,
such as a numerical estimate of the curvature tensor of a
3D surface. In the second stage, the user modifies the initial
tensor field through a set of predefined editing operations,
such as moving a degenerate point to a more desirable
location or canceling a pair of degenerate points that have
opposite tensor indices. As the user modifies the field, our
system quickly analyzes the result and provides visual
feedback. The user may perform any number of editing
operations before accepting the results.

Our system performs degenerate point pair cancellation
and movement by converting a symmetric tensor field into
a vector field such that there is a one-to-one correspondence
between the set of degenerate points in the tensor field and
the singularities in the vector field. This conversion and its
inverse operation allow us to use singularity pair cancella-
tion and movement operations for vector fields. These
operations provide control over tensor field topology, such
as the number and location of the degenerate points.

In order for our design system to work on curved
surfaces, we adapt the surface vector field representation
scheme that was developed for vector field design [35] to
tensor fields. In this scheme, concepts from differential
geometry such as geodesic polar maps and parallel transport
are used to construct initial tensor fields and to perform
tensor field analysis and editing.

We have also developed an interactive visualization
algorithm for second-order symmetric tensor fields, which
is an extension of the image-based flow visualization technique
[32], [14], [33].

In this paper, we make the following contributions: First,
we have identified tensor field design as an important
problem in computer graphics and visualization. We will
also demonstrate that the edge field in an image is better
modeled as a tensor field than as a vector field when it
comes to painterly rendering. Second, we present a tensor
field design system for mesh surfaces. This system allows a
user to create a wide variety of tensor fields in a fast and
efficient manner, and it provides the user with control over
the degenerate points in the field. To the best of our
knowledge, this is the first time a tensor field design system
has been proposed and developed. Third, we provide
efficient implementations of degenerate point pair cancella-
tion and movement by locally converting the tensor field
into a vector field. The conversion is conceptually simple,
yet it allows us to reuse algorithms from vector field
analysis and design. Fourth, we develop a piecewise
interpolation scheme that produces a continuous tensor
field on a mesh surface based on tensor values defined at
the vertices. This scheme supports fast and efficient tensor
field analysis such as separatrix computation, and it
removes the need for a global surface parameterization.
Finally, we present an interactive and high-quality techni-
que for visualizing surface tensor fields.

The remainder of the article is organized as follows: We
first review some relevant background on tensor fields in
Section 2. Then, in Section 3, we compare tensor fields and
vector fields in terms of image edge extraction. In Section 4,

we review relevant work in vector field design and in tensor
field analysis and visualization. We present our interactive
tensor field visualization technique in Section 5 and
describe our tensor field design system in Section 6.
Section 7 provides some results of applying our tensor
field design system to various graphics applications, such
as painterly rendering, pen-and-ink sketching of surfaces,
and anisotropic remeshing. Finally, we summarize our
contributions and discuss some possible future work in
Section 8.

2 BACKGROUND ON TENSOR FIELDS

We first review some relevant facts about tensor fields on
surfaces. A tensor field T for a manifold surface M is a
smooth tensor-valued function that associates to every
point p 2M a second-order tensor

T ðpÞ ¼ T11ðpÞ T12ðpÞ
T21ðpÞ T22ðpÞ

� �
:

A tensor ½Tij� is symmetric if and only if Tij ¼ Tji. Symmetric
tensor fields appear in many graphics applications, such as
the metric tensor for surface parameterization, the curva-
ture tensor in remeshing, and the diffusion tensor in
medical imaging. A symmetric tensor T can be uniquely
decomposed into the sum of its isotropic part S and
anisotropic (deviate) part A:

T ¼ S þA ¼ � 1 0
0 1

� �
þ � cos 2� sin 2�

sin 2� � cos 2�

� �
; ð1Þ

where � � 0. A has eigenvalues ��, and A and T have the
same set of major eigenvectors

�
cos �
sin �

� ����� � 6¼ 0

� �

and minor eigenvectors

�
cosð�þ �=2Þ
sinð�þ �=2Þ

� ����� � 6¼ 0

� �
:

In this paper, we explore the design of directional fields on
3D surfaces, which is equivalent to designing deviate tensor
fields. A more general design system for symmetric tensor
fields can be obtained by combining our system and a scalar
field design system, such as the one described by Ni et al. [19].

A deviate tensor fieldAðpÞ is equivalent to two orthogonal
eigenvector fields:E1ðpÞ ¼ �ðpÞe1ðpÞ andE2ðpÞ ¼ �ðpÞe2ðpÞ
when AðpÞ 6¼ 0. Here, e1ðpÞ and e2ðpÞ are unit eigenvectors
that correspond to eigenvalues � and ��, respectively. E1

and E2 are the major and minor eigenvector fields of A. A
point p0 is degenerate for a tensor field T if and only if
Aðp0Þ ¼ 0. A degenerate point for a tensor field often serves
the same purpose as a singularity for a vector field. The most
basic types of degenerate points are wedges and trisectors
(Fig. 2). Delmarcelle and Hesselink [5] define a tensor index for
an isolated degenerate point p0 as follows: Let � be a small
circle around p0 such that � contains no additional degen-
erate points and it encloses only one degenerate point, p0.
Starting from a point on � and traveling counterclockwise
along �, the major field (after normalization) covers the unit
circleS1 a number of times. This number is the tensor index of
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p0, and it must be a multiple of 1=2 due to the sign ambiguity
associated with tensors. It is 1=2 for a wedge and �1=2 for a
trisector. The tensor index for a regular point is zero. Wedges
and trisectors are first-order degenerate points. AnNth order
degenerate point has a tensor index of�ðN=2Þ. Second-order
degenerate points include centers, nodes, and foci with an
index of 1, and saddles with an index of�1 (Fig. 2). As in the
case of vector fields, Delmarcelle shows that the total index of
a tensor field with only isolated degenerated points is related
to the topology of the underlying surface [6]. Let M be a
closed orientable manifold with an Euler characteristic�ðMÞ,
and let T be a continuous tensor field with only isolated
degenerate points fpi : 1 � i � Ng. Denote the tensor index
of pi as IðpiÞ. Then,

XN
i¼1

IðpiÞ ¼ �ðMÞ: ð2Þ

Delmarcelle and Hesselink [5] suggest visualizing
hyperstreamlines, which are curves that are tangent to an
eigenvector field everywhere along its path. To trace a
hyperstreamline from a point, one needs to travel in both
directions to obtain two “half” hyperstreamlines. Tracing in
one direction results in the loss of sign ambiguity along the

path, effectively turning the tensor field into a vector field.
Different hyperstreamlines can only meet at degenerate
points, and a degenerate point is a hyperstreamline that
consists of a single point. Other special hyperstreamlines
include separatrices and closed orbits, which together with
degenerate points define the topology of a tensor field [5]. In
this work, we focus on controlling the degenerate points in
a tensor field.

3 IMAGES AND TENSORS

When it comes to representing natural directions in an
image or on a 3D shape, tensor fields provides a larger
vocabulary of visual elements than vector fields. For
instance, the basic types of degenerate points (wedges and
trisectors) do not appear in continuous vector fields. On the
other hand, higher-order degenerate points can be used to
mimic the visual behavior of a vector field singularity of
any order. For instance, a node in a tensor field is visually
similar to a source or sink in a vector field, and a fourth-
order degenerate point has a similar appearance as a dipole
in the vector field. In painterly rendering, brushstroke
orientations are often guided by a field F that is
perpendicular to the image gradient vector field [15], [12],
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Fig. 2. Some canonical first and second-order degenerate points in a tensor field. Notice that the second-order points (node, focus, center, and

saddle) are visually similar to first-order singularities in a vector field.

Fig. 1. This figure demonstrates how painterly rendering can benefit from tensor field design. For an input image of a human eye, three different
tensor fields (bottom row) were to used to guide brush stroke orientations and produce van Gogh style paintings (top row): a tensor field extracted
from the image (left), a combination of the previous field with a user-added center in the middle of eye (middle), and a tensor field designed
completely from scratch (right). Notice that both designed fields (middle and right) are smoother in the pupil and near the corners of the eye. Tensor
field design allows a user to guide brush stroke orientations in regions where the image gradient is weak. The painterly images shown here were
produced by the algorithm of Hays and Essa [10]. The colored dots in the bottom images indicate the location and type of degenerate points in the
fields: yellow for wedges and blue for trisectors.



[10]. There are two ways of representing F : vector-based
image edge field (VIEF) and tensor-based image edge field
(TIEF). VIEF is obtained by rotating the image gradient by
�=2 counterclockwise, and TIEF is the tensor field whose
minor eigenvector field is colinear with the image gradient
field everywhere in the domain. Often, the image edge field
is computed where the image gradient is strong. Then,
values in these regions are propagated to other regions
where the image gradient is weak [15], [12], [10]. Under this
scenario, however, TIEF provides a smoother representa-
tion than VIEF. Fig. 3 illustrates this with two examples: a
rectangle and a heart. In the rectangle example (top), the
values of the image gradient vector field are strong on the
inner walls (left, red arrows), and they point toward the
other side. This causes VIEF (middle) to point upward
along the left wall and downward along the right wall
(green arrows). Propagating these values to the interior of
the rectangle leads to singularities. On the other hand, TIEF
does not suffer from this problem due to the sign ambiguity
(right). In the heart example, both VIEF and TIEF capture
the boundary of the shape. However, TIEF is smoother and
more uniform elsewhere than VIEF, for example, inside the
heart region. This is due to the fact that the vector field can
only have vortices as singularities while a tensor field can
have wedges and trisectors that are more natural in this
example. Fig. 4 illustrates the difference between VIEF and
TIEF in painterly rendering with an example image of a
duck. Notice VIEF (left) contains more noise than TIEF
(right), which causes artifacts in the painterly results
(compare the region near the beak). Here, the noise in VIEF
is again due to the fact that a vector field can only have
vortices as the basic singularities. For LIC-style rendering, a
vector field can be treated as a tensor field by tracing a
trajectory in both the forward and reverse directions. When
tracing a hyperstreamline, Interrante et al. use the current

direction to remove the sign of ambiguity [13]. Such an
approach has also been used in painterly rendering. For
example, Hertzmann compute long, curved brushstrokes by
tracing streamlines according to a vector-based edge field
[12]. In this paper, we also adopt this approach when
computing separatrices in tensor field analysis (Section 6.1)
and when computing streamlines for pen-and-ink sketching
(Section 7.2) and anisotropic remeshing (Section 7.3).

A vector field can be treated as a tensor field if one ignores
the direction. In contrast, treating a tensor field as a vector
field requires that sign ambiguity in the tensor field be
removed, which in general will create discontinuities in the
resulting vector field. This issue has two implications that
we have to deal with. First, the image-based flow visualiza-
tion technique of van Wijk [32] does not directly apply to
tensor fields. Second, using a vector field design system to
modify a tensor field is likely to be unsuccessful due to its
lack of ability to create and control tensor-specific features
such as wedges and trisectors. We address these problems
and provide solutions in Sections 5 and 6, respectively.

4 PREVIOUS WORK

Tensor field analysis and visualization have been well-
researched by the scientific visualization community. To
review all of this work is beyond the scope of our article. We
will only refer to the work that are most relevant to ours.
Tensor field design, on the other hand, have received
relatively little attention. To the best of our knowledge, there
are no published tensor field design systems. Next, we review
past work in vector and tensor field visualization and analysis
as well as existing design systems for vector fields.

Delmarcelle and Hesselink [4] propose to visualize 2D or
3D tensor fields with hyperstreamlines, which has proven
very efficient in revealing features in a tensor field. Around
the same time, Cabral and Leedom [2] present a texture-
based technique for visualizing planar vector fields with the
use of line integral convolution (LIC). Given an initial texture
of white noises and a vector field, they assign a gray value
to every pixel by performing line interval convolution along
the streamline that contains the pixel. The LIC method
results in a high-quality continuous representation of the
vector field. However, it is computationally expensive since
it requires tracing a streamline for every pixel. Later,
Stalling and Hege describe a faster way of creating LIC
images by reducing the number of streamlines that need to
be traced (FastLIC) [23]. Zheng and Pang [36] propose a
tensor field visualization technique that they call HyperLIC.
This method makes use of LIC to produce images that
resemble visualizations based on hyperstreamlines.
Van Wijk [32] develops an interactive and high-quality
image-based flow visualization technique (IBFV) for planar
vector fields. IBFV enables interactive display of vector
fields with the assistance of graphics hardware. Later, van
Wijk [33] and Laramee et al. [14] extend IBFV to
3D surfaces. IBFV is at the core of our visualization
technique, which we will describe in Section 5.

Delmarcelle and Hesselink demonstrate the importance
of topological analysis for tensor field visualization. They
also provide theories and algorithms for computing tensor
field topology, such as degenerate points and separatrices
[5]. Tensor fields from scientific data sets often contain
noise, which makes visualization difficult. Tricoche and
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Fig. 3. This figure illustrates the difference between vector-based image
edge fields (VIEF) and tensor-based image edge fields (TIEF). For the
rectangle (top row), the image gradient vector field along the walls points
to the other side (left, red arrows). This causes VIEF to point in opposite
directions, and extrapolating values from the wall to the interior of the
rectangle cause singularities (middle, green and blue arrows). TIEF
does not suffer from this problem due to the sign ambiguity of directions
(right). For the heart, TIEF (right) is much smoother than VIEF (left) in
the interior region due to the richer vocabulary in tensor fields than
vector fields. Inside the heart region, VIEF can only have an elongated
center as the singularity. On the other hand, TIEF contains a trisector
and two wedges, which are more natural here.



Scheuermann [29] simplify the topology of a tensor field by
performing “pair annihilation” on degenerate point pairs
that are spatially close. They also cluster nearby first-order
degenerate points into higher-order ones [27]. Alliez et al.
[1] perform tensor field smoothing to remove noise in the
curvature tensor, which also tends to reduce the number of
degenerate points. Our system provides operations for both
types of tensor field simplification (Section 6.2).

While tensor field design systems are lacking, there have
been published work on scalar and vector field design.
Ni et al. [19] allow a user to design fair Morse functions
(scalar fields) on 3D surfaces for a number of graphics
applications, such as parameterization and remeshing [7].
Vector field design has been used in texture synthesis [20],
[30], [34], fluid simulation [24], and vector field visualiza-
tion [32], [33]. These algorithms were developed in a quick
manner to generate vector fields for a particular application,
and the details of these systems were not published.
Rockwood and Bunderwala [21] develop a vector field
design system based on geometric algebra. All of these
design systems lack control over vector field topology, such
as singularities. The design system of Theisel [25] allows a
user to control vector field topology, but it requires the user
to provide the complete topological skeleton, which is
cumbersome. Zhang et al. [35] introduce an interactive
vector field design system that provides users with control
over the number and location of the singularities in the
field. In addition, their system works for both planar
domains and curved mesh surfaces. Our tensor field design
system is reminiscent of their system in terms of the
functionalities. However, their system cannot be used to

modify tensor fields, such as the tensor-based image edge
fields and the curvature tensor fields.

5 IMAGE-BASED TENSOR VISUALIZATION

In this section, we present our interactive visualization
technique for planar and surface tensor fields. This
technique is an extension of the image-based flow visuali-
zation techniques [32], [33], [14]. To visualize vector fields,
IBFV produces streaks in the direction of the flow starting
from an initial image (usually white noise). This initial
image is warped in the flow direction by texturing a coarse
2D mesh with the image and then moving the mesh vertices
along the flow. The warped image is blended with the old
image, and the process is repeated.

To visualize a tensor field T , we find it sufficient to show
only the major eigenvector field E1. No information is lost
by omitting a view of the minor eigenvector field E2 since it
is simply the major field rotated by �

2. To visualize E1, it is
desirable to convert E1 into a continuous vector field V so
that we can apply vector field visualization techniques,
such as IBFV. One obvious way to perform this task is to
choose a direction for every point in the domain. However,
V will contain discontinuities that cannot always be
eliminated. For instance, the tensor field

T ðx; yÞ ¼ x y
y �x

� �

contains a wedge at (0, 0). Assume there is a way to assign
directions to every point such that the sign ambiguity is
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Fig. 4. Comparison between the vector-based image edge field (VIEF, left) and the tensor-based image edge field (TIEF, right) for painterly

rendering of an image of a duck. Notice that TIEF is much smoother than VIEF (top row), and their impact on the painterly results are clearly visible

near the beak of the duck.



removed. Then, (0, 0) becomes a singularity in V . However,

the Poincaré index of a first-order singularity is �1, which is

impossible to achieve for the wedge. This is because the

total Poincaré index of a region for a vector field must be an

integer, and the total index of T for the same region is 1=2.

In fact, a necessary condition for the existence of a

consistent assignment is that the tensor field contains no

degenerate points of an odd order (first, third, fifth, etc).
Let D denote the domain and SðV Þ � D be the set of

points where V is discontinuous. While it is not always

possible to construct a vector field V from T such that

SðV Þ ¼ ;, we build two vector fields V1 and V2 such thatT
i SðViÞ contains only the degenerate points of T , and every

regular point in the domain belongs to D n SðViÞ for some i.

The major eigenvector field E1 can be represented in terms

of two spatially varying scalar fields � and �, which are the

magnitude and direction, respectively. Specifically,

E1 ¼ ��
cos �
sin �

� �
ð� � 0Þ:

We define the following two vector fields from E1:

V1 ¼ Vx ¼
�

cos �
sin �

� �
if cos � � 0

�
� cos �
� sin �

� �
otherwise,

8>><
>>: ð3Þ

V2 ¼ Vy ¼
�

cos �
sin �

� �
if sin � � 0

�
� cos �
� sin �

� �
otherwise.

8>><
>>: ð4Þ

Basically, Vx is obtained from E1 by choosing directions so

that the x-component of Vx is nonnegative everywhere.

Therefore, SðVxÞ ¼ fðx; yÞj cosð�ðx; yÞÞ ¼ 0g. Similarly, Vy is

obtained by choosing directions so that the y-component of

Vy is nonnegative and SðVyÞ ¼ fðx; yÞj sinð�ðx; yÞÞ ¼ 0g.
SðVxÞ

T
SðVyÞ is the set of degenerate points. Let Ix and Iy

be the images produced using IBFV with Vx and Vy,

respectively. Let WX ¼ cos2 � and Wy ¼ sin2 � ¼ 1�Wx be

the blending functions. Then, the final image I ¼Wx � Ix þ
Wy � Iy produces the desired result. Fig. 5 illustrates this

process for a tensor field T (Fig. 5d). We compute the IBFV

images based on Vx (Fig. 5a) and Vy (Fig. 5b). Notice the

visual artifacts caused by the discontinuities in these

images. The weight function Wx (Fig. 5c) is shown

according to the following color coding: From 0 to 1 in

increasing order, the colors are dark, red, yellow, and green.

To extend this technique to visualizing a surface tensor field

T , we project E1 onto the image space and apply the two-

image blending technique to the projection. Notice our

visualization technique does not provide information on

eigenvalues. This information may be added through color

coding as was done by Urness et al. [31].

6 TENSOR FIELD DESIGN

In this section, we describe our two-stage tensor field

design system for planar domains.

6.1 Initialization and Analysis

During the initialization stage, our system allows a user to
quickly create an initial tensor field through a set of design
elements. An element can be either regular if a desired tensor
value is specified, or singular if a particular type of
degenerate point is needed. For our applications, we have
found that it is usually sufficient to provide specifications
up to second-order degenerate points (first-order: wedges
and trisectors; second-order: nodes, centers, and saddles;
see Fig. 2). Every design element is extended to a globally
defined basis field, and the user-defined tensor field is a sum
of these basis fields. Similar ideas have been used by van
Wijk to create vector fields with desired behaviors [32].
With a carefully chosen set of weight functions, the
resulting tensor field will have desired tensor values or
degenerate points as specified by individual elements. Next,
we provide details on how to build a basis field from a
regular or singular element.

Given a regular element ðS0; T0Þ defined at p0, we

compute �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

0 þ T 2
0

q
and �0 ¼ arctan T0

S0

� 	
and define

the following basis field:

T ðpÞ ¼ e�dkp�p0k2

�0
cos 2�0 sin 2�0

sin 2�0 � cos 2�0

� �
; ð5Þ

where d is a decay constant that is used to control the
amount of influence of the basis field. The weight function
e�dkp�p0k2

is strong near the center of the element and grows
weaker for points farther away, which allows us to combine
basis tensor fields by summing them and still maintain
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Fig. 5. This figure illustrates our visualization technique with a planar
tensor field. The system first produces images according to two direction
assignments: ((a), in the positive x-direction) Vx and ((b), in the positive
y-direction)Vy. The images are then blended according to weight functions
Wx (a color coding shown in (c)) andWy ¼ 1�Wx. (d) The resulting image
no longer contains the visual artifacts from Vx and Vy.



desired values at specified locations. Notice that other
weight functions can be used instead as long as they also
satisfy this property.

Singular elements can be extended to create basis tensor
fields in a similar fashion. For example, to create a basis
field with a wedge point at p0 ¼ ðx0; y0Þ such that its only
separatrix is extended in the positive X-axis, we use the
following formula:

T ðpÞ ¼ e�dkp�p0k2 x y
y �x

� �
; ð6Þ

where x ¼ xp � x0 and y ¼ yp � y0. The following matrices
produce a trisector, a node, a center, and a saddle,
respectively.

x �y
�y �x

� �
;

x2 � y2 2xy

2xy �ðx2 � y2Þ

� �
y2 � x2 �2xy

�2xy �ðy2 � x2Þ

� �
;

x2 � y2 �2xy

�2xy �ðx2 � y2Þ

� �
:

Our system allows a user to modify the location,
orientation, and scale of a singular element as well as to
remove an existing element. Modifications to a singular
element will result in more complicated matrices.

To allow an arbitrary tensor field to be created, our
system allows the use of a design element of any order.
Recall that an Nth-order element has a tensor index of �ðN2 Þ.
Such an element can be created by using the following
matrix:

DN a cosðN�Þ þ b sinðN�Þ c cosðN�Þ þ d sinðN�Þ
c cosðN�Þ þ d sinðN�Þ � a cosðN�Þ þ b sinðN�Þð Þ

� �
;

ð7Þ

where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2

q
;

� ¼ arctan
y� y0

x� x0

� �
;

and the matrix a b
c d


 �
has a full rank. The sign of tensor index

of a degenerate point is the same as the sign of ad� bc (see

the Appendix for more details). The values of a, b, c, and d

determine the geometric characteristics of the tensor field

near the degenerate point, such as anisotropy and skew-

ness. Note that the matrices that we use to create first- and

second-order elements are special instances of (7) in that

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
cos �;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
sin �;

x2 � y2 ¼ ðx2 þ y2Þ cos 2�;

2xy ¼ ðx2 þ y2Þ sin 2�:

Fig. 6 shows some third through eighth-order elements
(from left to right), where the elements in the top row have
a positive tensor index and the elements in the bottom row
have a negative index.

The resulting tensor field is interactively updated and
displayed as the user continues to make adjustment to the
set of regular and singular elements. The tensor fields in the
middle and right of Fig. 1 and in Fig. 12c show examples of
designed fields. Colored line segments with arrows indicate
the location and orientation of regular elements, and
colored boxes indicate the type and location of singular
elements. Our implementation of field initialization is
similar to the vector field design system of Zhang et al.
[35]. Notice this is not the only way to create an initial
tensor field. Other methods such as constrained optimiza-
tion could also be used. The initial tensor field often
contains unspecified degenerate points, and our system
handles them through topological editing operations that
we will describe in the next section. The initial tensor field is
then sampled at the vertices and linearly interpolated inside
the triangles.

For tensor field analysis, we detect the location and type
of degenerate points as well as compute separatrices
emanated from wedges and trisectors. For planar tensor
fields, we follow closely the algorithms described by
Delmarcelle and Hesselink [4] and by Tricoche [28].

6.2 Editing

Our tensor field design system provides three types of
editing operations: matrix actions on tensor fields, smooth-
ing, and topological editing. These operations are natural
adaptations of the editing operations provided in the vector
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Fig. 6. Example basis tensor fields corresponding to higher-order design elements with a positive tensor index (top row) or a negative tensor index

(bottom row). From left to right are third through eighth-order elements.



field design system of Zhang et al. [35]. While the
functionalities of our tensor editing operations are similar
to their counterpart for vector fields, the implementations
are rather different due to the sign ambiguity in tensor
fields. One of our major contributions in this article is the
use of local conversions between vector fields and tensor
fields, which allows us to adapt editing operations for
vector fields to tensor fields. We will now describe these
editing operations in more detail.

6.2.1 Matrix Actions on Tensor Fields

We consider the action of a nondegenerate 2� 2 matrix M

on a tensor field T : ð eMðT ÞÞðpÞ ¼MTT ðpÞM. It is straight-

forward to verify that eM is a group action on the set of

deviate matrices if and only if

M ¼ � cos � � sin �
sin � cos �

� �

or

M ¼ � cos � sin �
sin � � cos �

� �
;

for some � 2 IR and � 2 ½0; 2�Þ. Ignoring scales, we consider
the following sets:

R ¼ cos � � sin �
sin � cos �

� �� �

and

F ¼ cos � sin �
sin � � cos �

� �� �
:

Let R� be an element in R. R� rotates the major (minor)
eigenvector field of T by an angle of �. R� does not change
the number or location of the degenerate points in T .
Furthermore, it maintains the tensor index of any isolated
degenerate point, and it can be used to turn a center into a
node or a focus with an appropriate rotation �.

Any element F� in F induces a reflection of the major
(minor) eigenvector fields of T with respect to sin �

2


 �
X þ

cos �
2


 �
Y ¼ 0 and cos �

2


 �
X � sin �

2


 �
Y ¼ 0. F� also maintains

the number and location of the degenerate points in T . The
signs of tensor indices of degenerate points are negated,
however, by the operators in F . Performing F� twice results
in the original field.

Fig. 7 illustrates this on a tensor field shown in the left. It
is first rotated by �=4 to obtain the tensor field shown in the

middle, which is then reflected with respect to the Y-axis to
obtain the field in the right. Notice that tensor rotations and
reflections do not change the number or location of the
degenerate points. Rotations maintain tensor indices while
reflections negate them.

6.2.2 Smoothing

Our system allows tensor field smoothing inside a user-
specified region R. By holding tensor values fixed on the
boundary of R, the system performs a componentwise
discrete Laplacian smoothing to obtain the new tensor
values for the interior vertices of R. To be more specific, let

F ðpÞ GðpÞ
GðpÞ �F ðpÞ

� �

and

F ðpÞ GðpÞ
GðpÞ �F ðpÞ

� �

be the tensor values before and after smoothing, respec-
tively. Then, F ¼ F , G ¼ G for vertices on the boundary of
R. The new values at the interior vertices are determined by

F ðviÞ
GðviÞ

� �
¼
X
j2J

!ij
F ðvjÞ
GðvjÞ

� �
; ð8Þ

where J is the set of index js such that ðvi; vjÞ is an edge in
the mesh. The weights !ijs are defined according to the
mean-value coordinates of Floater [8] since this choice of
weights guarantees !ij to be nonnegative. This leads to a
pair of sparse linear systems, which we solve through an
implicit biconjugate solver. Similar smoothing operations
have been used in tensor field smoothing [1], [16] and
vector field smoothing [26], [35]. Tensor field smoothing
allows a user to reduce the geometric complexity of a field
as well as the number of degenerate points that it contains.
Fig. 8 compares a tensor field (Fig. 8a) with its smoothed
version (Fig. 8b). Note the tensor values on and outside the
region’s boundary (the white loop) do not change.

6.2.3 Topological Editing

Our system provides two topological editing operations:
degenerate point pair cancellation and degenerate point
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Fig. 7. (a) A tensor field is first (b) rotated by �=4 and then (c) reflected
with respect to the Y -axis.

Fig. 8. This figure shows a tensor field before and after user-guided
smoothing. (a) The original field has many degenerate points, while
(b) the smoothed one has only one. Notice that tensor values outside the
smoothing region (the white loop) do not change.



movement. We will refer to them as pair cancellation and
movement from now on. The pair cancellation operation
allows a user to eliminate a pair of unwanted degenerate
points with opposite tensor indices. Due to the Poincaré
theorem for tensor fields, degenerate points can only be
eliminated in pairs so that the total index sum does not
change. The movement operation provides control over the
location of degenerate points. In our system, both opera-
tions are designed to provide topological guarantees in that
only the intended degenerate points are affected. There
have been several algorithms for pair cancellation, such as
the one developed by Tricoche and Scheuermann [29]. To
the best of our knowledge, the movement operation is new.

Tricoche and Scheuermann [29] perform degenerate
point pair cancellation by first finding a small neighbor-
hood surrounding the degenerate point pair, and then
iteratively updating tensor values at the interior vertices so
that the tensor index for each cell inside the region is zero.
This method requires planar tensor fields, and it is intended
for degenerate point pairs that are closer to each other than
to other degenerate points. We have set our goals on
performing pair cancellation on tensor fields that are
defined on either planar domains or curved surfaces, and
for degenerate point pairs even when they are not closest
neighbors. Zhang et al. [35] provide robust algorithms for
pair cancellation and movement of singularities in a surface
vector field based on Conley index theory [18]. We wish to
adapt their algorithms to surface tensor fields. However,
Conley index theory is defined in terms of vector fields, and
it is not obvious how it might be extended to tensor fields.

To address the problem, we consider ways of converting
a tensor field to a vector field such that any degenerate
point in the tensor field becomes a singularity in the vector
field. One possibility is to remove the sign ambiguity from
the eigenvector field. However, as we have seen in Section 5,
places near odd-order degenerate points (wedges, trisec-
tors) will cause discontinuity in the resulting vector field.
Therefore, we must look for other ways of converting a
tensor field into a vector field. Consider the following
mapping 	 from a deviate tensor field to a vector field:

	 :
F G
G �F

� �
! F

G

� �
: ð9Þ

Essentially, 	 doubles the angle between the major
eigenvector field and the X-axis and makes it a vector field.
Fig. 9 illustrate this with two examples. In Fig. 9a, a wedge
(red double arrows) is turned into a source (green arrows).
In Fig. 9b, a trisector is transformed into a saddle. 	 has the
following desirable properties. First, 	 maps a continuous
tensor field T to a continuous vector field V ¼ 	ðT Þ. The
key is the fact that an eigenvector v and its reverse �v
correspond to the same vector under 	. Notice that this is
different from the sign ambiguity removal method that we
used for tensor field visualization (Section 5). Second, a
point p0 is a degenerate point of T if and only if p0 is a
singularity of 	ðT Þ. Third, the tensor index of p0 with
respect to T is half of the vector (Poincaré) index with
respect to 	ðT Þ. The inverse of 	 is well-defined, which we
denote by 	�1. While the concepts of 	 and 	�1 are simple,
they enable ideas and algorithms from vector fields to be
applied to tensor fields, especially those that address
degenerate points. Tricoche [28] describe yet another
relationship between a tensor field and a vector field based
on the concept of covering spaces. We did not use this
relationship because it maps a wedge in the tensor field to a
regular point in the vector field.

To perform pair cancellation and movement on a tensor
field T , we first convert it to V ¼ 	ðT Þ. We then perform the
corresponding topological editing operation on V to obtain
V 0, which we convert back to a tensor field T 0 ¼ 	�1ðV 0Þ.
Fig. 10 illustrates the topological editing operations on a
tensor field with two centers and two trisectors (Fig. 10a).
First, the trisectors (blue dots) were moved into nearby
positions to form a saddle pattern. Next, the trisectors were
canceled with a wedge from each side. This results in an
elongated center pattern (Fig. 10c).

6.3 Tensor Field Design on Surfaces

Designing tensor fields on surfaces is considerably more
difficult than on the plane. First, building basis tensor fields
requires a global parameterization, which is often lacking
for a surface. Second, tensor field analysis and editing
require continuous tensor fields. However, the surface
normal for a mesh surface is discontinuous at the vertices
and across the edges. As illustrated by Zhang et al. [35], the
piecewise linear representation for planar vector fields does
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Fig. 9. Tensor-to-vector conversion 	 (Section 6.2.3) was applied to two
example tensor fields. (a) After doubling the angle between the major
eigenvector field (indicated by red double arrows) and the X-axis and
then converting it into a vector field (green arrows), a wedge is turned in
a source. (b) A trisector is transformed into a saddle. Notice this
conversion does not change the number and location of the degenerate
points.

Fig. 10. This figure illustrates the topological editing operations in our
system. (a) For this tensor field, a user first moves the two trisectors
(blue dots) to be near each other, (b) thereby forming a saddle type
of pattern in the region. (c) Next, the user cancels the trisectors with
a wedge from each side, resulting in an elongated center pattern.
The conversions between tensor and vector fields enable us to
reuse algorithms from vector fields, such as those developed by
Zhang et al. [35].



not produce continuous vector fields on surfaces. This is
also true for tensor fields.

To remedy the problems, we adapt the surface vector
field interpolation scheme and design algorithms of Zhang
et al. [35] to surface tensor fields, which is based on the
concepts of geodesic polar maps and parallel transport. The
adaptation is straightforward due to the similarities
between vector fields and tensor fields. We refer our
readers to their work for details on the representation and
editing of vector fields on surfaces. Example tensor fields on
various 3D surfaces are shown in Fig. 11. The colored boxes
indicate singular elements, and colored arrows correspond
to regular elements. Also shown are the separatrices that
correspond to the major field (the red curves). Notice that
the tensor field interpolation scheme allows us to consis-
tently trace hyperstreamlines based on a surface tensor field
without the need for a surface parameterization. In fact, we
used the scheme to compute separatrices in a tensor field
(Fig. 11), to create hatches in pen-and-ink sketching (Figs. 13
and 14), and to trace lines of curvature in anisotropic
remeshing (Fig. 15).

7 RESULTS AND APPLICATIONS

All tensor fields shown in this article were created using our
system. In addition, we demonstrate the capability of our
system with three graphics applications: painterly render-
ing, pen-and-ink illustration of surfaces, and anisotropic
remeshing.

7.1 Painterly Rendering

Painterly rendering is a well-researched area, and to review
all existing algorithms is beyond our scope. In this work, we
use the approach of Hertzmann [12] and Hays and Essa [10]
with the following modification: Instead of using the image
edge field to guide brushstroke orientations, the user
creates a tensor field either from scratch or by modifying
the image edge field with our design system. Fig. 1
illustrates this with three example tensor fields on the same
image of a human’s eye. The field shown in the left column
is the tensor-based image edge field (TIEF). While it
captures the major features in the image, such as the eye

and the eyebrow, it is not smooth near the corners of the eye
and around the pupil. By adding a center element in the
middle of the eye (middle column), the noise around the
pupil becomes less noticeable. Finally, the images shown in
the right correspond to a tensor field that was created from
scratch. Fig. 12 provides additional examples: Mona Lisa
(TIEF) (Fig. 12a), Mona Lisa (modified TIEF) (Fig. 12b), and
a cat’s face (a field designed from scratch) (Fig. 12c). For
Mona Lisa, the image edge field contains a wedge on the
left side of her forehead that is visually distracting in the
painting. Also, part of her left eye was “washed out.” By
performing degenerate point movement, the wedge was
moved from her forehead to the corner of her left eye,
removing the artifacts in both areas. In the cat example, the
tip of ears can be easily modeled by wedges. In contrast, it
would have been difficult to model the ears smoothly using
features in vector fields.

7.2 Pen-and-Ink Sketch

Pen-and-ink sketching is an efficient tool in illustrating the
shape of an object. Salisbury et al. [22] provide a direction
design tool that allows an artist to match the hatch
orientations to the features in the input image through a
set of functions such as “comb,” blending tool, and region
fill. These functionalities are vector-based, and topological
control is lacking in the system. There have been numerous
algorithms on hatch-based illustration of 3D surfaces, and
we will only mention those that are most relevant to our
work. Girshick et al. [9] demonstrate that principle
curvature directions are best in illustrating the shape of a
surface. Note that principle curvature directions are the
eigenvector fields of the curvature tensor field. Hertzmann
and Zorin [11] use principle curvature directions to guide
the hatch fields. In their algorithm, two families of evenly
spaced streamlines are computed from the principle
curvature directions, and hatches are generated based on
these streamlines. We adopt a similar approach with one
modification: Instead of using the curvature tensor field to
guide hatching directions over the surface, we allow the
user to design a tensor field from which streamlines are
created. There are two advantages to this approach.
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Fig. 11. Example tensor fields designed on various test models. (a) The tensor field was created by placing a center element at each of the six

evenly-spaced points on the sphere. The topological skeleton of the major field is very similar to the edges of a cube. (b) The field was created by

putting node elements on both sides of the face and on the tail. (c) The tensor field was obtained by combining the curvature tensor field with center

elements on Venus’ eyes to emphasize them.



First, while there have been many algorithms for
estimating the curvature tensor field on a 3D surface [11],
[17], [3], it remains a challenge due to the numerical
difficulties associated with polygonal surfaces and the
complexity of the underlying shapes. In particular, degen-
erate points often appear in unnatural places, and they
cause visual artifacts in the sketching [11]. While tensor
field smoothing can be used to reduce a large percentage of
degenerate points, it lacks explicit control over the number

and location of degenerate points in the field as smoothing
is done to the surface as a whole. Consequently, natural
degenerate points are sometimes removed and new degen-
erate points may emerge in undesirable locations. The user
often needs to tune certain smoothing parameters, such as
the number of smoothing steps and the speed for smooth-
ing. The tuning process can be considered as design. Our
approach also involves a design process. However, it
provides explicit control over the number, location, and
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Fig. 12. Additional examples of applying tensor field design to painterly rendering. (a) The tensor-based image edge field contains artifacts on Mona

Lisa’s left eye and forehead. (b) Through a degenerate point movement operation, a wedge was moved from her forehead to the corner of her eye,

and artifacts in both regions were removed. (c) The user created a tensor field from scratch to match the main features. The painterly results were

obtained based on the offline high-quality painterly rendering program of Hays and Essa [10].

Fig. 13. Pen-and-ink sketching of a foot model using the curvature tensor and a user-modified field. (a) The curvature tensor contains a trisector on

the back of the foot near the toes, and it causes an unnatural look in the sketch. (b) Through design, the trisector was canceled with a nearby wedge

to obtain this image. Notice the visual artifact has been reduced.



type of degenerate points in the field. In particular, with
degenerate point pair cancellation and movement opera-
tions, the user has the guarantee that only intended
degenerate points are affected.

Second, tensor field design allows the user to create new
features that are either not part of the surface geometry or
otherwise difficult to extract. For example, the eyes in the
bunny surface are rather difficult to detect automatically
due to the relative flatness around the regions. While
numerical instabilities can be reduced through better
detection algorithms, it is much harder to automate the
real-world semantics, such as the bunny’s eyes. With
design, the user was able to create features without causing
problems elsewhere on the model.

In Figs. 13 and 14, we compare pen-and-ink sketch using
curvature tensor fields (Figs. 13a and 14a) and with user-
designed fields (Figs. 13b and 14b). The designed field for
the foot model was produced by removing a trisector on the
back of the foot through degenerate point pair cancellation,
and the one for the bunny was created by adding center
elements to create the illustration of eyes.

7.3 Quad-Dominant Remeshing

Anisotropic remeshing has received much attention re-
cently, thanks to the work of Alliez et al. [1]. Anisotropic
remeshing converts an input mesh that is often noisy and
over-tessellated into a quad-dominant mesh to achieve an
optimal sampling rate. A typical algorithm works as
follows: First, a tensor field is computed by either
estimating the curvature tensor [1], [16] or through the
design of fair Morse functions [7]. Second, a family of
evenly spaced streamlines are traced for both the major and
minor eigenvector fields. Third, every intersection between
any line from each family is found, and dangling edges are
removed. Finally, the intersection points are used to
produce quad-dominant meshes. Optimal remeshing near
degenerate points (or umbilics, when the tensor field is the
curvature tensor) is more difficult than for regions that are
free of degenerate points. Therefore, it is important to
control the number and location of the degenerate points in
the field. Fig. 15 illustrates the need to use topological
editing for anisotropic remeshing. The curvature tensor on
the horse surface contains a wedge and trisector pair near
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Fig. 14. A pair of center elements were used to create artificial eyes on the bunny for pen-and-ink sketch (b). Notice that the original curvature tensor

field (a) does not contain such features.

Fig. 15. This figure demonstrates the usefulness of topological editing operations in anisotropic remeshing. (a) The curvature tensor contains a

wedge and trisector pair in the middle of the horse’s torso, which requires special care during remeshing. (b) Through pair cancellation, this region

becomes free of degenerate points.



the belly that requires special care during anisotropic
remeshing (Fig. 15a). By performing pair cancellation, the
same region is degenerate point free, and anisotropic
remeshing becomes straightforward (Fig. 15b).

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have identified tensor field design as an
important problem in computer graphics, and we advocate
that edges in an image be treated as a tensor field rather
than a vector field. We present an interactive tensor field
design system that allows a user to create a wide variety of
tensor fields on planar domains and curved surfaces with
relatively little effort. In particular, a degenerate point of
any order can be created with our system. We also provide
control over the number and location of degenerate points
in the field. Our system supports efficient degenerate point
pair cancellation and movement operations by converting a
tensor field into a vector field with the same set of
singularities, which allows us to reuse similar algorithms
for vector fields. While the conversions are simple, they can
be useful in other types of tensor field operations that
involve degenerate points. We also provide an interactive
tensor field visualization algorithm for both planar domains
and surfaces. To illustrate the benefits of our approach, we
have applied tensor field design to three graphics applica-
tions: painterly rendering, pen-and-ink sketching of sur-
faces, and anisotropic remeshing.

There are a number of issues that we wish to investigate
further in our system. First, we have so far concentrated on
controlling degenerate points in a tensor field. It is a natural
next step to consider creating and controlling separatrices
and closed orbits. While the conversions between vector
fields and tensor fields that we described in Section 6.2.3
relate degenerate points to singularities, they do not
provide any information on how a trajectory, such as a
separatrix and a periodic orbit in the tensor field, is related
to a trajectory in the corresponding vector field. The
mapping based on covering spaces [28] seems promising in
addressing this issue even though it does not always map a
degenerate point to a singularity or vice versa. While it
seems unlikely that the problem of tensor field design can
be turned into vector field design through a “magic” map,
vector fields and tensor fields are intrinsically connected in
many aspects. Understanding these connections will likely
benefit the study of both vector fields and tensor fields.
Second, we are investigating techniques for automatic
pairing of degenerate points for cancellation. The algorithm
of Tricoche and Scheuermann [29] is a good starting point.
Third, we wish to extend our system to other domains, such
as volumes. Finally, understanding and visualizing high-
order tensor data is of great interest to us.

APPENDIX

HIGHER-ORDER DEGENERATE POINTS

In this Appendix, we provide a proof for the following
statement. Given the following tensor field

T ¼ DN a cosðN�Þ þ b sinðN�Þ c cosðN�Þ þ d sinðN�Þ
c cosðN�Þ þ d sinðN�Þ �ða cosðN�Þ þ b sinðN�ÞÞ

� �
;

where D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ad� bc 6¼ 0, T has a unique

degenerate point at the origin with a tensor index

sgnðad� bcÞ N
2


 �
. By using the conversions between tensor

fields and vector fields that are described in Section 6.2.3, it

suffices to show that the vector field

V ¼ DN a cosðN�Þ þ b sinðN�Þ
c cosðN�Þ þ d sinðN�Þ

� �
ð10Þ

has a unique singularity at (0, 0) with a Poincaré index of
sgnðad� bcÞN .

First, we consider the special case where a ¼ d ¼ 1 and

b ¼ c ¼ 0. Call this vector field V0. It is straightforward to

verify that the vector field V0 ¼ DN cosðN�Þ
sinðN�Þ

� 	
has a unique

singularity at the origin with a Poincaré index of N .
Next, we consider the general cases in which a, b, c, and d

are arbitrary real numbers that satisfy ad� bc 6¼ 0. Then
V ¼MV0 where M ¼ a b

c d


 �
. Since the determinant of M is

not zero, V also has a unique singularity at the origin. To
show that V and V0 have the same Poincaré index at the
origin when ignoring the signs, consider the following map:
� : S1 ! S1, by �ðwÞ ¼ Mw

jMwj . Here, S1 is the unit circle
centered at the origin, and w is a unit vector. Notice that
MðS1Þ is an ellipse centered at the origin, which implies that
� is an automorphism on S1, i.e., a self-homeomorphism.
When traveling along S1 in counterclockwise fashion once,
the image under � will also cover S1 once either counter-
clockwise when ad� bc > 0 or clockwise when ad� bc < 0.
Therefore, the Poincaré index for the singularity of V is
sgnðad� bcÞN .

ACKNOWLEDGMENTS

The authors would like to thank the following people and
groups for the 3D models they provided: Mark Levoy and the
Stanford Graphics Group, Andrzej Szymczak, Cyberware,
and the AIM@SHAPE Shape Repository. Images used in this
article are courtesy of FreeFoto.com and Pics4Learning.com.
The authors also appreciate the discussions they had with
Konstantin Mischaikow and the help from Irfan Essa.
Furthermore, the authors are grateful for the help by Spencer
Reynolds in preparing the audio and video production.
Finally, they wish to thank the anonymous reviewers for their
valuable comments and suggestions. This work is funded by
US National Science Foundation grants DMS-0138420 and
CCF-0546881.

REFERENCES

[1] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun,
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Differential-Geometry Operators for Triangulated 2-Manifolds,”
Proc. Workshop Visualization and Math. (VisMath), 2002.

[18] K. Mischaikow and M. Mrozek, “Conley Index,” Handbook of
Dynamic Systems, second ed., North-Holland, pp. 393-460,
2002.

[19] X. Ni, M. Garland, and J.C. Hart, “Fair Morse Functions for
Extracting the Topological Structure of a Surface Mesh,” ACM
Trans. Graphics (Proc. SIGGRAPH ’04), vol. 23, no. 3, pp. 613-
622, 2004.

[20] E. Praun, A. Finkelstein, and H. Hoppe, “Lapped Textures,”
Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH ’00),
pp. 465-470, 2000.

[21] A. Rockwood and S. Bunderwala, “A Toy Vector Field Based on
Geometric Algebra,” Proc. Application of Geometric Algebra in
Computer Science and Eng. (AGACSE ’01), pp. 179-185, 2001.

[22] M.P. Salisbury, M.T. Wong, J.F. Hughes, and D.H. Salesin,
“Orientable Textures for Image-Based Pen-and-Ink Illustration,”
Computer Graphics Proc., Ann. Conf. Series (SIGGRAPH ’97),
pp. 401-406, 1997.

[23] D. Stalling, H.C. Hege, “Fast and Resolution Independent Line
Integral Convolution,” Computer Graphics Proc., Ann. Conf. Series
(SIGGRAPH ’95), pp. 249-256, 1995.

[24] J. Stam, “Flows on Surfaces of Arbitrary Topology,” ACM Trans.
Graphics (Proc. SIGGRAPH ’03), vol. 22, no. 3, pp. 724-731, 2003.

[25] H. Theisel, “Designing 2D Vector Fields of Arbitrary Topology,”
Computer Graphics Forum (Proc. Eurographics ’02), vol. 21, no. 3,
pp. 595-604, 2002.

[26] Y. Tong, S. Lombeyda, A. Hirani, and M. Desbrun, “Discrete
Multiscale Vector Field Decomposition,” ACM Trans. Graphics,
(Proc. SIGGRAPH ’03), vol. 22, no. 3, pp. 445-452, 2003.

[27] X. Tricoche, G. Scheuermann, and H. Hagen, “Scaling the
Topology of Symmetric Second Order Tensor Fields,” Proc. US
Nat’l Science Foundation/Dept. of Energy Lake Tahoe Workshop
Hierarchical Approximation and Geometrical Methods for Scientific
Visualization, 2001.

[28] X. Tricoche, “Vector and Tensor Field Topology Simplification,
Tracking, and Visualization,” PhD thesis, Universität Kaiserslau-
tern, 2002.

[29] X. Tricoche and G. Scheuermann, “Topology Simplification of
Symmetric, Second-Order 2D Tensor Fields,” Geometric Modeling
Methods in Scientific Visualization, B. Hamann, H. Müller, and
H. Hagen, eds., Springer, 2003.

[30] G. Turk, “Texture Synthesis on Surfaces,” Computer Graphics Proc.,
Ann. Conf. Series (SIGGRAPH ’01), pp. 347-354, 2001.

[31] T. Urness, V. Interrante, I. Marusic, E. Longmire, and B.
Ganapathisubramani, “Effectively Visualizing Multi-Valued Flow
Data Using Color and Texture,” Proc. IEEE Visualization Conf.,
pp. 115-121, 2003.

[32] J.J. van Wijk, “Image Based Flow Visualization,” ACM Trans.
Graphics (Proc. SIGGRAPH ’02), vol. 21, no. 3, pp. 745-754, 2002.

[33] J.J. van Wijk, “Image Based Flow Visualization for Curved
Surfaces,” Proc. IEEE Visualization Conf., G. Turk, J. van Wijk,
and R. Moorhead, eds., pp. 123-130, 2003.

[34] L.Y. Wei and M. Levoy, “Texture Synthesis over Arbitrary
Manifold Surfaces,” Computer Graphics Proc., Ann. Conf. Series,
(SIGGRAPH ’01), pp. 355-360, 2001.

[35] E. Zhang, K. Mischaikow, and G. Turk, “Vector Field Design on
Surfaces,” ACM Trans. Graphics, vol. 25, no. 4, 2006.

[36] X. Zheng and A. Pang, “Hyperlic,” Proc. IEEE Visualization Conf.,
pp. 249-256, 2003.

Eugene Zhang received the PhD degree in
computer science in 2004 from Georgia Institute
of Technology. He is currently an assistant
professor at Oregon State University, where he
is a member of the School of Electrical En-
gineering and Computer Science. His research
interests include computer graphics, scientific
visualization, and computational topology. He is
a member of the IEEE.

James Hays received the BS degree in 2003
from Georgia Institute of Technology, where he
worked with Irfan Essa on nonphotorealistic
rendering. He is pursuing the PhD degree in
computer science at Carnegie Mellon University
on a US National Science Foundation Graduate
Fellowship. He works with Yanxi Liu on regular
texture analysis and synthesis as well as
symmetry detection.

Greg Turk received the PhD degree in computer
science in 1992 from the University of North
Carolina (UNC) at Chapel Hill. He was a
postdoctoral researcher at Stanford University
for two years, followed by two years as a
research scientist at UNC Chapel Hill. He is
currently an associate professor at the Georgia
Institute of Technology, where he is a member of
the College of Computing and the Graphics,
Visualization, and Usability Center. His research

interests include computer graphics, computer vision, and scientific
visualization. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: INTERACTIVE TENSOR FIELD DESIGN AND VISUALIZATION ON SURFACES 107



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


