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The basic limitations of the standard appearance-based matching methods using
eigenimages are nonrobust estimation of coefficients and inability to cope with prob-
lems related to outliers, occlusions, and varying background. In this paper we present
a new approach which successfully solves these problems. The major novelty of our
approach lies in the way the coefficients of the eigenimages are determined. In-
stead of computing the coefficients by a projection of the data onto the eigenimages,
we extract them by a robust hypothesize-and-test paradigm using subsets of image
points. Competing hypotheses are then subject to a selection procedure based on the
Minimum Description Length principle. The approach enables us not only to reject
outliers and to deal with occlusions but also to simultaneously use multiple classes
of eigenimages. c© 2000 Academic Press
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1. INTRODUCTION AND MOTIVATION

The appearance-based approaches to vision problems have recently received renewed
attention in the vision community due to their ability to deal with combined effects of shape,
reflectance properties, pose in the scene, and illumination conditions [16, 19]. Besides, the
appearance-based representations can be acquired through an automatic learning phase,
which is not the case with traditional shape representations. The approach has led to a
variety of successful applications, e.g., illumination planning [20], visual positioning and
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tracking of robot manipulators [21], visual inspection [34], “image spotting” [18], and
human face recognition [3, 32].

As stressed by its proponents, the major advantage of the approach is that both learning and
recognition are performed using just two-dimensional brightness images without any low-
or mid-level processing. However, there still remain various problems to be overcome since
the technique rests on direct appearance-based matching [19]. The most severe limitation
of the method in its standard form is that it cannot handle problems related to occlusion,
outliers, and varying background. In other words, the standard approach is not robust, where
the termrobustnessrefers to the fact that the results remain stable in the presence of various
types of noise and can tolerate a certain portion of outliers [11, 29]. One way to characterize
the robustness is through the concept of abreakdown point, which is determined by the
smallest portion of outliers in the data set at which the estimation procedure can produce an
arbitrarily wrong estimate. For example, in the standard approach even a single erroneous
data point (having an arbitrary value) can cause an arbitrary wrong result, meaning that the
breakdown point is 0%.1

Different approaches have been proposed in the literature to estimate the coefficients of the
eigenspace projections more reliably. Pentland suggested the use of modular eigenspaces
[25] to alleviate the problem of occlusion. Ohba and Ikeuchi [24] proposed the eigen-
window method to be able to recognize partially occluded objects. The methods based
on “eigenwindows” partially alleviate the problems related to occlusion but do not solve
them entirely because the same limitations hold for each of the eigenwindows. Besides,
due to local windows, these methods lack theglobal aspect and usually require further
processing.

To eliminate the effects of varying background Murase and Nayar [18] introduced the
search-window, which is the AND area of the object regions of all images in the training
image set. This was further extended to an adaptive mask concept by Edwards and Murase
[6]. However, the assumption on which the method has been developed is rather restrictive;
namely, a target object can only be occluded by one or more of the otherM − 1 target objects,
rather than occluded by some unknown entity or perturbed by a different background.

On the other hand, Black and Jepson [5] proposed to use a conventional robust
M-estimator for calculating the coefficients; i.e., they replaced the standard quadratic er-
ror norm with a robust error norm. Their main focus was to show that appearance-based
methods can be used for tracking. The approach of Black and Jepson is less robust than our
resampling approach. In addition, only the dominant structure is identified. If more than
one object is present in the scene, the same procedure has to be reapplied to the outliers. In
contrast, our method has a mechanism that can simultaneously deal with multiple objects.
Rao [27] introduced a robust hierarchical form of the MDL-based Kalman filter estimators
that can tolerate significant occlusion and clutter. The limitations of this approach are similar
to those of the approach of Black and Jepson. Again, the critical steps are the initialization
and simultaneous recovery of occluding objects.

In this paper we present a novel approach, which extends our previous work [13], that
successfully solves the problems related to occlusion, cluttered background, and outliers.
The major novelty of our approach lies in the way the coefficients of the eigenimages
are determined. Instead of computing the coefficients by a projection of the data onto the

1 Even when the outlier cannot attain an arbitrary value, which is usually the case in practical applications where
the values come from a bounded interval, the bias, although finite, can completely destroy the estimate [10].
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eigenimages, we apply random sampling and robust estimation to generate hypotheses for
the model coefficients. Competing hypotheses are then subjected to a selection procedure
based on the Minimum Description Length (MDL) principle. The approach enables us not
only to reject outliers and to deal with occlusions but also to simultaneously use multiple
classes of eigenimages.

Our robust approach extends the domain of applicability of the appearance-based meth-
ods so that they can be used in more complex scenes, i.e., scenes that contain occlusion,
background clutter, and outliers. While this is a significant step forward in the area of
appearance-based recognition, some problems pertinent to appearance-based matching still
remain. In particular, the objects in the input images should match in scale those that are
modeled in the eigenspace. Also, the translation and plane-rotation invariance is achieved
by initiating the hypotheses exhaustively at regularly spaced points and at various orienta-
tions. We have recently proposed a multiresolution approach that can efficiently cope with
these problems [4]; however, its description is outside the scope of this paper.

The paper is organized as follows: We first review the basic concepts of the traditional
appearance-based matching methods and point out their main limitations. In Section 3 we
outline our proposed approach and detail its basic components. In Section 4 we present the
results on complex image data using the standard image database from Columbia University
[22]. We conclude with a discussion and outline the work in progress.

2. APPEARANCE-BASED MATCHING

The appearance-based methods consist of two stages. In the first, off-line (training)
stage a set of images (templates), i.e., training samples, is obtained. These images usually
encompass the appearance of a single object under different orientations [34] or different
illumination directions [20] or multiple instances of a class of objects, e.g., faces [32].
In many cases, images not in the training set can be interpolated from the training views
[26, 33]. The sets of images are usually highly correlated. Thus, they can efficiently be
compressed using principal component analysis (PCA) [1], resulting in a low-dimensional
eigenspace.

In the second, on-line (recognition) stage, given an input image, the recognition system
projects parts of the input image (i.e., subimages of the same size as training images) to the
eigenspace. In the absence of specific cues, e.g., when motion can be used to presegment
the image, the process is sequentially applied to the entire image. The recovered coefficients
indicate the particular instance of an object and/or its position, illumination, etc.

We now introduce the notation. Lety= [y1, . . . , ym]T ∈Rm be an individual template,
and letY ={y1, . . . , yn} be a set of templates; throughout the paper a simple vector notation
is used since the extension to 2-D is straightforward. To simplify the notation we assume
Y to be normalized, having zero mean. LetQ be the covariance matrix of the vectors in
Y; we denote the eigenvectors ofQ by ei , and the corresponding eigenvalues byλi . We
assume that the number of templatesn is much smaller than the number of elementsm in
each template; thus an efficient algorithm based on SVD can be used to calculate the first
n eigenvectors [19]. Since the eigenvectors form an orthogonal basis system,〈ei , ej 〉=1
when i = j and 0 otherwise, where〈 〉 stands for a scalar product. We assume that the
eigenvectors are in descending order with respect to the corresponding eigenvaluesλi .
Then, depending on the correlation among the templates inY, only p, p< n, eigenvectors
are needed to represent theyi to a sufficient degree of accuracy as a linear combination of
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eigenvectorsei ,

ỹ =
p∑

i=1

ai (y)ei . (1)

The error we make by this approximation is
∑n

i=p+1 λi and can be calculated by‖y‖2−∑p
i=1 a2

i [17]. We call the space spanned by the firstp eigenvectors theeigenspace.
To recover the parametersai during the matching stage, a data vectorx is projected onto

the eigenspace,

ai (x) = 〈x, ei 〉 =
m∑

j=1

xj ei, j 1 ≤ i ≤ p. (2)

a(x)= [a1(x), . . . ,ap(x)]T is the point in the eigenspace obtained by projectingx onto the
eigenspace. Let us call theai (x) coefficients ofx. The reconstructed data vectorx̃ can be
written as

x̃ =
p∑

i=1

ai (x)ei . (3)

It is well known that PCA is among all linear transformations the one which is optimal with
respect to the reconstruction error‖x− x̃‖2.

2.1. Weaknesses of Standard Appearance-Based Matching

In this section we analyze some of the basic limitations of the standard appearance-
based matching methods and illustrate the effect of occlusion with an example. Namely,
the way the coefficientsai are calculated poses a serious problem in the case of outliers and
occlusions.

Suppose that̂x= [x1, . . . , xr , 0, . . . ,0]T is obtained by setting the lastm− r components
of x to zero; a similar analysis holds when some of the components ofx are set to some
other values, which, for example, happens in the case of occlusion by another object. Then

âi = x̂Tei =
r∑

j=1

xj ei, j . (4)

The error we make in calculatingai is

(ai (x)− âi (x̂)) =
m∑

j=r+1

xj ei, j . (5)

It follows that the reconstruction error is∥∥∥∥∥
p∑

i=1

(
m∑

j=r+1

xj ei, j

)
ei

∥∥∥∥∥
2

. (6)

Due to the nonrobustness of linear processing, this error affects the whole vectorx̃.
Figure 1 depicts the effect of occlusion on the reconstructed image. A similar analysis holds
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FIG. 1. Demonstration of the effect of occlusion using the standard approach for calculating the coefficientsai .

for the case of outliers (occlusions are just a special case of spatially coherent outliers).
We can show that the coefficient error can get arbitrarily large by just changing a single
component ofx, which proves that the method is nonrobust with a breakdown point of 0%.

Since in calculating the eigenimages there is no distinction made between the object and
the background (which is usually assumed to be black), the effect of a varying background is,
in the recognition phase, similar to that of occlusion. Therefore, to obtain the correct result
in the case of the standard method, the object of interest should be first segmented from the
background and then augmented with the original background. Our robust approach does
not require this segmentation step and can thus cope with objects that appear on various
backgrounds.

The problems that we have discussed arise because the complete set of datax is required
to calculateai in a least square fashion (Eq. (2)). Therefore, the method is sensitive to partial
occlusions, to data containing noise and outliers, and to changing backgrounds.

In the next section we explain our new approach which has been designed to overcome
precisely these types of problems.

3. OUR APPROACH

The major novelty of our approach lies in the way the coefficients of the eigenimages
are determined. Instead of computing the coefficients by a projection of the data onto the
eigenimages (which is equivalent to determining the coefficients in a least-squares man-
ner), we achieve robustness by employingsubsampling. This is the very principle of high
breakdown point estimation such as Least Median of Squares [29] and RANSAC [7]. In par-
ticular, our approach consists of a twofold robust procedure: We determine the coefficients
of the eigenspace projection by a robust hypothesize-and-test paradigm using onlysubsets
of image points. Each hypothesis (based on a random selection of points) is generated by
the robust solution of a set of linear equations (similarly toα-trimmed estimators [29]).
Competing hypotheses are then selected according to the Minimum Description Length
principle.

In the following we detail the steps of our algorithm. For clarity of the presentation, we
assume that we are dealing with a single eigenspace at a specific location in the image. At the
end of the section we describe how this approach can be extended to multiple eigenspaces
for different objects.

3.1. Generating Hypotheses

Let us first start with a simple observation. If we take into account all eigenvectors, i.e.,
p = n, and if there is no noise in the dataxri , then in order to calculate the coefficientsai
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FIG. 2. Illustration of using linear equations to calculate the coefficients of eigenimages.

(Eq. (2)) we need onlyn pointsr = (r1, . . . ,rn). Namely, the coefficientsai can simply be
determined by solving the following system of linear equations (see Fig. 2):

xri =
n∑

j=1

aj (x)ej,ri 1≤ i ≤ n. (7)

However, if we approximate each template only by a linear combination of a subset of
eigenimages, i.e.,p< n, and there is also noise present in the data, then Eq. (7) can no
longer be used, but rather we have to solve an over-constrained system of equations in the
least-squares sense usingk data points (p< k≤m). In most cases,k¿m, since the number
of pixels is usually three orders of magnitude larger than the number of eigenimages. Thus
we seek the solution vectora which minimizes

E(r) =
k∑

i=1

(
xri −

p∑
j=1

aj (x)ej,ri

)2

. (8)

Of course, the minimization of Eq. (8) can only produce correct values for coefficient
vectora, if the set of pointsri does not contain outliers, i.e, not only extreme noisy points but
also points belonging to different backgrounds or some other templates due to occlusion.
Therefore, the solution has to be sought in a robust manner.

The following robust procedure has been applied to solve Eq. (8). Starting from the
randomly selectedk pointsr1, . . . , rk, we seek the solution vectora∈Rp which minimizes
Eq. (8) in a least-squares manner. Then, based on the error distribution of the set of points,
we keep reducing their number by a factor ofα (i.e., those points with the largest error) and
solve Eq. (8) again with this reduced set of points.

In order to analyze the robustness of this procedure with respect to the parameters and
noise conditions, we have performed several Monte Carlo studies (see Appendix A). It turns
out that our robust procedure can tolerate up to 50% outliers. To increase the quality of the
estimated coefficients we can exploit the fact that the coefficients that represent a point
in the eigenspace are not arbitrarily spread in the eigenspace but are either discrete points
close to the training samples in the eigenspace or points on a parametric manifold [19].
Therefore, we determine from the estimated coefficients the closest point in the eigenspace
or on the parametric manifold, respectively, which gives us the coefficients of the closest
training image (or an interpolation between several of these coefficients). For the search we
use the exhaustive search procedure implemented in SLAM [23].
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FIG. 3. Some hypotheses generated by the robust method for the occluded image in Fig. 1b with 15 eigen-
images; for each hypothesis (1–8), from left to right: reconstructed image based on the initial set of points,
reconstruction after reduction of 25% of points with the largest residual error, and the reconstructed image based
on the parameters of the closest point on the parametric manifold.

The obtained coefficientsai are then used to create a hypothesisx̃=∑p
i=1 ai ei , which

is evaluated both from the point of view of the errorξ= (x− x̃) and from the number of
compatible points. For good matches (i.e., objects from the training set) we expect an error
of 1

m

∑n
i=p+1 λi on the average (see Section 2). Therefore we can set the error margin for the

compatible points to2 = 2
m

∑n
i=p+1 λi (the factor of 2 is used because theλi are calculated

from the training set only, and we deal also with objects not included in the training set).
A hypothesis is acceptable if the cardinality of the set of compatible points is above the
acceptance threshold. However, unlike with RANSAC [7], this condition can really be kept
minimal since the selection procedure (cf. Section 3.2) will reject the false positives. The
accepted hypothesis is characterized by the coefficient vectora, the error vectorξ, and the
domain of the compatible pointsD={ j | ξ2

j <2}, s= |D|.
Figure 3 depicts some of the generated hypotheses for the occluded image in Fig. 1.

One can see that four out of eight hypotheses are close to the correct solution. Figure 4

FIG. 4. Points that were used for calculating the coefficient vector (overlaid over the reconstructed image);
(a) a good hypothesis, (b) a bad hypothesis.



106 LEONARDIS AND BISCHOF

depicts the points (overlaid over the reconstructed image) that were used to calculating the
coefficient vector in the case of a good (a) and bad (b) hypothesis. One can observe that for
the bad hypothesis not all the points on the occluded region were eliminated.

However, as depicted in Fig. 3, one cannot expect that every initial randomly chosen
set of points will produce a good hypothesis if there is one, despite the robust procedure.
Thus, to further increase the robustness of the hypotheses generation step, i.e., increase the
probability of detecting a correct hypothesis if there is one, we initiate, as in [2, 7], a number
of trials. In Appendix B, we calculate, based on combinatorial arguments, the number of
hypotheses that we need to generate for a given noise level.

3.2. Selection

The set of hypotheses, described by the coefficient vectorsai , the error vectorsξi , and the
domains of the compatible pointsDi ={ j | ξ2

j <2}, si = |Di |, which has been generated
is usually highly redundant. Thus, the selection procedure has to select a subset of “good”
hypotheses and reject the superfluous ones. The core of the problem is how to define
optimality criteria for a set of hypotheses. Intuitively, this reduction in the complexity of a
representation coincides with a general notion of simplicity [12]. The simplicity principle
has been formalized in the framework of information theory. Shannon [30] revealed the
relation between probability theory and the shortest encoding. Further formalization of
this principle in information theory led to the principle ofMinimum Description Length
(MDL) [28]. A derivation (see [14, 15]) leads to the minimization of an objective function
encompassing the information about the competing hypotheses [14].

The objective function has the following form:

F(h) = hTCh = hT

c11 . . . c1R
...

...
cR1 . . . cRR

h. (9)

VectorhT= [h1, h2, . . . , hR] denotes a set of hypotheses, wherehi is apresence-variable
having the value 1 for the presence and 0 for the absence of the hypothesisi in the resulting
description. The diagonal terms of the matrixC express the cost–benefit value for a particular
hypothesisi ,

cii = K1si − K2‖ξi ‖Di − K3Ni , (10)

wheresi is the number of compatible points,‖ξi ‖Di is the error over the domainDi , and
Ni is the number of coefficients (eigenvectors).

The off-diagonal terms handle the interaction between the overlapping hypotheses,

ci j = −K1|Di ∩ Dj | + K2ξi j

2
,

ξ2
i j = max

( ∑
Di∩Dj

ξ2
i ,
∑

Di∩Dj

ξ2
j

)
,

(11)

where Di denotes the domain of thei th hypothesis and
∑

Di∩Dj
ξ2

i denotes the sum of
squared errors of thei th hypothesis over the intersection of the two domainsDi , Dj .
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Equation (9) supports our intuitive thinking that an encoding is efficient if

• the number of pixels that a hypothesis encompasses is large,
• the deviations between the data and the approximation are low,
• while at the same time the number of hypotheses is minimized.

The coefficients K1, K2, and K3, which can be determined automatically [14], adjust the
contribution of the individual terms. These parameters are weights which can be deter-
mined on a purely information-theoretic basis (in terms of bits) or can be adjusted in order
to express the preference for a particular type of description. In general, K1 is the aver-
age number of bits which are needed to encode an image when it is not encoded by the
eigenspace, K2 is related to the average number of bits needed to encode a residual value
of the eigenspace approximation, and K3 is the average cost of encoding a coefficient of
the eigenspace. Due to the nature of the problem, i.e., finding the maximum of the objec-
tive function, only the relative ratios between the coefficients play a role, e.g., K2/K1 and
K3/K1.

The objective function takes into account the interaction between different hypotheses
which may be completely or partially overlapped. However, we consider only the pairwise
overlaps in the final solution. From the computational point of view, it is important to notice
that the matrixC is symmetric, and depending on the overlap, it can be sparse or banded. All
these properties of the matrixC can be used to reduce the computations needed to calculate
the value ofF(h).

We have formulated the problem of selection in such a way that its solution corresponds to
the global extremum of the objective function. Maximization of the objective functionF(h)
belongs to the class of combinatorial optimization problems (quadratic Boolean problem).
Since the number of possible solutions increases exponentially with the size of the problem,
it is usually not tractable to explore them exhaustively. Thus the exact solution has to
be sacrificed to obtain a practical one. We are currently using two different methods for
optimization. One is a simple greedy algorithm and the other one is Tabu search [8, 31].
In our experiments we did not notice much of a difference between the results produced
by the two optimization methods, therefore we report here only the results obtained by the
computationally simpler greedy method.

One should note that the selection mechanism can be considerably simplified when we
know that there is a single object in the image or multiple nonoverlapping objects. In these
cases only the diagonal terms need to be considered. However, for multiple overlapping
objects the optimization function has to be used in its full generality (see Fig. 9).

3.3. Complete Algorithm

The complete algorithm is outlined in Fig. 5. The left side depicts the training (off-
line) stage. The input is a set of training images for each object. The output consists of
the eigenimages and the coefficients of training images, or alternatively, of the parametric
eigenspaces. The right side of Fig. 5 depicts the recognition (on-line) stage. As input, it
receives the output of the training stage (eigenspaces and coefficients for each object) and
an image in which instances of training objects are to be recognized. At each location in
the image, several hypotheses are generated for each eigenspace. The selection procedure
then reasons among different hypotheses, possibly belonging to different objects, and selects
those that better explain the data, thereby delivering automatically the number of objects, the
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FIG. 5. A schematic diagram outlining the complete robust algorithm.

eigenspaces they belong to, and the coefficients (via the nearest neighbor search performed
already at the hypotheses generation step).

4. EXPERIMENTAL RESULTS

In this section we first present several single experiments to demonstrate the utility of
our robust method. In the next section we report on extensive testing that we performed to
compare the standard method with the robust method. We performed all experiments on the
standard set of images (Columbia Object Image Library, COIL-20) [22]. Figure 6 shows
some of the 20 objects in the COIL-20. Each object is represented in the database by 72
images obtained by the rotation of the object through 360◦ in 5◦ steps (1440 images in total).
Each object is represented in a separate eigenspace, and the coefficients of the eigenspace
specify the orientation of the object via nearest neighbor search on the parametric manifold.

FIG. 6. Some of the test objects used in the experiments.
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FIG. 7. Demonstration of insensitivity to occlusions using the robust methods for calculating the coeffici-
entsai .

Unless stated otherwise, all the experiments are performed with the following parameter
setting:

Number of eigenimagesp 15
Number of initial hypothesesH 10
Number of initial pointsk 12p = 180
Reduction factorα 0.25
K1 1
K2 0.1
K3 50
Compatibility threshold2 100

Figure 7 demonstrates that our approach is insensitive to occlusions. One can see that
the robust method outperforms the standard method considerably. Note that the blur visible
in the reconstruction is the consequence of taking into account only a limited number of
eigenimages.

Figure 8 shows several objects on a considerably cluttered background (image size
540× 256). At every second pixel 10 hypotheses per eigenspace where initiated. All the
objects have been correctly recovered by the robust method. The run-time for the robust
method on this image is approximately 3.8 h for our nonoptimized MatLab implementation
on a Pentium II-450 PC. However, this execution time can be reduced to approximately
10 min with a hierarchical implementation and an intelligent search technique [4].

FIG. 8. Test-objects on a cluttered background.
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FIG. 9. Two objects occluding each other.

Figure 9 demonstrates that our approach can cope with situations where one object
occludes another. One can see that the robust method is able to recover both objects. One
should note that in this case the selection mechanism based on the MDL principle delivers
automatically that there are two objects present in the scene (i.e., we do not need to specify
the expected number of objects in advance).

4.1. Comparison of the Methods

In this section we report on the extensive testings that we performed to compare the
standard and the robust method. We performed two types of experiments:

• orientation estimation and
• classification.

In the first experiment, we compared the methods also on the level of estimated coeffi-
cients. Namely, a comparison on the level of recognition may be misleading since sometimes
the recovered coefficients are fairly poor (especially with the standard method), but still the
object is correctly recognized.

We have performed tests with Gaussian, Salt & Pepper, and Replacement noise. Due to
the lack of space and the qualitative similarity between the Salt & Pepper and Replacement
noise, we only report on the tougher Salt & Pepper noise (5–80%) (Fig. 10). In addition we
report on the experiments with occlusions (10–60%), see also Fig. 10.

4.1.1. Orientation estimation.For this set of experiments we constructed the eigenspace
of a single object with images from 36 orientations (each 10◦ apart) and used the remaining
views to test the generalization ability of the methods. In addition, we varied the number of
eigenvectors and the number of hypotheses. As a performance measure we used the median
of the normalized coefficient error. The following plots (Fig. 11) show the typical results of

FIG. 10. Test image subjected to Salt & Pepper noise and occlusion.



ROBUST RECOGNITION USING EIGENIMAGES 111

FIG. 11. Orientation estimation results.

the standard and the robust method obtained for the test set of one object under the various
noise conditions.

Figures 11c and 11d show that the robust method is insensitive to the Salt & Pepper noise
up to 80%. For the standard method one observes a linear increase of the error with the
level of noise, Fig. 11a.
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TABLE 1

Summary of Orientation Estimation Experiments (Median

of the Absolute Orientation Error in Degrees)

Salt & Pepper [%] Occlusions [%]

Method 5 20 35 50 65 80 10 20 30 40 50 60

Standard 0 0 0 5 10 10 0 0 5 95 90 90
Robust 0 0 0 0 0 0 0 0 0 0 5 40

Figures 11e and 11f show the results for occluded objects, which again demonstrate
the superiority of the robust method. One can see that the robust method is insensitive to
occlusions of up to 30%; then its performance begins to deteriorate.The standard method is
very sensitive to occlusions; i.e., even for 10% occlusions the errors are already quite high,
Fig. 11b.

We also performed experiments with Gaussian noise (not depicted here). As expected,
the standard method (which is the optimal method for the Gaussian noise) produced best
results. However, the results produced by the robust method were almost as good (only a
slight increase in error).

The experiments have shown that the robust method outperforms the standard method
considerably when dealing with outliers and occlusion. Table 1 summarizes the results for
several objects. To generate the table, we used 15 eigenimages and generated 10 hypotheses.
In this case, the error measure is the median of the absolute orientation error given in
degrees.Comparing this table to the plots, one can observe that the recovered coefficients
might be fairly poor (especially with the standard method), but still the pose is correctly
estimated due to the high dimensionality and sparseness of the points in the eigenspace.

4.1.2. Classification. For this set of experiments we used all 20 objects. As a training set
we used, similarly to the previous experiment, images from 36 orientations of each object.
For the standard method, we calculated the universal eigenspace [19] with all training
images, and when the object was correctly recognized, we used the object’s eigenspace to
determine the orientation. For the robust method, we used only the objects’ eigenspaces, and
in the hypothesis generation stage, we generated for each object eight hypotheses. For all
eigenspaces, 15 eigenvectors were used. As for the error measure, we used the classification
accuracy, and for those objects which have been correctly recognized, we also calculated
the median absolute error in the orientation.

Table 2 shows the results for 50% Salt and Pepper noise, and Table 3 shows the results
for 50% occlusions.

TABLE 2

Classification Results on Images with 50% Salt & Pepper Noise

Median absolute
Method Recognition rate orientation error

Standard 46% 50◦

Robust 75% 5◦
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TABLE 3

Classification Results on Images with 50% Occlusion

Median absolute
Method Recognition rate orientation error

Standard 12% 50◦

Robust 66% 5◦

These results clearly indicate the superiority of the robust method over the standard
method. The higher error rates for the occlusion can be explained by the fact that certain
objects are already completely occluded in some orientations. In Figs. 12 and 13 we have
depicted those objects that caused the highest error, in either orientation estimation or
classification.

In summary, these experiments demonstrate that our robust method can tolerate consid-
erable amount of noise, can cope with occluded multiple objects on varying background
and is therefore much wider applicable than the standard method.

5. DISCUSSION AND CONCLUSIONS

In this paper we have presented a novel robust approach which enables the appearance-
based matching techniques to successfully cope with outliers, cluttered background, and
occlusions. The robust approach exploits several techniques, e.g., robust estimation and the
hypothesize-and-test paradigm, which combined together in a general framework achieve
the goal. We have presented an experimental comparison of the robust method and the
standard one on astandard databaseof 1440 images. We identified the “breaking points”
of different methods and demonstrated the superior performance of our robust method.
We have shown experimentally (by Monte Carlo simulation) the influence of the adjustable
parameters on the breakdown point (Appendix A). A general conclusion drawn from these
experiments is as follows: The robust method can tolerate much higher levels of noise
than the standard parametric eigenspace method under reasonable computational cost. In
terms of speed the standard method is approximately seven times faster than the robust
method. However, in the case when we have “well-behaved” noise with low variance in
the images, we can show that the robust method is approximately 20 times faster than the
standard method. This is because, with well-behaved noise, we do not need to explore
many hypotheses and we do not need to perform the selection and back-projection of the
coefficients. Also, the number of initial points (see Eq. (8)) can be significantly reduced.
What should be emphasized is that in this case the robust method is independent of the size
of the matching image.

It is interesting to note that the basic steps of the proposed algorithm are the same as in
ExSel++ [31], which deals with robust extraction ofanalyticalparametric functions from

FIG. 12. Gross errors in the orientation determination are mainly caused by rotation-symmetric objects.
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FIG. 13. Gross errors in the classification are mainly caused by objects that are hardly visible under occlusion.

various types of data. Therefore, the method described in this paper can also be seen as an
extension of ExSel++ tolearnable classesof parametric models.

The applications of the proposed method are numerous. Basically everything that can
be performed with the classical appearance-based methods can also be achieved within the
framework of our approach, only more robustly and on more complex scenes.

The proposed robust approach is a step forward; however, some problems still remain.
In particular, the method is sensitive to scale, and the application of the method on a large
image is computationally very demanding. In [4], we have recently demonstrated how
the robust methods can be applied to convolved and subsampled images yielding the same
values of the coefficients. This enables an efficient multi-resolution approach, where the
values of the coefficients can directly be propagated through the scales.This property is
used to extend our robust method to the problem of scaled and translated images.

APPENDIX A

Robust Fitting

The goal of this Appendix is to test the robustness of the solution of Eq. (A.1) and to
determine a suitable range of adjustable parameters. Starting fromk pointsr1 . . . rk we seek
the solution vectora ∈ Rp which minimizes

E(r) =
k∑

i=1

(
xri −

p∑
j=1

aj (x)ej,ri

)2

. (A.1)

Based on the error distribution of the set of points, we keep reducing their number by a
factor ofα until all points are either within the compatibility threshold2, or the number of
points is smaller thanω.

Since it is hard to derive an analytic expression for this highly nonlinear problem, we tested
the robustness using a simulated Monte Carlo approach. The procedure was as follows: We
generated eigenimages from a set of test images, andpeigenimages were used for projection.
The true coefficients were determined by projection of the test images on the eigenspace.
Then for various parameter settings and different levels of replacement noise (i.e., a point
ri is selected at random, and its value is replaced by a uniform random number between
0 and 255), the coefficients were determined and the distance between the recovered and
the true coefficients was plotted. Figure A1 shows a plot where each point is an average
over 30 trails for the parameter settingp= 16,k= 12p, α= 0.25, ω= 3p. One can see that
more than 50% of noise can be tolerated by our method. The reason for this is that the noise
amplitude deviations are limited to [0, . . . ,255], which is the case in images quantized
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FIG. A1. Monte Carlo simulation showing the robustness of solving the equations.

to eight bits. Monte Carlo simulations have been performed with the following ranges of
parameter values:k∈ {4p . . .20p};α ∈ [0.1,0.6];ω∈ {2p . . .5p}.

The robustness behavior of solving the equations is similar to Fig. A1 for a wide range
of parameter values,k> 7p, 0<α<0.5, 2p<ω<4p. Since these parameters also influ-
ence the computational complexity of the algorithm, the parametersk= 12p, α= 0.25,
ω= 4p are a good compromise between robustness and computational complexity.

APPENDIX B

How Many Hypotheses?

In this Appendix we derive how many hypotheses need to be generated in order to
guarantee at least one correct estimate with a certain probability. The arguments used here
are very similar to those of Grimson [9]. Having determined the amount of noise that can
be tolerated by solving the equations (denoted byτ ) we can now calculate the number of
hypothesesH that need to be generated for a given noise levelζ in order to find at least one
good hypothesis with probabilityη. The derivation is straightforward: When we generate

FIG. B2. Number of necessary hypothesesH versus noise and noise toleranceτ of robustly solving the
equations; values larger than 100 are set to 100.
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FIG. B3. Number of necessary hypothesesH versus noise. The noise toleranceτ of robustly solving the
equations was 0.4 (dashed), 0.5 (full), 0.6 (dotted); values larger than 100 are set to 100.

one hypothesis, the probability of finding a good one is:

ρ(good hypo)= ρ(from k points at mostkτ are outliers),

whereρ(a) denotes the probability of eventa. Therefore,

ρ(good hypo)=
bkτc∑
i=0

(
k

i

)
ζ i (1− ζ )k−i .

Now we generateH hypotheses to satisfy the following inequalityρ(at least one good
hypo)>η

1−
(

1−
bkτc∑
i=0

(
k

i

)
ζ i (1− ζ )k−i

)H

> η,

which gives us the required number of hypotheses:

H >
log(1− η)

log
(

1−∑bkτci=0

(k
i

)
ζ i (1− ζ )k−i

) .
Figures B2 and B3 demonstrate the behavior ofH graphically, when the number of equations
is k = 150. One can clearly see that as long as the amount of noise is within the range of
the noise tolerance of solving the equations (τ ) we need only a few hypotheses; however,
as soon as we have approximately 5% more noise than can be tolerated by solving the
equations, we would need to generate a very large number of hypotheses to guarantee to
find at least one good hypothesis with probabilityη. Therefore, we can conclude that only a
few (<5) hypotheses need to be explored when the noise level is within the required bounds,
a fact which has also been demonstrated by the experimental results.
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