Pattern Recognition 41 (2008) 3600 -3612

journal homepage: www.elsevier.com/locate/pr

Contents lists available at ScienceDirect

Pattern Recognition

PATTERN
RECOGNITION

Learning a Mahalanobis distance metric for data clustering and classification

Shiming Xiang*, Feiping Nie, Changshui Zhang

Tsinghua National Laboratory for Information Science and Technology (TNList), Department of Automation, Tsinghua University, Beijing 100084, PR China

ARTICLE INFO ABSTRACT

Article history:

Received 7 October 2007

Received in revised form 27 February 2008
Accepted 16 May 2008

Distance metric is a key issue in many machine learning algorithms. This paper considers a general
problem of learning from pairwise constraints in the form of must-links and cannot-links. As one kind
of side information, a must-link indicates the pair of the two data points must be in a same class, while
a cannot-link indicates that the two data points must be in two different classes. Given must-link and

cannot-link information, our goal is to learn a Mahalanobis distance metric. Under this metric, we hope
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the distances of point pairs in must-links are as small as possible and those of point pairs in cannot-links
are as large as possible. This task is formulated as a constrained optimization problem, in which the
global optimum can be obtained effectively and efficiently. Finally, some applications in data clustering,
interactive natural image segmentation and face pose estimation are given in this paper. Experimental
results illustrate the effectiveness of our algorithm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Distance metric is a key issue in many machine learning algo-
rithms. For example, Kmeans and K-nearest neighbor (KNN) classifier
need to be supplied a suitable distance metric, through which neigh-
boring data points can be identified. The commonly used Euclidean
distance metric assumes that each feature of data point is equally
important and independent from others. This assumption may not
be always satisfied in real applications, especially when dealing with
high dimensional data where some features may not be tightly re-
lated to the topic of interest. In contrast, a distance metric with good
quality should identify important features and discriminate relevant
and irrelevant features. Thus, supplying such a distance metric is
highly problem-specific and determines the success or failure of the
learning algorithm or the developed system [1-13].

There has been considerable research on distance metric learn-
ing over the past few years [14]. One family of algorithms are
developed with known class labels of training data points. Algo-
rithms in this family include the neighboring component analy-
sis [15], large margin nearest neighbor classification [16], large
margin component analysis [17], class collapse [18], and other
extension work [19,20]. The success in a variety of problems
shows that the learned distance metric yields substantial im-
provements over the commonly used Euclidean distance metric
[15-18]. However, class label may be strong information from the

* Corresponding author. Tel.: +86 1062796 872; fax: +861062786911.
E-mail addresses: smxiang@gmail.com (S. Xiang), zcs@mail.tsinghua.edu.cn
(C. Zhang).

0031-3203/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2008.05.018

users and cannot be easily obtained in some real-world situations. In
contrast, it is more natural to specify which pairs of data points are
similar or dissimilar. Such pairwise constraints appear popularly in
many applications. For example, in image retrieval the similar and
dissimilar images to the query one are labeled by the user and such
image pairs can be used to learn a distance metric [21]. Accordingly,
another family of distance metric learning algorithms are developed
to make use of such pairwise constraints [14,21-29]. Pairwise con-
straint is a kind of side information [22]. One popular form of side
information is must-links and cannot-links [22,30-35]. A must-link
indicates the pair of data points must be in a same class, while a
cannot-link indicates that the two data points must be in two differ-
ent classes. Another popular form is the relative comparison with “A
is closer to B than A is to C” [26]. The utility of pairwise constraints
has been demonstrated in many applications, indicating that signif-
icantly improvement of the algorithm can be achieved [21-27].
The two families of distance learning algorithms are extended
in many aspects. Based on the class labels of training data points,
Weinberger and Tesauro proposed to learn distance metric for
kernel regression [36]. Based on labeled training data, Hertz et al.
maximized the margin with boosting to obtain distance functions
for clustering [37]. Bilenko et al. integrated the pairwise constraints
(must-links and cannot-links) and metric learning into a semi-
supervised clustering [38]. Clustering on many data sets shows that
the performance of Kmeans algorithm has been substantially im-
proved. Also based on must-links and cannot-links, Davis et al. devel-
oped an information theory-based framework [39]. Compared with
most existing methods, their framework need not perform complex
computation, such as eigenvalue decomposition and semi-definite
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programming [15,16]. Yang et al. presented a Bayesian framework
in which a posterior distribution for the distance metric is estimated
from the labeled pairwise constraints [40]. Kumar et al. used the rel-
ative comparisons to develop a new clustering algorithm in a semi-
supervised clustering setting [41]. Formulating the problem as a
linear programming, Rosales and Fung proposed to learn a sparse
metric with relative comparison constraints. The sparsity of the
learned metric can help to reduce the distance computation [42]. In
addition, the distance metric learning algorithms are also extended
with kernel tricks [11,21,43-45]. Nonlinear adaptive metric learning
algorithm has also been developed [46]. Furthermore, some online
distance metrics learning algorithms [39,47] have been proposed re-
cently for the situations where the data points are collected sequen-
tially. The use of the learned distance metrics has been demonstrated
in many real-word applications, including speech processing [48],
visual representation [49], word categorization [12], face verification
[50], medical image processing [51], video object classification [52],
biological data processing [53], image retrieval [21,54], and so on.

In this paper we focus on learning a Mahalanobis distance met-
ric from must-links and cannot-links. The Mahalanobis distance is a
measure between two data points in the space defined by relevant
features. Since it accounts for unequal variances as well as correla-
tions between features, it will adequately evaluate the distance by
assigning different weights or importance factors to the features of
data points. Only when the features are uncorrelated, the distance
under a Mahalanobis distance metric is identical to that under the
Euclidean distance metric. In addition, geometrically, a Mahalanobis
distance metric can adjust the geometrical distribution of data so that
the distance between similar data points is small [22]. Thus it can
enhance the performance of clustering or classification algorithms,
such as KNN classifier. Such advantages can be used to perform spe-
cial tasks on a given data set, if given a suitable Mahalanobis distance
metric. It is natural to learn it from some prior knowledge supplied
by the user according to her/his own task. One easy way to supply
prior knowledge is to supply some instances of similar/dissimilar
data pairs (must-links/cannot-links). We hope a Mahalanobis dis-
tance metric can be learned by forcing it to adjust the distances of
the given instances and then applied to new data.

The basic idea in this paper is to minimize the distances of point
pairs in must-links and maximize those of point pairs in cannot-
links. To this end, we formulate this task as a constrained optimiza-
tion problem. Since the formulated problem cannot be analytically
solved, an iterative framework is developed to find the optimum in
way of binary search. A lower bound and an upper bound including
the optimum are explicitly estimated and then used to control the
initial value. This will benefit the initialization of the iterative algo-
rithm. The globally optimal Mahalanobis distance matrix is finally
obtained effectively and efficiently. In addition, the computation is
also fast, up to exponential convergence. Comparative experiments
on data clustering, interactive natural image segmentation and face
pose estimation show the validity of our algorithm.

The remainder of this paper is organized as follows. Section 2
will briefly introduce the related work and our method. We address
our problem and develop the algorithm in Section 3. The experi-
mental results and applications in data clustering, interactive image
segmentation and face pose estimation are reported in Section 4.
Section 5 concludes this paper.

2. Related work and our method

Given two data points X; € R" and x; € R", their Mahalanobis
distance can be calculated as follows:

da(X1,%2) = /(X1 — %2)TAXX; — %) (1)

where A € R™" is positively semi-definite. Using the eigenvalue

decomposition, A can be decomposed into A=WW?. Thus, it is also
feasible to learn the matrix W. Then, we have

da(X1.%2) = /(X1 — )T - (WWT) - (x1 — %) 2)

Typically, Xing et al. studied the problem of learning a Maha-
lanobis matrix from must-links and cannot-links [22]. In their frame-
work, the sum of the Mahalanobis distances of the point pairs in
the must-links is used as the objective function, which is minimized
under the constraints developed from the point pairs in the cannot-
links. Gradient ascent and iterative projection are used to solve the
optimization problem. The algorithm is effective, but it is time con-
suming when dealing with high dimensional data. Bar-Hillel et al.
proposed the algorithm of relevance component analysis (RCA) [23].
RCA needs to solve the inverse matrix of the covariance matrix of
the point pairs in the chunklets (must-links), which may not exist in
the case of high dimensionality [55-57]. Such a drawback may lead
the algorithm difficult to be performed.

Hoi et al. proposed the discriminative component analysis (DCA)
[21]. They use the ratio of determinants as the objective function to
learn a matrix W*:

wis,w
W* = arg max | pWI

—— (3)
w wWTs,wj

where §b and §W are the covariance matrices calculated from the
point pairs in the discriminative chunklets (cannot-links) and those
in the must-links [21]. After W* is obtained, a Mahalanobis matrix
A can be constructed as A = W*(W* )T. Problem (3) has been well
discussed in subspace learning [58] and can be analytically solved.
Actually, W* can be calculated via the eigenvalue decomposition of
matrix §‘7V1 Sb- However, singularity problem may also occur since we
need to calculate 317‘,]. To avoid the singular problem, DCA selects to
diagonalize the covariance matrices Sy, and Sy simultaneously and
discards the eigenvectors corresponding to the zero eigenvalue.
Formally, the objective function used in this paper can be given
as follows:
W* =arg max M (4)
wTw=I tr(WTS,,W)

where tr is the trace operator of matrix, §W is calculated from the
must-links and Sy, is calculated from the cannot-links. The final Ma-
halanobis matrix A is also constructed as A = W*(W*)T.

In contrast, RCA is developed via Sy, while DCA and our method
are developed via §b and Sy. But they have different objective func-
tions to be optimized. RCA constructs the objective function in terms
of information theory. DCA takes the ratio of two determinants as its
objective function. This paper uses the ratio of distances (expressed as
traces in the form of matrices in Problem (4)) as the objective func-
tion. In addition, we introduce an orthogonality constraint WTW =1
to avoid degenerate solutions. However, our problem cannot be di-
rectly solved by eigenvalue decomposition approaches. We construct
an iterative framework, in which a lower bound and an upper bound
including the optimum are estimated for initialization. Our algorithm
need not calculate the inverse matrix of S,y and thus the singularity
problem is avoided.

Compared with the seminal method proposed by Xing et al.
(where gradient ascent approach is used) [22], our method uses a
nice heuristic (iterative) search approach to solve the optimization
problem. Much time can be saved when dealing with high dimen-
sional data.

As mentioned before, the task of this paper is to learn a distance
metric from the given sets of must-links and cannot-links. Mathe-
matically, our formulation about the problem by maximizing the ra-
tio of distances yields just the same form of objective function used
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in literature [60,65,66]. These algorithms are developed for super-
vised subspace learning or linear dimensionality reduction, in which
the covariance matrices §b and §W are calculated via the class labels
of all the training data points. A comprehensive comparison about
these three previous methods is given in Refs. [66]. The main differ-
ences between our algorithm and that proposed by Wang et al. [66]
can be summarized as follows:

(1) These two algorithms have different goals. The goal of the algo-
rithm proposed by Wang et al. [66] is to reduce the dimension-
ality of data with given class label information, while our algo-
rithm is to learn a distance metric with side information. Each
data point and its class label will be considered in Wang’s algo-
rithm when constructing éb and Sy. In contrast, our algorithm
only needs to consider those pairs of must-links and cannot-links.

(2) Two cases are discussed in our algorithm. The reason is that the
denominator of the objective function in Problem (4) may be
zero. The iterative algorithm developed by Wang et al. [66] works
in the case that the denominator of the objective function is not
zero. Such discussions are introduced in this paper.

(3) We show a new property in our paper, namely, the monotonicity
of the objective function. In the case of non-zero denominator,
the objective value monotonously decreases with the increase
of the dimensionality of the subspace we use. Such a property
guides us to find a bound including the optimum for initialization
and iterations.

(4) When the denominator of the objective function is not zero, there
exists a unique globally optimal solution [66]. For the same §b
and Sy, and with the parameter d, the algorithms will yield the
same solution. To speed up the search of our approach, we give
a lower bound and an upper bound including the optimum.

(5) The heuristic search approach proposed by Wang et al. [66] is
developed by utilizing the previously estimated transformation
matrix W. Intrinsically, it is exactly one of the Newton’s methods,
while our method is a binary search method. Given the initial
value for iterations, it is slightly faster than our algorithm.

3. Algorithm
3.1. Problem formulation

Suppose we are given a data set Z = {xi}f\’=1 c R" and
two sets of pairwise constraints including must-links: % =
{(x,',xj)|xi and X; are in a same class}, and cannot-links: 2 =
{(xi,xj)|xi and X; are in two different classes}. Our goal is to learn a
Mahalanobis matrix A such that the distances of point pairs in &
are as small as possible, while those in & are as large as possible.

According to Eq. (2), equivalently, we can select to optimize the
matrix W e R"Xd, with d <n. To this end, we introduce a transfor-
mation:

y=W'x. (5)

Under this transformation, the sum of the squared distances of
the point pairs in . can be calculated as follows:

dw= Y (Wi - Wx)T(WTx; - WTx;)

(x,‘,xj)e.&”

here tr is a trace operator, and §w is the covariance matrix of the
point pairs in .%:

> (xi - X;)(Xi —Xj)T (7)

(xi,xj)eg’

Sw=

Correspondingly, for the point pairs in &, we have
dp = tr(WTS, W) (8)

where §; € R™" and §, = i)z (%i = X)(%i - X)L
We try to minimize dw and maximize dj. This formulation yields
the follow optimization problem:

Ta
W* =arg max tr(W_S, W)

wTw=I tr(WTS,,W)

here W € R4, the constraint WTW=I is introduced to avoid degen-
erate solutions, and I is an d x d identity matrix. Note that W is not a
square matrix if d <n. In this case, WW? will not equal to an identity
matrix. However, in the case of d=n, we have WWT = WTW =1. This
case will generate the standard Euclidean distance and thus will not
be considered in this paper.

After the optimum W* is obtained, a Mahalanobis matrix A can
be constructed as follows:
_[wHwH)T if d<n

A I ifd=n

(10)

3.2. Solving the optimization problem

To solve Problem (9), we first consider the denominator dy =
tr(WTS,,W) in two cases. We have the following theorem:

Theore;n 1. Suppose W ¢ IRE"XdA, WTW =1, and r (<n) is the ran of
matrix Sw. If d > n—r, then tr(WTS,,W) > 0. If d < n—r, then tr((WTS,,W)
may be equal to zero.

Proof. Based on Rayleigh quotient theory [59], min tr(WTS,,W) =
Z?:]ﬁ,- holds if WTW = L. Here f,..., 8 are the first d smallest
eigenvalues of Sy. According to Eq. (7), we can easily justify that
Sw is positive semi-definite and thus all of its eigenvalues are
non-negative. Since its rank equals to r, it has r positive eigen-
values and n — r zero eigenvalues. If d>n — r, there exists at
least one positive eigenvalue among f1, ..., 5. This indicates that
tr(WT§WW)> min tr(WTSWW)>O holds. In the case of d<n —r,
however, each f; may be equal to zero. Thus tr(WTSyy W) may be
zero. [

This theorem implies that it is necessary for us to discuss the
problem in two cases.

Case 1:d>n—r.

Let A* be the optimal value of Problem (9), namely,

. tr(WTS, W)
Af= max ———2>—-.
wTw=I tr(WTS,, W)
According to the work by Guo et al. [60], it follows:

max tr(W'(S, — 1*Sy)W) =0. (11)
wTw=I

Inspired by Eq. (11), we introduce a function about A:

g(2)= max tr(WT(S, — iSw )W) (12)
wliw=I

The value of g(1) can be easily calculated. According to the the-
ories of matrix [59], it equals to the sum of the first d largest eigen-
values of (Sb — JSw). Based on Eg. (11), now our task is to find a A
such that g(1)=0.

Note that in this case tr(WTSyW)>0, then the following two
propositions hold naturally:

g(A)<0= A>2*
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g(A)>0= A<A*

This indicates that we can iteratively find A* according to the sign
of g(A). After A* is determined, the optimal W* can be obtained by
performing eigenvalue decomposition of (§b —7*$y). In this way, we
avoid calculating the inverse matrix of Sy.

To give an initial value for iteratively finding the optimum 4*, now

we determine a lower bound and an upper bound for A*. Actually,
we have the following theorem:
Theorem 2. Let r be the rank of Sy. If d>n — r, then
S o
t(Sp) <211’ (13)
tr(Sw) >4 B
where o4, ..., a4 are the first d largest eigenvalues ofﬁb, and f1, ..., B4

are the first d smallest eigenvalues of Sw.
To prove this theorem, first we give the following two lemmas:

Lemma 1. Vi,a; >0,b; >0,
P ai/P_ bi<ap/bp.

if aj/by<ay/by<---<ap/bp, then

Proof. Let ap/bp = q. Vi,
Z?:] ai/Zle bi

we have aj<gb;. Thus it follows

Lemma 2. Let r be the rank of Sy, Wy € R™91 and W, ¢ R™%_[f
d1>dy>n—r, then
r(wIs,w
max M g
wiw;=I tr(W SwWj)

tr(WIS,W5)
wiw, =1 tr(WISwW,)

Proof. Let
tr(WIS,w
W] =arg max w
W-{W1 =I tI'(W] Sww1 )
We can get ij? sub-matrices, each of which contains dy column
vectors of W¥. Let p = CZ? and denote them by W(;, € Rz
1,...,p. Without loss of generality, suppose

tl‘(W( )Sbw(l))

tr(W( )SWW( 1 ))

< tl'(W(p)SbW(p))
tI'(W(p)SWW(p))

Note that each column vector of W} will appear Cgf:} times in

these p sub-matrices. Then we have

A dy—1 Te
max tr(W]S,W1) Cdffl -tr((W7)'SpW1)
WTW1 =1 tr(W Sww1) Cgf

1 (W TS(wi)T)
SE (W Sp W)

D> 1tr(W(l)SWW(i))

_ (Wl $,W(p))

(W] SwWp))

(WIS, W
< max 7( b 2)
WIw,=1 tr( WIS, W,)

The first and the second equalities hold naturally, according to the
rules of trace operator of matrix. The first inequality holds according

Table 1
Binary search for solving the optimization problem

Input: Sy, S, € R™", the lower dimensionality d, and an error constant &.
Output: A matrix W* e R,
1. Calculate the rank r of the matrix Sy
Case 1: d>n—r
2. jq < t(8p)/tr(Sw), A < (S V(S B 4 < G + A2)/2.
3. While 2; — 41 >¢, do
(a) Calculate g(4) by solving Problem (12).
(b) If g(A)>0, then A1 < 4; else 1y < A.
(€) 4« (A1 + 42)/2.
EndWhile.
4. W* = [pq, ..., pbq], where B, bq are the d eigenvectors, corresponding
to the d largest elgenvalues of S — ASw.
Case 2: d<n-r
Wt=Z.[w,..., vq]. Here vy, ..., vy are d eigenvectors corresponding to the d
largest eigenvalues of Z'S,Z, and Z =[z1,...,2,_r] are the eigenvectors
corresponding to n — r zero eigenvalues of Sy.

to Lemma 1, while the second inequality holds since

tr(WIS,W5)
X _—
wTwz_[ tr(W SWW2)

can serve as an upper bound. Thus we finish the proof. [J

Here we show a new property, namely, the monotonicity of the
objective function. In the case of non-zero denominator, the objec-
tive value monotonously decreases with the increase of the dimen-
sionality of the subspace we use.

Now we can give the proof of Theorem 2 as follows:

Proof of Theorem 2. Lemma 2 indicates that the optimal value
monotonously decreases with the increasing of d. Thus we can find
a lower bound for 2* when d =n. In this case, W ¢ R™" is a square
matrix and WWT =1 also holds. According to the rule of trace oper-
ator (here, tr(AB) = tr(BA)), it follows:

tr(WIS,W)  a(S,ww!)
tr(WTS,W)  tr(S,yWwwT)

tr(Sp)

- 4
tr(Sw) ()

According to Rayleigh quotient theory [59], for symmetric matri-
ces S, and Sy, we have

max tr(WTW,W) = Z o

wiw=I
and
d
wr_lglvl\?ltrw SwW) =§
here a1, ..., %4 are the first d largest eigenvalues of S, and 1, ...,

are the first d smallest eigenvalues of Sy. Then 2?21 oci/Zleﬁi is an
upper bound of

. tr(WTS, W)
wTw=I tr(WTS,,W)

Thus, the second inequality holds. [

Given the lower bound and the upper bound, A* can be reached
in way of binary search. The steps are listed in Table 1. The optimal
W* is finally obtained by performing the eigenvalue decomposition
of §b — A*Sy. From the performance steps, we can see that the sin-
gularity problem can be naturally avoided.

Case2:d<n-r.
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If W is in the null space1 of §W, then tr(WT§WW)= 0 and A*A will
be infinite. Thus it is feasible to maximize the numerator tr(WTSbW)
after performing a null-space transformation y = ZTx:

V* =arg max (VI(ZT§,Z)v), (15)
vTv=I

where Z € R™(") is a matrix whose column vectors are the eigen-
vectors corresponding to n — r zero eigenvalues of Sy, and V e
R4 5 3 matrix to be optimized. After V* is obtained, we can
get W* = ZV*, The algorithm is also given in Table 1.

3.3. Algorithm

The algorithm in Table 1 needs to perform eigenvalue decompo-
sition of S — 28w € R™". When n is very large, saying n>5000, usu-
ally current PCs have difficulties in finishing this task. Reducing the
dimensionality is desired when facing such high dimensional data.
For Problem (9), we can first eliminate the null space of Sj + Sw.
Actually, we have the following theorem:

Theorem 3. Problem (9) can bfz solved in the orthogonal complement
space of the null space of Sy, + Sw, without loss of any information.

To be concision, the proof about Theorem 3 is given in Appendix
A. Finally, the algorithm for learning a Mahalanobis distance metric
from pairwise constraints is given in Table 2.

To calculate the null space of matrix §b +Sw, we need to perform
an eigenvalue decomposition of it. If the dimensionality (n) is larger
than the number of data points (N), the rank of Sy, + Sy will not be
greater than N. In this case, we need not to perform the eigenvalue
decomposition on the original scale of n x n. We have the following
Theorem:

Theorem 4. Given two matrix A € R™N and B € RN*™, then AB and
BA have the same non-zero eigenvalues. For each non-zero eigenvalue of
AB, if the corresponding eigenvector of AB is v, then the corresponding
eigenvector of BA is u = Bv.

The proof about Theorem 4 is also given in Appendix B.

Now let X be the data matrix containing N data points, namely,
X=[x1,X3,...,.XN] € R™N_ Based on the must-links, a symmetrical
indicator matrix Ls € RN*N with element Ls(i,j) can be defined as
follows:

{Ls(i,j) “LGD=1; (xix)e S
Ls(i,j) = Ls(j,i) = O; (x,',xj) ¢S

Furthermore, based on the cannot-links, a symmetrical indicator
matrix Lj € RN*N with element L4(i,j) can be defined as follows:

{Ld(l:'J:) = Ld(]:, 1:) =1;
Ly(i,j) =Lg(. 1) =0;
Let Lw = diag(sum(Ls)) — Ls and L, = diag(sum(L;)) — Ly, where

sum(-) is an N-dimensional vector which records the sum of each
row of the matrix. Now it can be easily justified that

(xi,xj) ey
(%.%)¢ 7

Sw = IXLXT (16)
and
Sp = FXLXT (17)

1 The null space of A e R™" is the set of column vectors X such that AX=0.
This space can be span by the eigenvectors corresponding to zero eigenvalues of A.

Table 2
Algorithm of learning a Mahalanobis distance metric

0. Preprocess:

a) Eliminate the null space of S, + S, and obtain a linear transformation
y:W¥x. Here W, only contains the eigenvectors corresponding to the non-zero
eigenvalues of S, + 8§, and wiw; =1

b) Obtain the new matrices S,, = WIS,,W; and S, = WIS,Wj.

1. Input d, ¢ Sw and S,.
2. Learn a W* according to the algorithm in Table 1.
3. Output a Mahalanobis matrix for the original data points: A=W, W*(W*)TW}

Thus, we have
Sw+Sp =X(ILw + JL,)XT (18)

Let L:XTX(%LW + %Lb) e RN*N_In the case of N<n, we can cal-
culate the non-zero eigenvalues of L and their corresponding eigen-
vectors.

Let the rank of L be r (<N). Since the rank of matrix equals to
the number of non-zero eigenvalues, then L has r non-zero eigenval-
ues. Denote their corresponding eigenvectors by {v{,V>,...,Vr}. Then
according to Theorem 4, we can get r eigenvectors of Sy + §b:

ui=X(ALw + Iy, =121 (19)

Note that the eigenvectors of Sy -+ Sb obtained by Eq. (19) are
orthogonal to each other, namely, u;fuj =0; i # j. But the length of
each vector may not be one. Thus we should normalize each u; such
that it has unit length. This can be easily obtained by performing
uj < (1/|luj])u.

These r vectors {uqy,uy,...,ur} constitute a base of the orthog-
onal complement space of the null space of Sy + Sb- Let Wy =
[ug,uy,...,ur] € R™" (note that it is just the Wy in Proof of The-
orem 3). Then for each source data point X;, we can project it onto
the orthogonal complement space of the null space of Sy, + §b by
performing x; < W¥xi. In this way, we eliminate the null space of

Sw + S}, as well as reduce the source dimensionality. In the case of
n>N, the newly dimensionality-reduced {x,'}{.\’:1 will be supplied to
Algorithm 1 in Table 1.

4. Experiments

We evaluated our algorithm on several data sets, and compared
it with RCA, DCA and Xing's method. We show the experimental
results and the applications to data clustering, interactive natural
image segmentation and face pose estimation.

4.1. Experiment on Toy data set

Fig. 1(a) shows three classes, each of which contains 100 data
points in R3. Totally, there are 3 x 100 x 99/2 = 14850 point pairs
which can be used as must-links and 3 x 100 x 100=30 000 point pairs
which can be used as cannot-links. In experiments, we randomly
select 5, 10 and 25 point pairs from each class to construct three
sets of must-links %1, %5 and 3. Thus, &1, %5 and %3 only
contain 15, 30 and 75 pairwise constraints. Then we take transitive
closures? over the constraints in .%;, %5 and .3, respectively.

Three sets of cannot-links, ¢, ¥, and %3 are also randomly
generated, which contain 75, 300 and 600 cannot-links, respectively.
We also take transitive closures3 over the constraints in %1, %5
and 3.

2 Suppose (xi,%;) and (x;,x;) are two must-links. Then (x;,X) is also a must-
link. It is added automatically into .&.

3 Suppose (xi,x;) is a must-link and (x;,X;) is a cannot-link. Then (x;,Xy) is
also a cannot-link. It is added automatically into Z.
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Fig. 1. (a) The 3 x 100 original data points. (b), (c) and (d) the data points transformed from the learned linear transforms with .%; and %; (i=1,2,3).
The algorithm in Table 1 with d =2 is used to learn the three =~ Table3
linear transformations, respectively, from .%; and Z; (i=1,2,3). Fig. A brief description of the data sets
1(b)-(d) shows the data points transformed from the learned trans- Breast Diabetes Iris Protein ORL COIL
H H _ % T £3 3)(2
formatl(?ns (1.@., y= (W*)'x and W* € R°*“). We can see that the R 6 SEeuEs () 683 768 150 116 200 1440
data points within a class are all pulled together. They tend to be Input dimensionality (1) 10 8 4 20 10304 256
tightly close to each other with the increasing of the number of pair- Number of clusters (C) 2 2 3 6 40 20
wise constraints. Meanwhile, the data points in different classes are Dimensionality (d) > 4 2 8 60 60
: h ’ p R > K. (small must-link set .%’) 612 694 133 92 280 1008
separated very well with a small number of pairwise constraints. K. (large must-link set &) 470 611 116 61 200 720

4.2. Application to data clustering

Kmeans is a classical clustering algorithm, which is popularly
used in many applications. During iterations, it needs a distance
metric to calculate the distances between data points and cluster
centers. In the absence of prior knowledge, the Euclidean distance
metric is often employed in Kmeans algorithm. Here we use a learned
Mahalanobis distance metric to replace it.

We use a normalized accuracy score to evaluate the clustering
algorithms [22]. For two-cluster data, the accuracy measure is eval-
uated as follows

O{é{ci = ¢j} = o{Gi =)}
0.5n(n—-1)

accuracy =y (20)

i>j

where 6{-} is an indicator (d(true)=1 and J(false)=0), ¢; is the cluster
to which x; is assigned by the clustering algorithm, and ¢;j is the
“correct” assignment. The score above is equivalent to calculating
the probability that for x; and x; drawn randomly from the data set,
their assignment (Cj, Ej) by the clustering algorithm agrees with their
true assignment (ci, ¢;).

As described in Refs. [22], this score should be normalized when
the number of the clusters is greater than 2. Normalization can
be achieved by selecting the point pairs from the same cluster

(as determined by ¢) and from the different clusters with equal
probability. As a result, the “matches” and the “dis-matches” are
given the same weight.

The data sets we used are described as follows (see Table 3):

The UCI data sets: We performed our algorithm on four data sets:
breast, diabetes, iris, and protein.

The ORL database: It includes 40 distinct individuals and each in-
dividual has 10 gray images with different expressions and facial
details [61]. The size of each image is 112 x 92. The source dimen-
sionality of data points is 10304.

The COIL-20 database: It includes 20 objects [62], each of which
has 72 gray images, which are taken from different view directions.
In experiments, each image is down-sampled to be one with 16 x 16
pixels. Thus, the input dimensionality is 256.

In experiments, the “true” clustering is given by the class labels
of the data points. The must-links in . are randomly selected from
the sets of point pairs within the same classes. A “small” must-link
subset and a “large” must-link subset are generated for comparison.
Here, “small” and “large” are evaluated via the number of connected

4 Available at http://www.ics.uci.edu/mlearn/MLRepository.html.
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Table 4

Clustering accuracy and standard deviation of accuracy on six data sets

Data set Method Accuracy (%) Std. (%) Accuracy (%) Std. (%)

Breast Kmeans 94.2 - 94.2 -
Xing's 94.2 0.3 94.3 0.3
RCA 93.3 0.3 94.3 0.7
DCA 92.0 1.9 93.5 0.9
Our 944 0.3 94.5 0.2

Diabetes Kmeans 55.8 - 55.8 -
Xing's 56.6 2.8 60.1 23
RCA 58.3 3.0 60.5 31
DCA 57.5 4.2 60.3 2.9
Our 60.9 23 62.5 22

Iris Kmeans 85.5 - 85.5 -
Xing's 92.1 0.2 93.2 0.1
RCA 95.9 2.3 97.0 14
DCA 95.5 2.5 96.6 22
Our 96.6 14 971 13

Protein Kmeans 66.2 - 66.2 -
Xing's 68.1 2.6 71.0 2.4
RCA 68.2 2.2 813 2.3
DCA 62.4 25 65.1 5.8
Our 73.6 23 77.8 2.4

COIL Kmeans 82.5 - 82.5 -
Xing's 87.1 3.7 89.2 3.6
RCA 93.6 0.8 94.5 0.5
DCA 93.4 0.9 94.2 1.1
Our 93.9 0.6 94.1 0.6

ORL Kmeans 84.1 - 84.1 -
Xing's 85.0 1.0 86.1 1.5
RCA 61.5 0.7 68.0 13
DCA 85.0 13 86.5 1.8
Our 94.7 1.0 96.3 0.7

components K¢ [22].5 For the UCI data sets, the “small” & is ran-
domly chosen so that the resulting number of connected compo-
nents K¢ is equal to about 90% of the size of the original data sets. In
the case of “large” %, this number is changed to be about 70%. For
COIL, ORL data sets, these two numbers are changed to be about 70%
and 50%, respectively. Table 3 lists the number of K¢. Note that here
only a small number of pairwise constraints are employed to learn
the distance metric, compared with all the pairwise constraints we
can select. Finally, the cannot-links in & are generated based on the
data points in ., but with different clusters.

RCA, DCA, Xing's method and our method are used to learn dis-
tance metrics for comparisons. In each experiment, the null space
of §W —+ §b is eliminated. The results obtained by standard Kmeans,
Kmeans+Xings method, Kmeans+RCA, Kmeans+DCA and Kmeans+
our-method are reported in Table 4. Two group of experimental re-
sults are given by averaging 20 trials. The left group corresponds to
the “small” .%’, while the right group corresponds to the “large” .%.

With a learned distance metric, the performance of Kmeans is
significantly improved. Compared with DCA and Xing's method,
in most cases our method achieves higher accuracy, especially
when applied to high dimensional data. The experimental re-
sults also indicate that our method is competitive with RCA. It is
more robust than RCA as it avoids the singularity problem. Actu-
ally in experiments, with RCA the performance may be stopped
due to singularity problem. Additionally, it may generate very
low accuracy of clustering. For example, when we test ORL data
set with RCA, the accuracy is very low, even lower than that of
Kmeans algorithm. Actually, it is difficult to accurately estimate the

5 Note that the larger K is, the smaller the number of must-links we can
obtain, and thus the smaller the size of . is.

Table 5
Computation time (second) of learning the Mahalanobis matrix from the “small” .%
and Z on a PC with 1.7GHz CPU and 512 RAM, using Matlab 6.5

Breast Diabetes Iris Protein ORL COIL
Xing's 7.201 10.11 1.261 2.594 3332 7443.5
RCA 0.003 0.002 0.002 0.015 1.291 1.472
DCA 0.001 0.001 0.007 0.012 1.491 1.403
Our 0.004 0.010 0.008 0.013 4.290 6.391

information entropy in RCA only from a small number of samples in
the case of high-dimensionality.

Table 5 lists the computation time. Our method is much faster
than Xing's method. It is slightly slower than RCA and DCA, due to
the iterative algorithm.

4.3. Application to interactive natural image segmentation

Extracting the foreground objects in natural images is one of the
most fundamental tasks in image understanding. In spite of many
thoughtful efforts, it is still a very challenging problem. Recently,
some interactive segmentation frameworks are developed to reduce
the complexity of segmentation (more references can be obtained
through Refs. [63,64]). In interactive segmentation frameworks, an
important issue is to compute the likelihood values of each pixel to
the user specified strokes. These values are usually obtained with
Euclidean distance metric. Here we use a learned Mahalanobis dis-
tance metric to calculate them. We demonstrate that with a learned
distance metric even a simple classifier as KNN classifier could gen-
erate satisfactory segmentation results.

The steps of learning a distance metric are as follows: (1) collect
the user specified pixels about the background and foreground; (2)
encode all possible labeled pixel pairs to get the must-links %" and
cannot-links Z; (3) learn a Mahalanobis distance metric according
to the algorithm described in Table 1.

In experiments, each pixel p is described as a 5-dimensional vec-
tor, i.e., Xp = [r,g,b,x,y]T, in which (r,g,b) is the normalized color
of pixel p and (x,y) is its spatial coordinate normalized with image
width and height. The learned distance metric with d=3 is employed
to replace the Euclidean distance metric when using KNN classifier
(K =1 in experiments) to infer the class labels of the pixels.

Fig. 2 shows some experimental results. The first row shows the
four source images with the user specified pixels about the back-
ground and foreground. The labeled pixels are grouped as pairwise
constraints of must-links and cannot-links to learn a distance met-
ric with Xing’s method, RCA, DCA and our method. From the second
to the sixth row are the segmented results by KNN classifier with
standard Euclidean distance metric, KNN classifier with the learned
distance metric by Xing’s method, RCA, DCA and our method, respec-
tively. We can see that with the standard Euclidean distance metric,
KNN classifier fails to generate satisfactory segmentation results. Ac-
tually, in Euclidean distance metric, color and coordinate are given
equal weight. If the pixels are far from the labeled region, the spa-
tial distance will be greater than the color distance, and these pixels
may be classified incorrectly, for example, those pixels near the cir-
cle in the pyramid image (see the third column in Fig. 2). However,
color and coordinate may have different weights for segmentation.
These weights are learned into the Mahalanobis matrix A. We can
see that with the learned distance metric, the performance of KNN
classifier is significantly improved with RCA, DCA and our method. In
contrast with the standard Euclidean distance metric, Xing’s method
generates similar segmented results.

Compared with RCA and DCA, our method generate more accu-
rate results. Taking the flower image as an example, Fig. 3 shows two
segmented regions with original image resolution for comparison.
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Fig. 2. Four image segmentation experiments. The first row shows the original image with user strokes. From the second to the sixth row are the segmented results with
KNN classifier with standard Euclidean distance metric, KNN + Xings method, KNN + RCA, KNN + DCA and KNN + our method.

Fig. 3. Details in two segmented regions with original image resolution. In the right panel, the first and the second column show the results by RCA and DCA, and the third
column reports the results by our algorithm.

In the right panel, the first and the second columns show the re- 4.4. Application to face pose estimation
sults by RCA and DCA, and the third column reports the results by
our algorithm. From the details we can see better segmentation is Face recognition is a challenging research direction in pattern

achieved by our method. recognition. Many existing face recognition systems can generate
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Fig. 4. The face images of 10 subjects used to construct the must-links and cannot-links.

higher recognition accuracy from frontal face images. However, in
most real-world applications, the subject is free of the camera and
the system may receive face images with different poses. Thus, es-
timating the face pose is an important preprocess in face recogni-
tion to improve the robustness of the face recognition system. Here
we show an experiment in which a Mahalanobis distance metric is
learned from a small number of instances about similar poses and
dissimilar poses to help estimate the poses of new subjects, which
are not included in the training database.

The images of 15 subjects are used from the pose database [67].
For each subject with zero vertical pose angle, we use 13 horizontal
pose angles varying from —90° to 90° (every 15° a pose) to conduct
the experiment. Totally, we have 195 face images. We use 10 subjects
in the database to supply the instances of must-links and cannot-
links. The images of the rest five subjects are used as query samples
whose face poses are to be estimated. Thus the training data set does
not include the test data set. To be clear, we show the images of
the 10 subjects for training in Fig. 4 and the images of the rest five
subjects for test in Fig. 5.

In this experiment, we do not consider the identification of the
face images, but consider the similar/dissimilar face poses. Here,
a must-link is defined to connect a pair of face images with the
angle difference of poses not greater than 15°, while a cannot-link is

defined to connect a pair of face images with the angle difference of
poses greater than 45°. In each trial, we randomly select 100 must-
links to construct the subset .. This number equals to about 17%
(100/585) of the total eligible candidates. We also randomly select
1000 cannot-links to construct the subset . This number equals
to about 23% (1000/4400) of the total eligible candidates. In this
experiment, 20 trials are conducted to evaluate the performance.

To run the algorithm, all the images are resized to be 48 x 36
pixels. The source dimensionality is 1728 and it is reduced to 120
by performing principal component analysis. In computation, we set
the parameter d to be 60. When the optimal Mahalanobis distance
matrix A is learned, we use Eq. (1) to calculate the distance between
the new images in Fig. 5 and those in Fig. 4. Thus, for each image in
Fig. 5, we can get 130 distances. We sort them in ascending order
and use the first 10 ranks to estimate the pose of the new images.
This treatment is just as the same as image retrieval from database.
Fig. 6 shows an example obtained in one trial. The query image is the
last image in the fourth row in Fig. 5. Compared with Xing’s method,
RCA and DCA, we see that the poses of the images obtained with our
method are closer to that of the query image.

To give a comprehensive evaluation, the errors of the estimated
pose angles are calculated. They are first calculated on each trial, and
then further averaged on all of the 20 trails.
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Fig. 6. The first 10 images with the most similar poses to the query image, which are estimated from the images shown in Fig. 4, obtained by Xing’s method, RCA, DCA

and our method.

Specifically, in each trial and for each image in Fig. 5, we use
the average of the poses angles of the first 10 ranked images as
its estimated pose angle. This can be done since the pose angles
of the images in Fig. 4 are all known. Then, the absolute error is
calculated as the difference between the estimated pose angle and
the true pose angle. Thus, we obtain an error matrix with five rows
and 13 columns. That is, each row of this matrix corresponds to a
new subject shown in Fig. 5, and records the angle errors of its 13
poses. We further average these errors column by column, and then
get a row vector of average errors for 13 poses. In this way, we finish
the computation in this trial.

Finally, we further average the error vectors obtained via 20 trials.
Fig. 7 shows the final error curves. As can be seen, the average errors
of the estimated pose angles by our method are less than those
obtained by the other methods. The largest error in our method is

only up to 18.8°, the smallest is 7.3°, and most errors are located
near about 8.5°.

5. Conclusion

In summary, this paper addresses a general problem of learning a
Mahalanobis distance metric from side information. It is formulated
as a constrained optimization problem, in which the ratio of distances
(in terms of ratio of matrix traces) is used as the objective func-
tion. An optimization algorithm is proposed to solve this problem,
in which a lower bound and an upper bound including the optimum
are explicitly estimated and then used to stipulate the initial value
for iterations. Experimental results show that with a small number
of pairwise constraints our algorithm can provide a good distance
metric for performances.
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Fig. 7. Error curves of 13 face poses in Xing's method, RCA, DCA and our method.

Except for the significant improvement of the learned distance
metric over the Euclidean distance metric, there still exist a few
aspects to be researched. Intrinsically, our algorithm adopts a binary
search approach to find the optimum. More fast iteration algorithms
will be investigated in the future. We will also develop incremental
learning version of our algorithm for online data processing.
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Appendix A. Proof of Theorem 3

Lemma 3. If A is positive semi-definite, then ¥x, XITAx =0 < Ax = 0.

Proof. Since A is semi-definite, then there exists a matrix B such
that A = BTB [59]. On the one hand, ¥x, XTAx =0 = x'BTBx =0 =
(Bx)'Bx =0 = Bx=0 = B'Bx =0 = Ax = 0. On the other hand,
Ax=0 = x'Ax =0 holds naturally. Thus we have xTAx=0 < Ax=0.
O

Lemma 4. Let null(-) denote the null space of a matrix. IfA € R™" and

B ¢ R™" are positive semi-definite, then null(A+B)=null(A)nnull(B).

Proof. Note that A + B is also positive semi-definite. According to
Lemma 3, ¥X € nullA+B) = (A+BXx=0 = x'(A+Bx=0 =
X/AX + X'Bx =0 = x'AXx =0 AX'Bx = 0 = Ax = 0 A Bx = 0. Thus,
x € null(A) and x e null(B).

On the other hand, vx € (null(A)nnull(B)) = x € null(A+B) can be
easily justified. Finally, we obtain null(A + B) = null(A)nnull(B). 0O

Lemma 5. Let A ¢ R™" B ¢ R™" and W € R™. Eliminating the
null space of A + B will not affect the value of tr(WTAW)/tr(WTBW).

Proof. Let Wy € Rk, Wy € R™¥1, and kg + k; = n. Suppose the
column vectors of Wy are a base of null(A+B) and those of Wy are a
base of its orthogonal complement space. According to linear algebra,

for W e R™, there exist two coefficient matrices o € Rkoxd and
o1 € Rk1xd such that W can be linearly represented:

W:WO-OC0+W]-O(1. (2])
Based on Lemma 4 and Eq. (21), then

tr(WTAW)  tr((Wy o1 )TA(Wq o))
tr(WTBW) — tr(Wy o) 'B(W; 1))

This indicates that the null space of A + B will not affect the value
of tr(WTAW)/tr(WTBW). O

Proof of Theorem 3. Let m be the orthogonal complement
space of null(ﬁb + Sw). Lemma 5 indicates that we can consider
tr(WTWbAW)/tr(WT§WW) in this space.

Suppose the column vectors of Wy € R™k1 consist of a base of &
and W'{W1 =L YW e R"™4 7 and WIW=I, there exists a coefficient

matrix oq such that W=W) -0y Here aq € R¥1*9 and ol oy =1 Then

0 tr(WIS,w) tr(WTS, W)
wIw=I tfWTS,yW)  wTw-; tr(WTS,,W)
Wen
tr(oTWIS, W
_ max MAWiSWin) (22)

ac-{og] =1 tr(a{W}-SWWl 01 ) '

Now we introduce a linear transformation y = W¥x and denote
the covariance matrices of the transformed point pairs in %" and &
by Sw and Sy,

We can see that Sy, = W¥§WW1 and S, =w¥§bw1. Introducing a
new notation W, Eq. (22) is re-written as follows:

m M = max M , (23)
wTw=I tr(WTS,yW) WTw=r tr(WTS,,W)

here W e R¥1%4_ Thus we finish the proof. [J

Appendix B. Proof of Theorem 4

Proof. Suppose / is a non-zero eigenvalue of AB and v is its corre-
sponding eigenvector. Thus, ABv=Av # 0 = Bv # 0 and ABv= v =
BABvV = /Bv. Therefore, Bv is an eigenvector of BA corresponding to
the same non-zero eigenvalue A.

On the other hand, suppose 4 is a non-zero eigenvalue of BA and
u is its corresponding eigenvector. We can also justify that Au is an
eigenvector of B corresponding to the same non-zero eigenvalue A.
Therefore, AB and BA have the same non-zero eigenvalues, and for
each non-zero eigenvalue, if the corresponding eigenvector of AB is
v, then the corresponding eigenvector of BA isu=Bv. []
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