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Chapter 1

Kinematics

Kinematics pertains to the motion of bodies in a ro-
botic mechanism without regard to the forces/torques
that cause the motion. Since robotic mechanisms are
by their very essence designed for motion, kinematics is
the most fundamental aspect of robot design, analysis,
control, and simulation. The robotics community has
focused on efficiently applying different representations
of position and orientation and their derivatives with re-
spect to time to solve foundational kinematics problems.

This chapter will present the most useful representa-
tions of the position and orientation of a body in space,
the kinematics of the joints most commonly found in ro-
botic mechanisms, and a convenient convention for rep-
resenting the geometry of robotic mechanisms. These
representational tools will be applied to compute the
workspace, the forward and inverse kinematics, the
forward and inverse instantaneous kinematics, and
the static wrench transmission of a robotic mecha-
nism. For brevity, the focus will be on algorithms ap-
plicable to open-chain mechanisms.

The goal of this chapter is to provide the reader with
general tools in tabulated form and a broader overview
of algorithms that can be together applied to solve kine-
matics problems pertaining to a particular robotic mech-
anism.

1.1 Introduction

Unless explicitly stated otherwise, robotic mechanisms
are systems of rigid bodies connected by joints. The
position and orientation of a rigid body is space are col-
lectively termed the “pose”. Therefore, robot kinematics
describes the pose, velocity, acceleration, and all higher
order derivatives of the pose of the bodies that com-
prise a mechanism. Since kinematics does not address
the forces/torques that induce motion, this chapter fo-
cuses on describing pose and velocity. These descriptions

are foundational elements of dynamics (Chapter 2), mo-
tion planning (Chapter 5), and motion control (Chapter
6) algorithms.

Among the many possible topologies in which systems
of bodies can be connected, two are of particular impor-
tance in robotics: serial chains and fully parallel mecha-
nisms. A serial chain is a system of rigid bodies in which
each member is connected to two others, except for the
first and last members that are each connected to only
one other member. A fully parallel mechanism is one in
which there are two members that are connected together
by multiple joints. In practice, each “joint” is often it-
self a serial chain. This chapter focuses almost exclu-
sively on algorithms applicable to serial chains. Parallel
mechanisms are dealt with in more detail in Chapter 12
Parallel Mechanisms and Robots.

1.2 Position and Orientation
Representation

Spatial, rigid body kinematics can be viewed as a com-
parative study of different ways of representing the pose
of a body. Translations and rotations, referred to in com-
bination as rigid body displacements, are also expressed
with these representations. No one approach is optimal
for all purposes, but the advantages of each can be lever-
aged appropriately to facilitate the solution of different
problems.

The minimum number of coordinates required to lo-
cate a body in Euclidean space is six. Many represen-
tations of spatial pose employ sets with superabundant
coordinates in which auxiliary relationships exist among
the coordinates. The number of independent auxiliary
relationships is the difference between the number of co-
ordinates in the set and six.

This chapter and those that follow it make frequent

1



CHAPTER 1. KINEMATICS 2

use of “coordinate reference frames” or simply “frames”.
A coordinate reference frame i consists of an origin, de-
noted Oi, and a triad of mutually orthogonal basis vec-
tors, denoted [x̂i ŷi ẑi], that are all fixed within a partic-
ular body. The pose of a body will always be expressed
relative to some other body, so it can be expressed as the
pose of one coordinate frame relative to another. Simi-
larly, rigid body displacements can be expressed as dis-
placements between two coordinate frames, one of which
may be referred to as “moving”, while the other may be
referred to as “fixed”. This indicates that the observer
is located in a stationary position within the fixed ref-
erence frame, not that there exists any absolutely fixed
frame.

1.2.1 Position and Displacement

The position of the origin of coordinate frame i relative
to coordinate frame j can be denoted by the 3×1 vector

jpi =

jpxijpyi
jpzi

 .
The components of this vector are the Cartesian coor-
dinates of Oi in the j frame, which are the projections
of the vector jpi onto the corresponding axes. The vec-
tor components could also be expressed as the spherical
or cylindrical coordinates of Oi in the j frame. Such
representations have advantages for analysis of robotic
mechanisms including spherical and cylindrical joints.

A translation is a displacement in which no point in the
rigid body remains in its initial position and all straight
lines in the rigid body remain parallel to their initial
orientations. (The points and lines are not necessarily
contained within the boundaries of the finite rigid body,
but rather, any point or line in space can be taken to
be rigidly fixed in a body.) The translation of a body in
space can be represented by the combination of its posi-
tions prior to and following the translation. Conversely,
the position of a body can be represented as a transla-
tion that takes the body from a position in which the
coordinate frame fixed to the body coincides with the
fixed coordinate frame to the current position in which
the two fames are not coincident. Thus, any representa-
tion of position can be used to create a representation of
displacement, and vice-versa.

1.2.2 Orientation and Rotation

There is significantly greater breadth in the representa-
tion of orientation than in that of position. This section

does not include an exhaustive summary, but focuses on
the representations most commonly applied to robotic
mechanisms.

A rotation is a displacement in which at least one point
of the rigid body remains in its initial position and not
all lines in the body remain parallel to their initial orien-
tations. For example, a body in a circular orbit rotates
about an axis through the center of its circular path, and
every point on the axis of rotation is a point in the body
that remains in its initial position. As in the case of po-
sition and translation, any representation of orientation
can be used to create a representation of rotation, and
vice-versa.

Rotation Matrices

The orientation of coordinate frame i relative to coordi-
nate frame j can be denoted by expressing the basis vec-
tors [x̂i ŷi ẑi] in terms of the basis vectors

[
x̂j ŷj ẑj

]
.

This yields
[
jx̂i

jŷi
jẑi
]
, which when written together as

a 3 × 3 matrix is known as the rotation matrix. The
components of jRi are the dot products of basis vectors
of the two coordinate frames.

jRi =

x̂i · x̂j ŷi · x̂j ẑi · x̂j
x̂i · ŷj ŷi · ŷj ẑi · ŷj
x̂i · ẑj ŷi · ẑj ẑi · ẑj

 (1.1)

Because the basis vectors are unit vectors and the dot
product of any two unit vectors is the cosine of the angle
between them, the components are commonly referred
to as direction cosines.

An elementary rotation of frame i about the ẑj axis
through an angle θ is

RZ(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , (1.2)

while the same rotation about the ŷj axis is

RY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (1.3)

and about the x̂j axis is

RX(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 . (1.4)

The rotation matrix jRi contains nine elements, while
only three parameters are required to define the orienta-
tion of a body in space. Therefore, six auxiliary relation-
ships exist between the elements of the matrix. Because
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the basis vectors of coordinate frame i are mutually or-
thonormal, as are the basis vectors of coordinate frame j,
the columns of jRi formed from the dot products of these
vectors are also mutually orthonormal. A matrix com-
posed of mutually orthonormal vectors is known as an
orthogonal matrix and has the property that its inverse
is simply its transpose. This property provides the six
auxiliary relationships. Three require the column vectors
to have unit length, and three require the column vectors
to be mutually orthogonal. Alternatively, the orthogo-
nality of the rotation matrix can be seen by considering
the frames in reverse order. The orientation of coordi-
nate frame j relative to coordinate frame i is the rotation
matrix iRj whose rows are clearly the columns of the ma-
trix jRi. Rotation matrices are combined through simple
matrix multiplication such that the orientation of frame
i relative to frame k can be expressed as

kRi = kRj
jRi.

In summary, jRi is the rotation matrix that transforms
a vector expressed in coordinate frame i to a vector ex-
pressed in coordinate frame j. It provides a representa-
tion of the orientation of frame i relative to j and thus,
can be a representation of rotation from frame i to frame
j. Table 1.1 lists the equivalent rotation matrices for the
other representations of orientation listed in this section.
Table 1.2 contains the conversions from a known rotation
matrix to these other representations.

Euler Angles

For a minimal representation, the orientation of coordi-
nate frame i relative to coordinate frame j can be de-
noted as a vector of three angles [α, β, γ]. These angles
are known as Euler angles when each represents a rota-
tion about an axis of a moving coordinate frame. In this
way, the location of the axis of each successive rotation
depends upon the preceding rotation(s), so the order of
the rotations must accompany the three angles to define
the orientation. For example, the symbols [α, β, γ] are
used throughout this handbook to indicate Z-Y-X Euler
angles. Taking the moving frame i and the fixed frame
j to be initially coincident, α is the rotation about the
ẑ axis of frame i, β is the rotation about the rotated ŷ
axis of frame i, and finally, γ is the rotation about the
twice rotated x̂ axis of frame i. The equivalent rotation
matrix jRi is given in Table 1.1. Z-Y-Z and Z-X-Z Euler
angles are other commonly used conventions from among
the 12 different possible orders of rotations.

Z-Y-X Euler Angles [α, β, γ]:

jRi =

cαcβ cαsβsγ − sαcγ cαsβcγ + sαsγ
sαcβ sαsβsγ + cαcγ sαsβcγ − cαsγ
−sβ cβsγ cβcγ


X-Y-Z Fixed Angles [ψ, θ, φ]:

jRi =

cφcθ cφsθsψ − sφcψ cφsθcψ + sφsψ
sφcθ sφsθsψ + cφcψ sφsθcψ − cφsψ
−sθ cθsψ cθcψ


Angle-Axis θŵ:

jRi = w2
xvθ + cθ wxwyvθ − wzsθ wxwzvθ + wysθ

wxwyvθ + wzsθ w2
yvθ + cθ wywzvθ − wxsθ

wxwzvθ − wysθ wywzvθ + wxsθ w2
zvθ + cθ


Unit Quaternions [ε0 ε1 ε2 ε3]

T :

jRi =

1− 2(ε22 + ε23) 2(ε1ε2 − ε0ε3) 2(ε1ε3 + ε0ε2)
2(ε1ε2 + ε0ε3) 1− 2(ε21 + ε23) 2(ε2ε3 − ε0ε1)
2(ε1ε3 − ε0ε2) 2(ε2ε3 + ε0ε1) 1− 2(ε21 + ε22)



Table 1.1: Equivalent rotation matrices for various repre-
sentations of orientation, with abbreviations cθ := cos θ,
sθ := sin θ, and vθ := 1− cos θ.

Regardless of the order of rotations, an Euler angle
representation of orientation always exhibits a singular-
ity when the first and last rotations both occur about the
same axis. This can be readily seen in Table 1.2 wherein
the angles α and γ are undefined when β = ±90o. (For
Z-Y-Z and Z-X-Z Euler angles, the singularity occurs
when the second rotation is 0o or 180o.) This creates a
problem in relating the angular velocity vector of a body
to the time derivatives of Euler angles, which somewhat
limits their usefulness in modeling robotic systems. This
velocity relationship for Z-Y-X Euler angles isα̇β̇

γ̇

 =

 − sinβ 0 1
cosβ sin γ cos γ 0
cosβ cos γ − sinβ 0

ωxωy
ωz

 . (1.5)

Fixed Angles

A vector of three angles can also denote the orientation
of coordinate frame i relative to coordinate frame j when
each angle represents a rotation about an axis of a fixed
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reference frame. Appropriately, such angles are referred
to as Fixed Angles, and the order of the rotations must
again accompany the angles to define the orientation. X-
Y-Z Fixed Angles, denoted here as [ψ, θ, φ], are a com-
mon convention from among the, again, 12 different pos-
sible orders of rotations. Taking the moving frame i and
the fixed frame j to be initially coincident, ψ is the yaw
rotation about the fixed x̂j axis, θ is the pitch rotation
about the fixed ŷj axis, and φ is the roll rotation about
the fixed ẑj axis. As can be seen by comparing the re-
spective equivalent rotation matrices in Table 1.1 and
the respective conversions in Table 1.2, a set of X-Y-Z
Fixed Angles is exactly equivalent to the same set of Z-
Y-X Euler Angles (α = φ, β = θ, and γ = ψ). This
result holds in general such that three rotations about
the three axes of a fixed frame define the same orienta-
tion as the same three rotations taken in the opposite
order about the three axes of a moving frame. Likewise,
all fixed angle representations of orientations suffer from
the singularity discussed for Euler angles. Also, the rela-
tionship between the time derivatives of fixed angles and
the angular velocity vector is similar to the relationship
for Euler angles.

Angle-Axis

A single angle θ in combination with a unit vector ŵ can
also denote the orientation of coordinate frame i relative
to coordinate frame j. In this case, frame i is rotated
through the angle θ about an axis defined by the vector
ŵ = [wx wy wz]

T relative to frame j. The vector ŵ is
sometimes referred to as the equivalent axis of a finite
rotation. The angle-axis representation, typically writ-
ten as either θŵ or [θwx θwy θwz]

T , is superabundant
by one because it contains four parameters. The auxil-
iary relationship that resolves this is the unit magnitude
of vector ŵ. Even with this auxiliary relationship, the
angle-axis representation is not unique because rotation
through an angle of −θ about −ŵ is equivalent to a rota-
tion through θ about ŵ. Table 1.3 contains the conver-
sions from angle-axis representation to unit quaternions
and vice versa. The conversions from these two repre-
sentations to Euler angles or fixed angles can be easily
found by using the conversions in Table 1.2 in conjunc-
tion with the equivalent rotation matrices in Table 1.1.
Velocity relationships are more easily dealt with using
the closely related quaternion representation.

Quaternions

The quaternion representation of orientation due to
Hamilton [18], while largely superseded by the simpler
vector representations of Gibbs [61] and Grassmann [17],
is extremely useful for problems in robotics that result
in representational singularities in the vector/matrix no-
tation [33]. Quaternions do not suffer from singularities
as Euler angles do.

A quaternion ε is defined to have the form,

ε = ε0 + ε1i+ ε2j + ε3k,

where the components ε0, ε1, ε2, and ε3 are scalars, some-
times referred to as Euler parameters, and i, j, and k are
operators. The operators are defined to satisfy the fol-
lowing combinatory rules:

ii = jj = kk = −1

ij = k , jk = i , ki = j,

ji = −k , kj = −i , ik = −j.

Two quaternions are added by adding the respective
components separately, so the operators act as separa-
tors. The null element for addition is the quaternion
0 = 0 + 0i + 0j + 0k, and quaternion sums are associa-
tive, commutative, and distributive. The null element for
multiplication is I = 1+0i+0j+0k, as can be seen using
Iε = ε for any quaternion ε. Quaternion products are
associative and distributive, but not commutative, and
following the conventions of the operators and addition,
have the form

ab =

a0b0 − a1b1 − a2b2 − a3b3
+(a0b1 + a1b0 + a2b3 − a3b2)i
+(a0b2 + a2b0 + a3b1 − a1b3)j
+(a0b3 + a3b0 + a1b2 − a2b1)k

. (1.6)

It is convenient to define the conjugate of a quaternion,

ε̃ = ε0 − ε1i− ε2j − ε3k,

so that
εε̃ = ε̃ε = ε20 + ε21 + ε22 + ε23.

A unit quaternion can then be defined such that, εε̃ = 1.
Often, ε0 is referred to as the scalar part of the quater-
nion, and [ε1 ε2 ε3]

T is referred to as the vector part.
Unit quaternions are used to describe orientation, and

the unit magnitude provides the auxiliary relationship to
resolve the use of superabundant (four) coordinates. A
vector is defined in quaternion notation as a quaternion
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with ε0 = 0. Thus, a vector p = [px py pz]
T can be ex-

pressed as a quaternion p = pxi + pyj + pzk. For any
unit quaternion ε, the operation εpε̃ performs a rotation
of the vector p about the direction [ε1 ε2 ε3]

T . This is
clearly seen by expanding the operation εpε̃ and com-
paring the results with the equivalent rotation matrix
listed in Table 1.1. Also, as shown in Table 1.3, unit
quaternions are closely related to the angle-axis repre-
sentation of orientation. ε0 corresponds to the angle of
rotation, while ε1, ε2, and ε3 define the axis of rotation.

For velocity analysis, the time derivative of the quater-
nion can be related to the angular velocity vector as

ε̇0
ε̇1
ε̇2
ε̇3

 =
1
2


−ε1 −ε2 −ε3
ε0 ε3 −ε2
−ε3 ε0 ε1
ε2 −ε1 ε0


ωxωy
ωz

 . (1.7)

While a unit quaternion represents only the orienta-
tion of a body, quaternions may be dualized [10, 23, 49] to
create an algebra that provides a description of the posi-
tion and orientation of a body in space. Other combined
representations are discussed in the following sections.

1.2.3 Homogeneous Transformations

The preceding sections have addressed representations of
position and orientation separately. With homogeneous
transformations, position vectors and rotation matrices
are combined together in a compact notation. Any vec-
tor ir expressed relative to the i coordinate frame can
be expressed relative to the j coordinate frame if the
position and orientation of the i frame are known rela-
tive to the j frame. Using the notation of Section 1.2.1,
the position of the origin of coordinate frame i rela-
tive to coordinate frame j can be denoted by the vec-
tor jpi =

[
jpxi

jpyi
jpzi
]T . Using the notation of Section

1.2.2, the orientation of frame i relative to frame j can
be denoted by the rotation matrix jRi. Thus,

jr = jRi
ir + jpi. (1.8)

This equation can be written[
jr
1

]
=
[
jRi

jpi
0T 1

] [
ir
1

]
, (1.9)

where
jT i =

[
jRi

jpi
0T 1

]
(1.10)

is the 4 × 4 homogeneous transform matrix and
[
jr 1

]T
and

[
ir 1
]T are the homogeneous representations of the

position vectors jr and ir. The matrix jT i transforms
vectors from coordinate frame i to coordinate frame
j. Its inverse jT−1

i transforms vectors from coordinate
frame j to coordinate frame i.

jT−1
i = iT j =

[
jRT

i −jRT
i
jpi

0T 1

]
. (1.11)

Composition of 4×4 homogeneous transform matrices is
accomplished through simple matrix multiplication, just
as in the case of 3×3 rotation matrices. Therefore, kT i =
kT j

jT i. Since matrix multiplications do not commute,
the order or sequence is important.

The homogeneous transform of a simple rotation about
an axis is sometimes denoted Rot such that a rotation
of θ about an axis ẑ is

Rot(ẑ, θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 . (1.12)

Similarly, the homogeneous transform of a simple trans-
lation along an axis is sometimes denoted Trans such
that a translation of d along an axis x̂ is

Trans(x̂, d) =


1 0 0 d
0 1 0 0
0 0 1 0
0 0 0 1

 . (1.13)

Homogeneous transformations are particularly attrac-
tive when compact notation is desired and/or when ease
of programming is the most important consideration.
This is not, however, a computationally efficient repre-
sentation since it introduces a large number of additional
multiplications by ones and zeros. Although homoge-
neous transform matrices technically contain sixteen el-
ements, four are defined to be zero or one, and the re-
maining elements are composed of a rotation matrix and
a position vector. Therefore, the only truly superabun-
dant coordinates come from the rotation matrix com-
ponent, so the relevant auxiliary relationships are those
associated with the rotation matrix.

1.2.4 Screw Transformations

The transformation in Equation 1.8 can be viewed as
composed of a rotation between coordinate frames i and
j and a separate displacement between those frames. To
get from frame i to frame j, one could perform the rota-
tion first, followed by the displacement, or vice versa. Al-
ternatively, the spatial displacement between the frames
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can be expressed, except in the case of a pure transla-
tion, as a rotation about a unique line combined with a
translation parallel to that line.

Chasles’ Theorem

Chasles’ theorem, in the form stated by Chirikjian and
Kyatkin [9], has two parts. The first states that: Any
displacement of a body in space can be accomplished by
means of a translation of a designated point from its ini-
tial to its final position, followed by a rotation of the
whole body about that point to bring it into its final ori-
entation. The second part states that: Any displacement
of a body in space can be accomplished by means of a rota-
tion of the body about a unique line in space accompanied
by a translation of the body parallel to that line. Such a
line is called a screw axis, and it is this second result that
is usually thought of as Chasles’ theorem.

The first part of the theorem is almost axiomatic. A
designated point in a body anywhere in Euclidean space
can be displaced from a given initial position to a given
final position. By further requiring that all points in the
body traverse the same displacement, the body trans-
lates so that the designated point moves from its initial
position to its final position. The body can then be ro-
tated about that point into any given final orientation.

The second part of the theorem depends on this repre-
sentation of a spatial displacement and requires a more
complex argument. A preliminary theorem due to Euler
allows greater specificity about the rotation of the body:
Any displacement of a body in which one point remains
fixed is equivalent to a rotation of that body about a
unique axis passing through that point. Geometrically,
embedding three points in the moving body and letting
one be the fixed point about which rotation occurs, each
of the other two will have initial and final positions. The
right bisector planes of the lines joining the initial and
final positions in each case necessarily contain the fixed
point. Any line in the bisector plane can be the axis of
a rotation that carries the corresponding point from its
initial to its final position. Therefore, the unique line
common to the two bisector planes is such that rotation
about it will carry any point in the body from its ini-
tial to its final position. The rigidity condition requires
that all planes in the body that contain that line rotate
through the same angle.

For any rotation of a rigid body described by a rota-
tion matrix jRi, Euler’s theorem states that there is an
unique eigenvector ŵ such that

jRiŵ = ŵ, (1.14)

where ŵ is a unit vector parallel to the axis of rota-
tion. This expression requires a unit eigenvalue of jRi

corresponding to the eigenvector ŵ. The remaining two
eigenvalues are cos θ± i sin θ, where i is the complex op-
erator and θ is the angle of rotation of the body about
the axis.

Combining the first part of Chasles’ theorem with
Euler’s theorem, a general spatial displacement can be
expressed as a translation taking a point from its initial
to its final position, followed by a unique rotation about
a unique axis through that point that carries the body
from its initial to its final orientation. Resolving the
translation into components in the direction of and or-
thogonal to the rotation axis, every point in the body has
the same displacement component in the direction of the
axis because rotation about it does not affect that com-
ponent. Projected into a plane normal to the rotation
axis, the kinematic geometry of the displacement is iden-
tical to that of planar motion. Just as there is a unique
point in the plane about which a body could be rotated
between two given positions, there is a unique point in
the projection plane. If the rotation axis is moved to
pass through that point, the spatial displacement can
be accomplished by a rotation about that axis combined
with a translation along it, as stated by the theorem.

The line about which rotation takes place is called the
screw axis of the displacement. The ratio of the linear
displacement d to the rotation θ is referred to as the pitch
h of the screw axis [33]. Thus,

d = hθ. (1.15)

The screw axis of a pure translation is not unique. Any
line parallel to the translation can be regarded as the
screw axis, and since the rotation θ is zero, the axis of a
translation is said to have infinite pitch.

A screw axis is most conveniently represented in any
reference frame by means of a unit vector ŵ parallel to
it and the position vector ρ of any point lying on it.
Additional specification of the pitch h and the angle of
rotation θ completely defines the location of a second co-
ordinate frame relative to the reference frame. Thus, a
total of eight coordinates define a screw transformation,
which is superabundant by two. The unit magnitude of
vector ŵ provides one auxiliary relationship, but in gen-
eral, there is no second auxiliary relationship because the
same screw axis is defined by all points lying on it, which
is to say that the vector ρ contains one free coordinate.

Algebraically, a screw displacement is represented by

jr = jRi(ir − ρ) + dŵ + ρ, (1.16)
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Comparing this expression to Eq. 1.8 yields

jpi = dŵ + (13×3 − jRi)ρ. (1.17)

An expression for d is easily obtained by taking the inner
product of both sides of the equation with ŵ:

d = ŵT jpi. (1.18)

The matrix 13×3 − jRi is singular, so Eq. 1.17 cannot
be solved to give a unique value of ρ, but since ρ can
represent any point on the screw axis, this would not
be appropriate. One component of ρ can be arbitrarily
chosen, and any two of the component equations can then
be solved to find the two other components of ρ. All
other points on the screw axis are then given by ρ+kŵ,
where k can take any value.

Table 1.4 contains the conversions between screw
transformations and homogeneous transformations.
Note that the equivalent rotation matrix for a screw
transformation has the same form as the equivalent ro-
tation matrix for an angle-axis representation of orien-
tation in Table 1.1. Also, the auxiliary relationship that
the vector ρ be orthogonal to the screw axis (ŵTρ = 0)
is used in Table 1.4 to provide a unique conversion to the
screw transformation. The inverse result, that of finding
the rotation matrix jRi and the translation jpi corre-
sponding to a given screw displacement is found from
Rodrigues’ equation.

Rodrigues’ Equation

Given a screw axis, the angular displacement of a body
about it, and the translation of the body along it, the
displacement of an arbitrary point in that body can be
found. Viewing a matrix transformation as describing
the displacement of the body, this is equivalent to finding
the matrix transformation equivalent to a given screw
displacement.

Referring to Figure 1.1, the position vectors of a point
before and after a screw displacement can be related

jr = ir + dŵ + sin θŵ × (ir − ρ)
−(1− cos θ)(ir − ρ)− (ir − ρ) · ŵŵ

, (1.19)

where ir and jr denote the initial and final positions of
the point, ŵ and ρ specify the screw axis, and θ and
d give the displacement about it. This result is usu-
ally referred to as Rodrigues’ Equation [5], which can be
written as a matrix transformation [2],

jr = jRi
ir + jpi, (1.20)

Figure 1.1: Initial and final positions of an arbitrary
point in a body undergoing a screw displacement. ir
is the position of the point relative to the moving frame,
which is coincident with the fixed reference frame j in its
initial position. jr is the position of the point relative
to the fixed frame after the screw displacement of the
moving body.

since, when expanded, it gives three linear equations for
the components of jr in terms of those of ir.

jRi = w2
xvθ + cθ wxwyvθ − wzsθ wxwzvθ + wysθ

wxwyvθ + wzsθ w2
yvθ + cθ wywzvθ − wxsθ

wxwzvθ − wysθ wywzvθ + wxsθ w2
zvθ + cθ


jpi =

(
13×3 − jRi

)
ρ + hθŵ,

where the abbreviations are cθ := cos θ, sθ := sin θ, and
vθ = 1−cos θ. The rotation matrix jRi expressed in this
form is also called the screw matrix, and these equations
give the elements of jRi and jpi in terms of the screw
parameters.

An exception arises in the case of a pure translation,
for which θ = 0 and Rodrigues’ equation becomes

jr = ir + dŵ. (1.21)

Substituting for this case, jRi = 13×3 and jpi = dŵ.
Additional information on screw theory can be found

in [4, 12, 19, 41, 42].



CHAPTER 1. KINEMATICS 8

1.2.5 Matrix Exponential Parameteriza-
tion

The position and orientation of a body can also be ex-
pressed in a unified fashion with an exponential mapping.
This approach is introduced first with its application to
pure rotation and expanded to rigid body motion. More
details on the approach can be found in [8] and [34].

Exponential Coordinates for Rotation

The set of all orthogonal matrices with determinant 1,
which is the set of all rotation matrices R, is a group
under the operation of matrix multiplication denoted
as SO(3) ⊂ R3×3. This stands for special orthogonal
wherein “special” alludes to the det Rbeing + 1 instead
of ±1. The set of rotation matrices satisfies the four
axioms of a group:

• Closure: R1R2 ∈ SO(3) ∀R1,R2 ∈ SO(3);

• Identity: 13×3R = R13×3 = R ∀R ∈ SO(3);

• Inverse: RT ∈ SO(3) is the unique inverse of R
∀R ∈ SO(3);

• Associativity: (R1R2)R3 = R1(R2R3)
∀R1,R2,R3 ∈ SO(3).

In the angle-axis representation presented in Section
1.2.2, orientation is expressed as an angle θ of rotation
about an axis defined by the unit vector ŵ. The equiva-
lent rotation matrix found in Table 1.1 can be expressed
as the exponential map

R = eS(ŵ)θ = 13×3 +θS(ŵ)+
θ2

2!
S(ŵ)2 +

θ3

3!
S(ŵ)3 + ... ,

(1.22)
where S(ŵ) is the unit skew-symmetric matrix

S(ŵ) =

 0 −wz wy
wz 0 −wx
−wy wx 0

 . (1.23)

Thus, the exponential map transforms a skew-symmetric
matrix S(ŵ) that corresponds to an axis of rotation ŵ
into an orthogonal matrix R that corresponds to a rota-
tion about the axis ŵ through an angle of θ. It can be
shown that the closed form expression for eS(ŵ)θ, which
can be efficiently computed, is

eS(ŵ)θ = 13×3 + S(ŵ) sin θ + S(ŵ)2(1− cos θ). (1.24)

The components of [θwx θwy θwz]
T , which are related to

the elements of the rotation matrix R in Table 1.2, are
referred to as the exponential coordinates for R.

Exponential Coordinates for Rigid Body Motion

As indicated in Section 1.2.3, the position and orienta-
tion of a body can be expressed by the combination of a
position vector p ∈ R3 and a rotation matrix R ∈ SO(3).
The product space of R3 with SO(3) is the group known
as SE(3), which stands for special Euclidean.

SE(3) = {(p,R) : p ∈ R3,R ∈ SO(3)} = R3 × SO(3).

The set of homogeneous transformations satisfies the four
axioms of a group:

• Closure: T 1T 2 ∈ SE(3) ∀T 1,T 2 ∈ SE(3);

• Identity: 14×4T = T14×4 = T ∀T ∈ SE(3);

• Inverse: the unique inverse of T ∀T ∈ SE(3) is
given in Eq. 1.11;

• Associativity: (T 1T 2)T 3 = T 1(T 2T 3)
∀T 1,T 2,T 3 ∈ SE(3).

In the screw transformation representation in Section
1.2.4, position and orientation are expressed by the angle
θ of rotation about a screw axis defined by the unit vector
ŵ, the point ρ on the axis such that ŵTρ = 0, and the
pitch h of the screw axis. The equivalent homogeneous
transformation found in Table 1.4 can be expressed as
the exponential map

T = eξ̂θ = 14×4 + ξ̂θ +
(ξ̂θ)2

2!
+

(ξ̂θ)3

3!
+ ... , (1.25)

where

ξ̂ =
[
S(ŵ) v
0T 0

]
(1.26)

is the generalization of the unit skew symmetric matrix
S(ŵ) known as a twist. The twist coordinates of ξ̂ are
given by ξ := [ŵTvT ]T . It can be shown that the closed
form expression for eξ̂θ is

eξ̂θ =
[
eS(ŵ)θ (13×3 − eS(ŵ)θ)(ŵ × v) + ŵTvθŵ

0T 1

]
.

(1.27)
Comparison of this result with the conversion between
homogeneous and screw transformations in Table 1.4
yields

v = ρ× ŵ (1.28)

and
h = ŵTv. (1.29)

Thus, the exponential map for a twist transforms the ini-
tial pose of a body into its final pose. It gives the relative
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rigid body motion. The vector ξθ contains the exponen-
tial coordinates for the rigid body transformation.

As for screw transformations, the case of pure trans-
lation is unique. In this case, ŵ = 0, so

eξ̂θ =
[
13×3 θv
0T 1

]
. (1.30)

1.2.6 Plücker Coordinates

A minimum of four coordinates are needed to define a
line in space. The Plücker coordinates of a line form
a six-dimensional vector, so they are superabundant by
two. They can be viewed as a pair of three-dimensional
vectors; one is parallel to the line, and the other is the
“moment” of that vector about the origin. Thus, if u is
any vector parallel to the line and ρ is the position of
any point on the line relative to the origin, the Plücker
coordinates (L, M, N, P, Q, R) are given by:

(L,M,N) = uT ; (P,Q,R) = (ρ× u)T . (1.31)

For simply defining a line, the magnitude of u is not
unique, nor is the component of ρ parallel to u. Two
auxiliary relationships are imposed to reduce the set to
just four independent coordinates. One is that the scalar
product of the two three-dimensional vectors is identi-
cally zero.

LP +MQ+NR ≡ 0. (1.32)

The other is the invariance of the line designated when
the coordinates are all multiplied by the same scaling
factor.

(L,M,N,P,Q,R) ≡ (kL, kM, kN, kP, kQ, kR). (1.33)

This relationship may take the form of constraining u
to have unit magnitude so that L, M , and N are the
direction cosines.

In this handbook, it is often useful to express velocities
in Plücker coordinates, wherein unlike the definition of
lines, the magnitudes of the the two three-dimensional
vectors are not arbitrary. This leads to the motor no-
tation of Von Mises [3] and Everett [15]. For instanta-
neously coincident coordinate frames, one fixed and the
other embedded in the moving body, ω is the angular
velocity of the body and vO is the velocity of the ori-
gin O of the body-fixed frame when both are expressed
relative to the fixed frame. This provides a Plücker co-
ordinate system for the spatial velocity v of the body.
The Plücker coordinates of v are simply the Cartesian

coordinates of ω and vO,

v =
[
ω
v

]
. (1.34)

The transformation from Plücker coordinate system i
to Plücker coordinate system j for spatial velocities is
achieved with the spatial transform jXi. If vi and vj
denote the spatial velocities of a body relative to the i
and j frame, respectively, and jpi and jRi denote the
position and orientation of frame i relative to frame j,

vj = jXivi, (1.35)

where
jXi =

[
jRi 03×3

S(jpi)jRi
jRi

]
, (1.36)

such that

jXi
−1

= iXj =
[

iRj 03×3

−iRjS(jpi) iRj

]
(1.37)

and
kXi = kXj

jXi, (1.38)

and S(jpi) is the skew symmetric matrix 0 −jpzi jpyi
jpzi 0 −jpxi
−jpyi jpxi 0

 (1.39)

Spatial vector notation, which includes the spatial ve-
locities and transforms briefly mentioned here, is treated
in greater depth in Section 2.2. Specifically, Table 2.1
gives a computationally efficient algorithm for applying
a spatial transform.

1.3 Joint Kinematics

Unless explicitly stated otherwise, the kinematic descrip-
tion of robotic mechanisms typically employs a number of
idealizations. The links that compose the robotic mech-
anism are assumed to be perfectly rigid bodies having
surfaces that are geometrically perfect in both position
and shape. Accordingly, these rigid bodies are connected
together at joints where their idealized surfaces are in
ideal contact without any clearance between them. The
respective geometries of these surfaces in contact deter-
mine the freedom of motion between the two links, or
the joint kinematics.

A kinematic joint is a connection between two bodies
that constrains their relative motion. Two bodies that
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are in contact with one another create a simple kine-
matic joint. The surfaces of the two bodies that are
in contact are able to move over one another, thereby
permitting relative motion of the two bodies. Simple
kinematic joints are classified as lower pair joints if con-
tact occurs over surfaces [45] and as higher pair joints if
contact occurs only at points or along lines.

A joint model describes the motion of a frame fixed in
one body of a joint relative to a frame fixed in the other
body. The motion is expressed as a function of the joint’s
motion variables, and other elements of a joint model in-
clude the joint transform, free modes, and constrained
modes. The joint transform enables the transformation
from the frame in the predecessor body to the frame in
the successor body and is composed of the rotation ma-
trix R and the position vector p expressed in successor
frame coordinates. The free modes of a joint define the
directions in which motion is allowed. They are repre-
sented by the 6 × ni matrix Φi whose columns are the
Plücker coordinates of the allowable motion. This ma-
trix relates the spatial velocity vector across the joint
vrel to the joint velocity vector q̇,

vrel = Φiq̇. (1.40)

In contrast, the constrained modes of a joint define the
directions in which motion is not allowed. They are rep-
resented by the 6×(6−ni) matrix Φc

i that is complemen-
tary to Φi. Tables 1.5 and 1.6 contain the formulas of
the joint models for all of the joints described in this sec-
tion. They are used extensively for the dynamic analysis
presented in Chapter 2 Dynamics. Additional informa-
tion on joints can be found in Chapter 3 Mechanisms and
Actuation.

1.3.1 Lower Pair Joints

Lower pair joints are mechanically attractive since wear
is spread over the whole surface and lubricant is trapped
in the small clearance space (in non-idealized systems)
between the surfaces, resulting in relatively good lubri-
cation. As can be proved [54] from the requirement for
surface contact, there are only six possible forms of lower
pair: revolute, prismatic, helical, cylindrical, spherical,
and planar joints.

Revolute

The most general form of a revolute joint, often abbrevi-
ated as “R” and sometimes referred to colloquially as a

hinge or pin joint, is a lower pair composed of two con-
gruent surfaces of revolution. The surfaces are the same
except one of them is an external surface, convex in any
plane normal to the axis of revolution, and one is an in-
ternal surface, concave in any plane normal to the axis.
The surfaces may not be solely in the form of right circu-
lar cylinders, since surfaces of that form do not provide
any constraint on axial sliding. A revolute joint permits
only rotation of one of the bodies joined relative to the
other. The position of one body relative to the other
may be expressed as the angle between two lines normal
to the joint axis, one fixed in each body. Thus, the joint
has one degree of freedom (DOF). When the ẑ axis of
coordinate frame i is aligned with a revolute joint axis,
the formulas in Table 1.5 define the revolute joint model.

Prismatic

The most general form of a prismatic joint, often abbre-
viated as “P” and sometimes referred to colloquially as
a sliding joint, is a lower pair formed from two congruent
general cylindrical surfaces. These may not be right cir-
cular cylindrical surfaces. A general cylindrical surface
is obtained by extruding any curve in a constant direc-
tion. Again, one surface is internal and the other is an
external surface. A prismatic joint permits only sliding
of one of the members joined relative to the other along
the direction of extrusion. The position of one body rel-
ative to the other is determined by the distance between
two points on a line parallel to the direction of sliding,
with one point fixed in each body. Thus, this joint also
has one degree of freedom. When the ẑ axis of coordi-
nate frame i is aligned with a prismatic joint axis, the
formulas in Table 1.5 define the prismatic joint model.

Helical

The most general form of a helical joint, often abbrevi-
ated as ”H” and sometimes referred to colloquially as a
screw joint, is a lower pair formed from two helicoidal
surfaces formed by extruding any curve along a helical
path. The simple example is a screw and nut wherein
the basic generating curve is a pair of straight lines. The
angle of rotation about the axis of the screw joint θ is
directly related to the distance of displacement of one
body relative to the other along that axis d by the ex-
pression d = hθ, where the constant h is called the pitch
of the screw. When the ẑ axis of coordinate frame i is
aligned with a helical joint axis, the formulas in Table
1.5 define the helical joint model.
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Joint Joint Free Constrained Pose
Type Transform Modes Modes State

R p Φi Φc
i Vars. q̇i

Revolute
R

cθi −sθi 0
sθi

cθi
0

0 0 1

 0
0
0




0
0
1
0
0
0




1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 θi θ̇i

Prismatic
P 13×3

1 0 0
0 1 0
0 0 1

  0
0
di




0
0
0
0
0
1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 di ḋi

Helical
H

(pitch h)

cθi
−sθi

0
sθi cθi 0
0 0 1

  0
0
hθi




0
0
1
0
0
h




1 0 0 0 0
0 1 0 0 0
0 0 0 0 −h
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 θi θ̇i

Table 1.5: Joint model formulas for one-degree-of-freedom lower pair joints, with abbreviations cθi
:= cos θi and

sθi
:= sin θi.

Cylindrical

A cylindrical joint, often abbreviated as “C”, is a lower
pair formed by contact of two congruent right circular
cylinders, one an internal surface and the other an exter-
nal surface. It permits both rotation about the cylinder
axis and sliding parallel to it. Therefore, it is a joint with
two degrees of freedom. Lower pair joints with more than
one degree of freedom are easily replaced by kinemati-
cally equivalent compound joints (see Section 1.3.3) that
are serial chains of one-degree-of-freedom lower pairs. In
the present case, the cylindrical joint can be replaced by
a revolute in series with a prismatic joint whose direction
of sliding is parallel to the revolute axis. While simpler to
implement using the geometric representation discussed
in Section 1.4, this approach has disadvantages for dy-
namic simulation. Modeling a single cylindrical joint as a
combination of a prismatic and revolute joint requires the
addition of a virtual link between the two with zero mass
and zero length. The massless link can create computa-

tional problems. When the ẑ axis of coordinate frame
i is aligned with a cylindrical joint axis, the formulas in
Table 1.6 define the cylindrical joint model.

Spherical

A spherical joint, often abbreviated as “S”, is a lower
pair formed by contact of two congruent spherical sur-
faces. Once again, one is an internal surface, and the
other is an external surface. A spherical joint permits
rotation about any line through the center of the sphere.
Thus, it permits independent rotation about axes in up
to three different directions and has three degrees of free-
dom. A spherical joint is easily replaced by a kinemati-
cally equivalent compound joint consisting of three revo-
lutes that have concurrent axes. They do not need to be
successively orthogonal, but often they are implemented
that way. The arrangement is, in general, kinematically
equivalent to a spherical joint, but it does exhibit a sin-
gularity when the revolute joint axes become coplanar.
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This is as compared to the native spherical joint that
never has such a singularity. Likewise, if a spherical
joint is modeled in simulation as three revolutes, compu-
tational difficulties again can arise from the necessary in-
clusion of massless virtual links having zero length. The
joint model formulas of a spherical joint are given in Ta-
ble 1.6.

Planar

A planar joint is formed by planar contacting surfaces.
Like the spherical joint, it is a lower pair joint with three
degrees of freedom. A kinematically equivalent com-
pound joint consisting of a serial chain of three revolutes
with parallel axes can replace a planar joint. As was the
case with the spherical joint, the compound joint exhibits
a singularity when the revolute axes become coplanar.
When the ẑ axis of coordinate frame i is aligned with
the normal to the plane of contact, the formulas in Ta-
ble 1.6 define the planar joint model.

1.3.2 Higher Pair Joints

Some higher pair joints also have attractive properties,
particularly rolling pairs in which one body rolls with-
out slipping over the surface of the other. This is me-
chanically attractive since the absence of sliding means
the absence of abrasive wear. However, since ideal con-
tact occurs at a point, or along a line, application of a
load across the joint may lead to very high local stresses
resulting in other forms of material failure and, hence,
wear. Higher pair joints can be used to create kinematic
joints with special geometric properties, as in the case of
a gear pair, or a cam and follower pair.

Rolling Contact

Rolling contact actually encompasses several different
geometries. Rolling contact in planar motion per-
mits one degree of freedom of relative motion as in
the case of a roller bearing, for example. As noted
above, rolling contact has desirable wear properties since
the absence of sliding means the absence of abrasive
wear. Planar rolling contact can take place along a line,
thereby spreading the load and wear somewhat. Three-
dimensional rolling contact allows rotation about any
axis through the point of contact that is, in principle,
unique. Hence, a three-dimensional rolling contact pair
permits relative motion with three degrees of freedom.
When the ẑ axis of coordinate frame i is aligned with
the axis of rotation and passes through the center of the

roller of fixed radius r, the formulas in Table 1.6 define
the planar rolling contact joint model for a roller on a
flat surface.

Regardless of whether the joint is planar or three-
dimensional, the “no-slip” condition associated with a
rolling contact joint requires that the instantaneous rel-
ative velocity between the points on the two bodies in
contact be zero. If P is the point of rolling contact be-
tween bodies i and j,

vPi/Pj
= 0. (1.41)

Likewise, relative acceleration is in the direction of the
common normal to the two surfaces at the point of con-
tact. Because the constraint associated with the joint
is expressed in terms of velocity, it is nonholonomic, as
discussed in Section 1.3.6. A more detailed discussion of
the kinematic constraints for rolling contact is found in
Section 17.2.2 of Chapter 17 Wheeled Robots.

1.3.3 Compound Joints

Compound kinematic joints are connections between two
bodies formed by serial chains of other members and sim-
ple kinematic joints. A compound joint may constrain
the relative motion of the two bodies joined in the same
way as a simple joint. In such a case, the two joints are
said to be kinematically equivalent.

Universal

A universal joint, often abbreviated as “U” and referred
to as a Cardan or Hooke joint, is a compound joint with
two degrees of freedom. It consists of a serial chain of
two revolutes whose axes intersect orthogonally. The
joint model for a universal joint, in which, from Euler
angle notation, αi is the first rotation about the Z-axis
and then βi is the rotation about the Y -axis, is given
in Table 1.6. This is the a joint for which the matrices
Φi and Φc

i are not constant, so in general, Φ̇i 6= 0 and
Φ̇
c

i 6= 0. In this case, the orientation of the outboard
reference frame varies with αi.

1.3.4 6-DOF Joint

The motion of two bodies not jointed together can be
modeled as a six-degree-of-freedom “joint” that intro-
duces no constraints. This is particularly useful for mo-
bile robots, such as aircraft, that make at most inter-
mittent contact with the ground, and thus, a body in
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free motion relative to the fixed frame is termed a float-
ing base. Such a free motion joint model enables the
position and orientation of a floating base in space to
be expressed with six joint variables. The 6-DOF joint
model is included in Table 1.6.

1.3.5 Physical Realization

In an actual robotic mechanism, the joints may have
physical limits beyond which motion is prohibited. The
workspace (see Section 1.5) of a robotic manipulator is
determined by considering the combined limits and free-
dom of motion of all of the joints within the mechanism.
Revolute joints are easily actuated by rotating motors
and are, therefore, extremely common in robotic sys-
tems. They may also be present as passive, unactuated
joints. Also common, although less so than revolutes,
prismatic joints are relatively easily actuated by means
of linear actuators such as hydraulic or pneumatic cylin-
ders, ball screws, or screw jacks. They always have mo-
tion limits since unidirectional sliding can, in principle,
produce infinite displacements. Screw joints are most of-
ten found in robotic mechanisms as constituents of linear
actuators such as screw jacks and ball screws and are sel-
dom used as primary kinematic joints. Joints with more
than one degree of freedom are generally used passively
in robotic mechanisms because each degree of freedom
of an active joint must be separately actuated. Passive
spherical joints are quite often found in robotic mech-
anisms, while passive planar joints are only occasion-
ally found. The effect of an actuated spherical joint is
achieved by employing the kinematically equivalent com-
bination of three revolutes and actuating each. Universal
joints are used in robotic mechanisms in both active and
passive forms.

Serial chains are commonly denoted by the abbrevi-
ations for the joints they contain in the order in which
they appear in the chain. For example, an RPR chain
contains three links, the first jointed to the base with a
revolute and to the second with a prismatic, while the
second and third are jointed together with another revo-
lute. If all of the joints are identical, the notation consists
of the number of joints preceding the joint abbreviation,
such as 6R for a six-axis serial-chain manipulator con-
taining only revolute joints.

Joints are realized with hardware that is more complex
than the idealizations presented in Sections 1.3.1 and
1.3.2. For example, a revolute joint may be achieved with
a ball bearing composed of a set of bearing balls trapped
between two journals. The balls ideally roll without slip-

ping on the journals, thereby taking advantage of the
special properties of rolling contact joints. A prismatic
joint may be realized by means of a roller-rail assembly.

1.3.6 Holonomic and Nonholonomic
Constraints

With the exception of rolling contact, all of the con-
straints associated with the joints discussed in the pre-
ceding sections can be expressed mathematically by
equations containing only the joint position variables.
These are called holonomic constraints. The number of
equations, and hence the number of constraints, is 6−n,
where n is the number of degrees of freedom of the joint.
The constraints are intrinsically part of the axial joint
model.

A nonholonomic constraint is one that cannot be ex-
pressed in terms of the position variables alone, but in-
cludes the time derivative of one or more of those vari-
ables. These constraint equations cannot be integrated
to obtain relationships solely between the joint variables.
The most common example in robotic systems arises
from the use of a wheel or roller that rolls without slip-
ping on another member. Nonholonomic constraints,
particularly as they apply to wheeled robots, are dis-
cussed in more detail in Chapter 17 Wheeled Robots.

1.3.7 Generalized Coordinates

In a robot manipulator consisting of N bodies, 6N co-
ordinates are required to specify the position and orien-
tation of all the bodies relative to a coordinate frame.
Since some of those bodies are jointed together, a num-
ber of constraint equations will establish relationships
between some of these coordinates. In this case, the 6N
coordinates can be expressed as functions of a smaller
set of coordinates q that are all independent. The coor-
dinates in this set are known as generalized coordinates,
and motions associated with these coordinates are con-
sistent with all of the constraints. The joint variables q
of a robot manipulator form a set of generalized coordi-
nates [20, 25].

1.4 Geometric Representation

The geometry of a robotic manipulator is conveniently
defined by attaching reference frames to each link. While
these frames could be located arbitrarily, it is advanta-
geous both for consistency and computational efficiency
to adhere to a convention for locating the frames on the
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links. Denavit and Hartenberg [13] introduced the foun-
dational convention that has been adapted in a number
of different ways, one of which is the convention intro-
duced by Khalil and Dombre [22] used throughout this
handbook. In all of its forms, the convention requires
only four rather than six parameters to locate one ref-
erence frame relative to another. The four parameters
are the link length ai, the link twist αi, the joint offset
di, and the joint angle θi. This parsimony is achieved
through judicious placement of the reference frame ori-
gins and axes such that the x̂ axis of one frame both
intersects and is perpendicular to the ẑ axis of the pre-
ceding reference frame. The convention is applicable to
manipulators consisting of revolute and prismatic joints,
so when multi-degree-of-freedom joints are present, they
are modeled as combinations of revolute and prismatic
joints, as discussed in Section 1.3.

There are essentially four different forms of the con-
vention for locating reference frames in a robotic mech-
anism. Each exhibits its own advantages by managing
trade-offs of intuitive presentation. In the original De-
navit and Hartenberg [13] convention, joint i is located
between links i and i + 1, so it is on the outboard side
of link i. Also, the joint offset di and joint angle θi are
measured along and about the i − 1 joint axis, so the
subscripts of the joint parameters do not match that of
the joint axis. Waldron [55] and Paul [36] modified the
labeling of axes in the original convention such that joint
i is located between links i− 1 and i in order to make it
consistent with the base member of a serial chain being
member 0. This places joint i at the inboard side of link
i and is the convention used in all of the other modi-
fied versions. Furthermore, Waldron and Paul addressed
the mismatch between subscripts of the joint parameters
and joint axes by placing the ẑi axis along the i+1 joint
axis. This, of course, relocates the subscript mismatch
to the correspondence between the joint axis and the ẑ
axis of the reference frame. Craig [11] eliminated all of
the subscript mismatches by placing the ẑi axis along
joint i, but at the expense of the homogeneous trans-
form i−1T i being formed with a mixture of joint para-
meters with subscript i and link parameters with sub-
script i− 1. Khalil and Dombre [22] introduced another
variation similar to Craig’s except that it defines the link
parameters ai and αi along and about the x̂i−1 axis. In
this case, the homogeneous transform i−1T i is formed
only with parameters with subscript i, and the subscript
mismatch is such that ai and αi indicate the length and
twist of link i− 1 rather than link i. Thus, in summary,
the advantages of the convention used throughout this
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Figure 1.2: Schematic of the numbering of bodies and
joints in a robotic manipulator, the convention for at-
taching reference frames to the bodies, and the defin-
itions of the four parameters, ai, αi, di, and θi, that
locate one frame relative to another.

handbook compared to the alternative conventions are
that the ẑ axes of the reference frames share the com-
mon subscript of the joint axes, and the four parameters
that define the spatial transform from reference frame i
to reference frame i− 1 all share the common subscript
i.

In this handbook, the convention for serial chain ma-
nipulators is shown in Figure 1.2 and summarized as fol-
lows. The numbering of bodies and joints follows the
convention:

• The N moving bodies of the robotic mechanism are
numbered from 1 to N . The number of the base is
0.

• The N joints of the robotic mechanism are num-
bered from 1 to N , with joint i located between
members i− 1 and i.

With this numbering scheme, the attachment of reference
frames follows the convention:

• The ẑi axis is located along the axis of joint i.

• The x̂i−1 axis is located along the common normal
between the ẑi−1 and ẑi axes.
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2ẑ

 
3ẑ
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Figure 1.3: Example six-degree-of-freedom serial chain
manipulator composed of an articulated arm with no
joint offsets and a spherical wrist.

Using the attached frames, the four parameters that lo-
cate one frame relative to another are defined as:

• ai is the distance from ẑi−1 to ẑi along x̂i−1.

• αi is the angle from ẑi−1 to ẑi about x̂i−1.

• di is the distance from x̂i−1 to x̂i along ẑi.

• θi is the angle from x̂i−1 to x̂i about ẑi.

The geometric parameters for the example manipula-
tor shown in Figure 1.3 are listed in Table 1.7. All of the
joints of this manipulator are revolutes, and joint 1 has
a vertical orientation. Joint 2 is perpendicular to joint 1
and intersects it. Joint 3 is parallel to joint 2, and the
length of link 2 is a3. Joint 4 is perpendicular to joint 3
and intersects it. Joint 5 likewise intersects joint 4 per-
pendicularly at an offset of d4 from joint 3. Finally, joint
6 intersects joint 5 perpendicularly.

With this convention, reference frame i can be located
relative to reference frame i− 1 by executing a rotation
through an angle αi about the x̂i−1 axis, a translation
of distance ai along x̂i−1, a rotation through an angle
θi about the ẑi axis, and a translation of distance di
along ẑi . Through concatenation of these individual
transformations,

Rot(x̂i−1, αi)Tran(x̂i−1, ai)Rot(ẑi, θi)Trans(ẑi, di),

the equivalent homogeneous transformation is,

i−1T i =
cos θi − sin θi 0 ai

sin θi cosαi cos θi cosαi − sinαi − sinαidi
sin θi sinαi cos θi sinαi cosαi cosαidi

0 0 0 1

 .
(1.42)

The identification of geometric parameters is addressed
in Chapter 14 Model Identification.

1.5 Workspace

Most generally, the workspace of a robotic manipula-
tor is the total volume swept out by the end-effector
as the manipulator executes all possible motions. The
workspace is determined by the geometry of the manip-
ulator and the limits of the joint motions. It is more
specific to define the reachable workspace as the total lo-
cus of points at which the end-effector can be placed and
the dextrous workspace [56] as the subset of those points
at which the end-effector can be placed while having an
arbitrary orientation. Dexterous workspaces exist only
for certain idealized geometries, so real industrial ma-
nipulators with joint motion limits almost never possess
dexterous workspaces.

Many serial-chain robotic manipulators are designed
such that their joints can be partitioned into a regional
structure and an orientation structure. The joints in
the regional structure accomplish the positioning of the
end-effector in space, and the joints in the orientation
structure accomplish the orientation of the end-effector.
Typically, the inboard joints of a serial chain manipula-
tor comprise the regional structure, while the outboard
joints comprise the orientation structure. Also, since
prismatic joints provide no capability for rotation, they
are generally not employed within the orientation struc-
ture.

The regional workspace volume can be calculated from
the known geometry of the serial-chain manipulator and
motion limits of the joints. With three inboard joints
comprising the regional structure, the area of workspace
for the outer two (joints 2 and 3) is computed first, and
then the volume is calculated by integrating over the
joint variable of the remaining inboard joint (joint 1). In
the case of a prismatic joint, this simply involves multi-
plying the area by the total length of travel of the pris-
matic joint. In the more common case of a revolute joint,
it involves rotating the area about the joint axis through
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the full range of motion of the revolute [53]. By the
Theorem of Pappus, the associated volume V is

V = Ar̄γ, (1.43)

where A is the area, r̄ is the distance from the area’s
centroid to the axis, and γ is the angle through which
the area is rotated. The boundaries of the area are de-
termined by tracing the motion of a reference point in
the end-effector, typically the center of rotation of the
wrist that serves as the orientation structure. Starting
with each of the two joints at motion limits and with
joint 2 locked, joint 3 is moved until its second motion
limit is reached. Joint 3 is then locked, and joint 2 is
freed to move to its second motion limit. Joint 2 is again
locked, while joint 3 is freed to move back to its original
motion limit. Finally, joint 3 is locked, and joint 2 freed
to move likewise to its original motion limit. In this way,
the trace of the reference point is a closed curve whose
area and centroid can be calculated mathematically.

More details on manipulator workspace can be found
in Chapter 3 Mechanisms and Actuation and in Chapter
10 Performance Evaluation and Design Criteria.

1.6 Forward Kinematics

The forward kinematics problem for a serial chain ma-
nipulator is to find the position and orientation of the
end-effector relative to the base given the positions of all
of the joints and the values of all of the geometric link
parameters. Often, a frame fixed in the end-effector is
referred to as the “tool frame”, and while fixed in the
final link N , it in general has a constant offset in both
position and orientation from frame N . Likewise, a “sta-
tion frame” is often located in the base to establish the
location of the task to be performed. This frame gener-
ally has a constant offset in its pose relative to frame 0,
which is also fixed in the base.

A more general expression of the forward kinematics
problem is to find the relative position and orientation of
any two designated members given the geometric struc-
ture of the manipulator and the values of a number of
joint positions equal to the number of degrees of free-
dom of the mechanism. The forward kinematics problem
is critical for developing manipulator coordination algo-
rithms because joint positions are typically measured by
sensors mounted on the joints and it is necessary to cal-
culate the positions of the joint axes relative to the fixed
reference frame.

In practice, the forward kinematics problem is solved
by calculating the transformation between a reference

frame fixed in the end-effector and another reference
frame fixed in the base, i.e. between the tool and station
frames. This is straightforward for a serial chain since the
transformation describing the position of the end-effector
relative to the base is obtained by simply concatenating
transformations between frames fixed in adjacent links
of the chain. The convention for the geometric represen-
tation of a manipulator presented in Section 1.4 reduces
this to finding an equivalent 4 × 4 homogeneous trans-
formation matrix that relates the spatial displacement
of the end-effector reference frame to the base reference
frame.

For the example serial chain manipulator shown in Fig-
ure 1.3 and neglecting the addition of tool and station
frames, the transformation is

0T 6 = 0T 1
1T 2

2T 3
3T 4

4T 5
5T 6. (1.44)

Table 1.8 contains the elements of 0T 6 that are calculated
using Table 1.7 and Equation 1.42.

Once again, homogeneous transformations provide a
compact notation, but are computationally inefficient for
solving the forward kinematics problem. A reduction in
computation can be achieved by separating the position
and orientation portions of the transformation to elimi-
nate all multiplications by the 0 and 1 elements of the
matrices. In Chapter 2 Dynamics, calculations are made
using the spatial vector notation briefly introduced here
in Section 1.2.6 and explained in detail in Section 2.2.
This approach does not employ homogeneous transfor-
mations, but rather separates out the rotation matrices
and positions to achieve computation efficiency. Table
2.1 provides the detailed formulas, with the product of
spatial transforms particularly relevant to the forward
kinematics problem.

Kinematic trees are the general structure of robot
mechanisms that do not contain closed loops, and the
forward kinematics of tree structures are addressed in
Chapter 2 Dynamics. The forward kinematics problem
for closed chains is much more complicated because of
the additional constraints present. Solution methods for
closed chains are included in Chapter 12 Parallel Mech-
anisms and Robots.

1.7 Inverse Kinematics

The inverse kinematics problem for a serial chain ma-
nipulator is to find the values of the joint positions given
the position and orientation of the end-effector relative
to the base and the values of all of the geometric link
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parameters. Once again, this is a simplified statement
applying only to serial chains. A more general state-
ment is: Given the relative positions and orientations of
two members of a mechanism, find the values of all of the
joint positions. This amounts to finding all of the joint
positions given the homogeneous transformation between
the two members of interest.

In the common case of a six-degree-of-freedom serial
chain manipulator, the known transformation is 0T 6. Re-
viewing the formulation of this transformation in Section
1.6, it is clear that the inverse kinematics problem for ser-
ial chain manipulators requires the solution of non-linear
sets of equations. In the case of a six-degree-of-freedom
manipulator, three of these equations relate to the posi-
tion vector within the homogeneous transform, and the
other three relate to the rotation matrix. In the latter
case, these three equations cannot come from the same
row or column because of the dependency within the ro-
tation matrix. With these non-linear equations, it is pos-
sible that no solutions exist or multiple solutions exist.
For a solution to exist, the desired position and orien-
tation of the end-effector must lie in the workspace of
the manipulator. In cases where solutions do exist, they
often cannot be presented in closed form, so numerical
methods are required.

1.7.1 Closed-Form Solutions

Closed-form solutions are desirable because they are
faster than numerical solutions and readily identify all
possible solutions. The disadvantage of closed-form solu-
tions are that they are not general, but robot-dependent.
The most effective methods for finding closed-form solu-
tions are ad hoc techniques that take advantage of partic-
ular geometric features of specific mechanisms. In gen-
eral, closed-form solutions can only be obtained for six-
degree-of-freedom systems with special kinematic struc-
ture characterized by a large number of the geometric pa-
rameters defined in Section 1.4 being zero-valued. Most
industrial manipulators have such structure because it
permits more efficient coordination software. Sufficient
conditions for a six-degree-of-freedom manipulator to
have closed-form inverse kinematics solutions are [40]:
1) three consecutive revolute joint axes intersect at a
common point, as in a spherical wrist; 2) three consecu-
tive revolute joint axes are parallel. Closed-form solution
approaches are generally divided into algebraic and geo-
metric methods.

Algebraic Methods

Algebraic methods involve identifying the significant
equations containing the joint variables and manipulat-
ing them into a soluble form. A common strategy is re-
duction to a transcendental equation in a single variable
such as,

C1 cos θi + C2 sin θi + C3 = 0, (1.45)

where C1, C2, and C3 are constants. The solution to
such an equation is,

θi = 2 tan−1

(
C2 ±

√
C2

2 − C2
3 + C2

1

C1 − C3

)
. (1.46)

Special cases in which one or more of the constants are
zero are also common.

Reduction to a pair of equations having the form,

C1 cos θi + C2 sin θi + C3 = 0

C1 sin θi − C2 cos θi + C4 = 0, (1.47)

is another particularly useful strategy because only one
solution results,

θi = Atan2 (−C1C4 − C2C3, C2C4 − C1C3) . (1.48)

Geometric Methods

Geometric methods involve identifying points on the ma-
nipulator relative to which position and/or orientation
can be expressed as a function of a reduced set of the
joint variables. This often amounts to decomposing the
spatial problem into separate planar problems. The re-
sulting equations are solved using algebraic manipula-
tion. The two sufficient conditions for existence of a
closed-form solution for a six-degree-of-freedom manip-
ulator that are listed above enable the decomposition of
the problem into inverse position kinematics and inverse
orientation kinematics. This is the decomposition into
regional and orientation structures discussed in Section
1.5, and the solution is found by rewriting Equation 1.44,

0T 6
6T 5

5T 444T 3 = 0T 1
1T 2

2T 3. (1.49)

The example manipulator in Figure 1.3 has this struc-
ture, and regional structure is commonly known as an
articulated or anthropomorphic arm or an elbow manip-
ulator. The solution to the inverse position kinemat-
ics problem for such a structure is summarized in Table
1.9. Because there are two solutions for θ1 and likewise
two solutions for both θ2 and θ3 corresponding to each
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θ1 solution, there are a total of four solutions to the
inverse position kinematics problem of the articulated
arm manipulator. The orientation structure is simply
a spherical wrist, and the corresponding solution to the
inverse orientation kinematics problem is summarized in
Table 1.10. Two solutions for θ5 are given in Table 1.10,
but only one solution for both θ4 and θ6 corresponds to
each. Thus, the inverse orientation kinematics problem
of a spherical wrist has two solutions. Combining the
regional and orientation structures, the total number of
inverse kinematics solutions for the manipulator in Fig-
ure 1.3 is eight.

1.7.2 Numerical Methods

Unlike the algebraic and geometric methods used to
find closed-form solutions, numerical methods are not
robot-dependent, so they can be applied to any kine-
matic structure. The disadvantages of numerical meth-
ods are that they can be slower and in some cases, they
do not allow computation of all possible solutions. For a
six-degree-of-freedom serial chain manipulator with only
revolute and prismatic joints, the translation and rota-
tion equations can always be reduced to a polynomial in
a single variable of degree not greater than 16 [27]. Thus,
such a manipulator can have as many as sixteen real solu-
tions to the inverse kinematics problem [30]. Since closed
form solution of a polynomial equation is only possible
if the polynomial is of degree four or less, it follows that
many manipulator geometries are not soluble in closed
form. In general, a greater number of non-zero geometric
parameters corresponds to a polynomial of higher degree
in the reduction. For such manipulator structures, the
most common numerical methods can be divided into
categories of symbolic elimination methods, continuation
methods, and iterative methods.

Symbolic Elimination Methods

Symbolic elimination methods involve analytical manip-
ulations to eliminate variables from the system of non-
linear equations to reduce it to a smaller set of equa-
tions. Raghavan and Roth [43] used dialytic elimination
to reduce the inverse kinematics problem of a general
six-revolute serial chain manipulator to a polynomial of
degree 16 and to find all possible solutions. The roots
provide solutions for one of the joint variables, while the
other variables are computed by solving linear systems.
Manocha and Canny [29] improved the numerical prop-
erties of this technique by reformulating the problem as a

generalized eigenvalue problem. An alternative approach
to elimination makes use of Gröbner bases [6, 24].

Continuation Methods

Continuation methods involve tracking a solution path
from a start system with known solutions to a target
system whose solutions are sought as the start system
is transformed into the target system. These techniques
have been applied to inverse kinematics problems [51],
and special properties of polynomial systems can be ex-
ploited to find all possible solutions [58].

Iterative Methods

A number of different iterative methods can be employed
to solve the inverse kinematics problem. Most of them
converge to a single solution based on an initial guess,
so the quality of that guess greatly impacts the solu-
tion time. Newton-Raphson methods provide a funda-
mental approach that uses a first-order approximation to
the original equations. Pieper [40] was among the first
to apply the method to inverse kinematics, and others
have followed [31, 50]. Optimization approaches formu-
late the problem as a nonlinear optimization problem
and employ search techniques to move from an initial
guess to a solution [52, 63]. Resolved motion rate con-
trol converts the problem to a differential equation [59],
and a modified predictor-corrector algorithm can be used
to perform the joint velocity integration [7]. Control-
theory-based methods cast the differential equation into
a control problem [46]. Interval analysis [44] is perhaps
one of the most promising iterative methods because it
offers rapid convergence to a solution and can be used
to find all possible solutions. For complex mechanisms,
the damped least squares approach [57] is particularly
attractive, and more detail is provided in Chapter 11
Kinematically Redundant Manipulators.

1.8 Forward Instantaneous Kine-
matics

The forward instantaneous kinematics problem for a ser-
ial chain manipulator is: Given the positions of all mem-
bers of the chain and the rates of motion about all the
joints, find the total velocity of the end-effector. Here the
rate of motion about the joint is the angular velocity of
rotation about a revolute joint or the translational veloc-
ity of sliding along a prismatic joint. The total velocity
of a member is the velocity of the origin of the reference
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frame fixed to it combined with its angular velocity. That
is, the total velocity has six independent components and
therefore, completely represents the velocity field of the
member. It is important to note that this definition in-
cludes an assumption that the pose of the mechanism is
completely known. In most situations, this means that
either the forward or inverse position kinematics problem
must be solved before the forward instantaneous kine-
matics problem can be addressed. The same is true of
the inverse instantaneous kinematics problem discussed
in the following section. The forward instantaneous kine-
matics problem is important when doing acceleration
analysis for the purpose of studying dynamics. The total
velocities of the members are needed for the computation
of Coriolis and centripetal acceleration components.

1.8.1 Jacobian

Differentiation with respect to time of the forward posi-
tion kinematics equations yields a set of equations of the
form,

vN = J(q)q̇ (1.50)

where vN is the spatial velocity of the end-effector, q̇ is
anN -dimensional vector composed of the joint rates, and
J(q) is a 6 × N matrix whose elements are, in general,
non-linear functions of q1, ..., qN . J(q) is called the Ja-
cobian matrix of this algebraic system and is expressed
relative to the same reference frame as the spatial veloc-
ity vN . If the joint positions are known, Equation 1.50
yields six linear algebraic equations in the joint rates. If
the joint rates are given, solution of Equation 1.50 is a so-
lution of the forward instantaneous kinematics problem.
Note that J(q) can be regarded as a known matrix for
this purpose provided all the joint positions are known.

Using the spatial vector notation briefly introduced in
Section 1.2.6 and explained in detail in Section 2.2, the
Jacobian can be easily computed from the free modes Φi

of the joints and the associated spatial transforms jXi.
The column(s) of J(q) associated with joint rate(s) q̇i
is(are)

kXiΦi,

where k denotes any reference frame relative to which
vN is expressed. Table 1.11 contains an algorithm for
efficiently computing the columns of the Jacobian in this
manner. Additional information about Jacobians can be
found in Chapter 11 Redundant Manipulators.

1.9 Inverse Instantaneous Kine-
matics

The important problem from the point of view of ro-
botic coordination is the inverse instantaneous kinemat-
ics problem. More information on robot coordination
can be found in Chapter 5 Motion Planning and Chap-
ter 6 Motion Control. The inverse instantaneous kine-
matics problem for a serial chain manipulator is: Given
the positions of all members of the chain and the total
velocity of the end-effector, find the rates of motion of
all joints. When controlling a movement of an industrial
robot which operates in the point-to-point mode, it is
not only necessary to compute the final joint positions
needed to assume the desired final hand position. It is
also necessary to generate a smooth trajectory for mo-
tion between the initial and final positions. There are,
of course, an infinite number of possible trajectories for
this purpose. However, the most straightforward and
successful approach employs algorithms based on the so-
lution of the inverse instantaneous kinematics problem.
This technique originated in the work of Whitney [60]
and of Pieper [40].

1.9.1 Inverse Jacobian

In order to solve the linear system of equations in the
joint rates obtained by decomposing Equation 1.50 into
its component equations when vN is known, it is nec-
essary to invert the Jacobian matrix. The equation be-
comes,

q̇ = J−1(q)vN (1.51)

Since J is a 6 × 6 matrix, numerical inversion is not
very attractive in real-time software which must run at
computation cycle rates of the order of 100 Hz or more.
Worse, it is quite possible for J to become singular
(|J | = 0). The inverse does not then exist. More infor-
mation on singularities can be found in Chapter 3 Mech-
anisms and Actuation and Chapter 12 Parallel Mecha-
nisms and Robots. Even when the Jacobian matrix does
not become singular, it may become ill conditioned, lead-
ing to degraded performance in significant portions of the
manipulator’s workspace. Most industrial robot geome-
tries are simple enough that the Jacobian matrix can be
inverted analytically leading to a set of explicit equations
for the joint rates. This greatly reduces the number of
computation operations needed as compared to numeri-
cal inversion. For more complex manipulator geometries,
though, numerical inversion is the only solution option.
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The Jacobian of a redundant manipulator is not square,
so it cannot be inverted. Chapter 11 Kinematically Re-
dundant Manipulators discusses how various pseudoin-
verses can be used is such cases.

1.10 Static Wrench Transmission

Static wrench analysis of a manipulator establishes the
relationship between wrenches applied to the end-effector
and forces/torques applied to the joints. This is essen-
tial for controlling a manipulator’s interactions with its
environment. Examples include tasks involving fixed or
quasi-fixed workpieces such as inserting a component in
place with a specified force and tightening a nut to a
prescribed torque. More information can be found in
Chapter 7 Force Control and Chapter 27 Contact Model-
ing and Manipulation. Through the priniciple of virtual
work, the relationship between wrenches applied to the
end-effector and forces/torques applied to the joints can
be shown to be

τ = JT f , (1.52)

where τ is the n-dimensional vector of applied joint
forces/torques for an n-degree-of-freedom manipulator
and f is the spatial force vector

f =
[
n
f

]
(1.53)

in which n and f are the vectors of torques and forces, re-
spectively, applied to the end-effector, both expressed in
the reference frame relative to which the Jacobian is also
expressed. Thus, in the same way the Jacobian maps the
joint rates to the spatial velocity of the end-effector, its
transpose maps the wrenches applied to the end-effector
to the equivalent joint forces/torques. As in the veloc-
ity case, when the Jacobian is not square, the inverse
relationship is not uniquely defined.

1.11 Conclusions and Further
Reading

This chapter presents an overview of how the funda-
mentals of kinematics can be applied to robotic mecha-
nisms. The topics include various representations of po-
sition and orientation of a rigid body in space, the free-
dom of motion and accompanying mathematical mod-
els of joints, a geometric representation that describes
the bodies and joints of a robotics mechanism, the
workspace of a manipulator, the problems of forward

and inverse kinematics, the problems of forward and
inverse instantaneous kinematics including the defini-
tion of the Jacobian, and finally, the transmission of
static wrenches. This chapter is certainly not a com-
prehensive account of robot kinematics. Fortunately,
a number of excellent texts provide a broad introduc-
tion to robotics with significant focus on kinematics
[1, 11, 22, 28, 34, 36, 46, 47, 48, 62].

From a historical perspective, robotics fundamentally
changed the nature of the field of mechanism kinemat-
ics. Prior the first work on the generation of coordination
equations for robots [40, 60], the focus of the field was
almost entirely on single-degree-of-freedom mechanisms.
This is why robotics, following on from the advent of digi-
tal computing, led to a renaissance of work in mechanism
kinematics. More details are found in Chapter 3 Mecha-
nisms and Actuation. The evolution of the field has con-
tinued as it has broadened from the study of simple serial
chains for industrial robots, the focus of the analysis in
this chapter, to parallel machines (see Chapter 12 Par-
allel Mechanisms and Robots), human-like grippers (see
Chapter 15 Robot Hands), robotic vehicles (see Chap-
ter 16 Legged Robots and Chapter 17 Wheeled Robots),
and even small-scale robots (see Chapter 18 Micro/Nano
Robots).
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Rotation Matrix:

jRi =

r11 r12 r13
r21 r22 r23
r31 r32 r33


Z-Y-X Euler Angles [α, β, γ]:

β = Atan2
(
−r31,

√
r211 + r221

)
α = Atan2

(
r21

cos β ,
r11

cos β

)
γ = Atan2

(
r32

cos β ,
r33

cos β

)
X-Y-Z Fixed Angles [ψ, θ, φ]:

θ = Atan2
(
−r31,

√
r211 + r221

)
ψ = Atan2

(
r21
cos θ ,

r11
cos θ

)
φ = Atan2

(
r32
cos θ ,

r33
cos θ

)
Angle-Axis θŵ:

θ = cos−1
(
r11+r22+r33−1

2

)
ŵ = 1

2 sin θ

r32 − r23
r13 − r31
r21 − r21


Unit Quaternions [ε0 ε1 ε2 ε3]

T :

ε0 = 1
2

√
1 + r11 + r22 + r33
ε1 = r32−r23

4ε0

ε2 = r13−r31
4ε0

ε3 = r21−r12
4ε0

Table 1.2: Conversions from a rotation matrix to various
representations of orientation.

Angle-Axis θŵ to Unit Quaternion [ε0 ε1 ε2 ε3]T

ε0 = cos θ2
ε1 = wx sin θ

2

ε2 = wy sin θ
2

ε3 = wz sin θ
2

Unit Quaternion [ε0 ε1 ε2 ε3]T to Angle-Axis θŵ:

θ = 2 cos−1 ε0
wx = ε1

sin θ
2

wy = ε2
sin θ

2

wz = ε3
sin θ

2

Table 1.3: Conversions from angle-axis to unit quater-
nion representations of orientation and vice versa.

Screw Transformation to Homogeneous Transformation:

jRi = w2
xvθ + cθ wxwyvθ − wzsθ wxwzvθ + wysθ

wxwyvθ + wzsθ w2
yvθ + cθ wywzvθ − wxsθ

wxwzvθ − wysθ wywzvθ + wxsθ w2
zvθ + cθ


jpi =

(
13×3 − jRi

)
ρ + hθŵ

Homogeneous Transformation to Screw Transformation:

l =

r32 − r23
r13 − r31
r21 − r12

T
θ = sign

(
lT jpi

) ∣∣cos−1
(
r11+r22+r33−1

2

)∣∣
h = lT jpi

2θ sin θ

ρ = (13×3−jRT
i )jpi

2(1−cos θ)

ŵ = l
2 sin θ

Table 1.4: Conversions from a screw transformation to
a homogeneous transformation and vice versa, with ab-
breviations cθ := cos θ, sθ := sin θ, and vθ := 1− cos θ.
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i αi ai di θi
1 0 0 0 θ1
2 −π

2 0 0 θ2
3 0 a3 0 θ3
4 −π

2 0 d4 θ4
5 π

2 0 0 θ5
6 −π

2 0 0 θ6

Table 1.7: Geometric parameters of the example serial
chain manipulator in Figure 1.3.

0T 6 =


r11 r12 r13

0px6
r21 r22 r23

0py6
r31 r32 r33

0pz6
0 0 0 1


r11 = cθ1 (sθ2sθ3 − cθ2cθ3) (sθ4sθ6 − cθ4cθ5cθ6)

−cθ1sθ5cθ6 (cθ2sθ3 + sθ2cθ3)
+sθ1 (sθ4cθ5cθ6 + cθ4sθ6)

r21 = sθ1 (sθ2sθ3 − cθ2cθ3) (sθ4sθ6 − cθ4cθ5cθ6)
−sθ1sθ5cθ6 (cθ2sθ3 + sθ2cθ3)
−cθ1 (sθ4cθ5cθ6 + cθ4sθ6)

r31 = (cθ2sθ3 + sθ2cθ3) (sθ4sθ6 − cθ4cθ5cθ6)
+sθ5cθ6 (sθ2sθ3 − cθ2cθ3)

r12 = cθ1 (sθ2sθ3 − cθ2cθ3) (cθ4cθ5sθ6 + sθ4cθ6)
+cθ1sθ5sθ6 (cθ2sθ3 + sθ2cθ3)
+sθ1 (cθ4cθ6 − sθ4cθ5sθ6)

r22 = sθ1 (sθ2sθ3 − cθ2cθ3) (cθ4cθ5sθ6 + sθ4cθ6)
+sθ1sθ5sθ6 (cθ2sθ3 + sθ2cθ3)
−cθ1 (cθ4cθ6 − sθ4cθ5sθ6)

r32 = (cθ2sθ3 + sθ2cθ3) (cθ4cθ5sθ6 + sθ4cθ6)
−sθ5sθ6 (sθ2sθ3 − cθ2cθ3)

r13 = cθ1cθ4sθ5 (sθ2sθ3 − cθ2cθ3)
−cθ1cθ5 (cθ2sθ3 + sθ2cθ3)
−sθ1sθ4sθ5

r23 = sθ1cθ4sθ5 (sθ2sθ3 − cθ2cθ3)
−sθ1cθ5 (cθ2sθ3 + sθ2cθ3) + cθ1sθ4sθ5

r33 = cθ4sθ5 (cθ2sθ3 + sθ2cθ3)
+cθ5 (sθ2sθ3 − cθ2cθ3)

0px6 = a2cθ1cθ2 − d4cθ1 (cθ2sθ3 + sθ2cθ3)
0py6 = a2sθ1cθ2 − d4sθ1 (cθ2sθ3 + sθ2cθ3)
0pz6 = −a2sθ2 + d4 (sθ2sθ3 − cθ2cθ3)

Table 1.8: Forward kinematics of the example serial
chain manipulator in Figure 1.3, with abbreviations
cθi := cos θi and sθi := sin θi.

θ1 = Atan2
(
0py6,

0px6
)

or Atan2
(
−0py6,−0px6

)
.

θ3 = −Atan2
(
D,±

√
1−D2

)
where D := (0px

6 )2+(0py
6)2+(0pz

6)2−a2
3−d

2
4

2a3d4

θ2 = Atan2
(

0pz6,
√

(0px6)2 + (0py6)2
)

−Atan2 (d4 sin θ3, a3 + d4 cos θ3).

Table 1.9: Inverse position kinematics of the articulated
arm within the example serial chain manipulator in Fig-
ure 1.3.

θ5 = Atan2 (±
√

1− (r13sθ1 − r23cθ1)2,
r13sθ1 − r23cθ1)

θ4 = Atan2 (∓(r13cθ1 + r23sθ1)s(θ2+θ3) ∓ r33c(θ2+θ3),
±(r13cθ1 + r23sθ1)c(θ2+θ3) ∓ r23s(θ2+θ3))

θ6 = Atan2 (±(r12sθ1 + r22cθ1)± (r11sθ1 − r21cθ1))

where the ± choice for θ5 dictates all of
the subsequent ± and ∓ for θ4 and θ6.

Table 1.10: Inverse orientation kinematics of the spher-
ical wrist within the example serial chain manipula-
tor in Figure 1.3, with abbreviations cθi

:= cos θi and
sθi

:= sin θi.

ni number of degrees of freedom of joint i
J kvN = J(q)q̇, where k is any frame
Jni

ni column(s) of J associated with q̇i
Φω first 3 rows of Φ
Φv last 3 rows of Φ

Jni
= kXiΦi

expression computed value
X1X2 (R1R2;p2 + RT

2 p1)
XΦ (RΦω;R(Φv − p×Φω))
X−1 (RT ;−Rp)
X−1Φ (RTΦω;RTΦv + p×RTΦω)

Table 1.11: Algorithm for computing the columns of the
Jacobian from the free modes of the joints.
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Joint Joint Free Constrained Pose Vel.
Type Transform Modes Modes Vars. Vars.

R p Φi Φc
i q̇i

Cylindrical
C

cθi −sθi 0
sθi cθi 0
0 0 1

  0
0
di




0 0
0 0
1 0
0 0
0 0
0 1




1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0


θi
di

[
θ̇i
ḋi

]

Spherical∗

S

[
see

Table 1.1

] 0
0
0




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0




0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 εi ωi rel

Planar

cθi
−sθi

0
sθi

cθi
0

0 0 1

 cθi
dxi − sθi

dyi
sθidxi + cθidyi

0




0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 0 0




1 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1


θi
dxi
dyi

 θ̇iḋxi
ḋyi



Flat
Planar
Rolling
Contact
(fixed

radius r)

cθi
−sθi

0
sθi

cθi
0

0 0 1

  rθicθi
− rsθi

−rθisθi
− rcθi

0




0
0
1
r
0
0




1 0 0 0 0
0 1 0 0 0
0 0 −r 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 θi θ̇i

Universal
U

cαi
cβi

−sαi
cαi

sβi

sαi
cβi

cαi
sαi

sβi

−sβi
0 cβi

 0
0
0



−sβi

0
0 1
cβi 0
0 0
0 0
0 0




cβi

0 0 0
0 0 0 0
sβi 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


αi
βi

[
α̇i
β̇i

]

6-DOF∗
[

see
Table 1.1

]
R−1[0pi] 16×6

εi
0pi

[
ωi

vi

]

Table 1.6: Joint model formulas for higher-degree-of-freedom lower pair joints, universal joint, rolling contact joint,
and 6-DOF joint, with abbreviations cθi := cos θi and sθi := sin θi. ∗The Euler angles αi, βi, and γi could be used
in place of the unit quaternion εi to represent orientation.
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