
1

Sequential Pattern Mining

2

Outline
• What is sequence database and sequential

pattern mining
• Methods for sequential pattern mining
• Constraint-based sequential pattern mining
• Periodicity analysis for sequence data

3

Sequence Databases

• A sequence database consists of ordered elements
or events

• Transaction databases vs. sequence databases

A sequence database
SID sequences
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

A transaction database
TID itemsets
10 a, b, d

20 a, c, d

30 a, d, e

40 b, e, f

4

Applications

• Applications of sequential pattern mining
– Customer shopping sequences:

• First buy computer, then CD-ROM, and then digital camera,
within 3 months.

– Medical treatments, natural disasters (e.g., earthquakes),
science & eng. processes, stocks and markets, etc.

– Telephone calling patterns, Weblog click streams
– DNA sequences and gene structures

5

Subsequence vs. super sequence

• A sequence is an ordered list of events,
denoted < e1 e2 … el >

• Given two sequences α=< a1 a2 … an > and β=<
b1 b2 … bm >

• α is called a subsequence of β, denoted as α⊆
β, if there exist integers 1≤ j1 < j2 <…< jn ≤m
such that a1⊆ bj1, a2⊆ bj2,…, an⊆ bjn

• β is a super sequence of α
– E.g.α=< (ab), d> and β=< (abc), (de)>

6

What Is Sequential Pattern Mining?

• Given a set of sequences and support
threshold, find the complete set of frequent
subsequences

A sequence database
A sequence : < (ef) (ab) (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence
of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a
sequential pattern

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

7

Challenges on Sequential Pattern
Mining
• A huge number of possible sequential patterns

are hidden in databases
• A mining algorithm should

– find the complete set of patterns, when
possible, satisfying the minimum support
(frequency) threshold

– be highly efficient, scalable, involving only a
small number of database scans

– be able to incorporate various kinds of user-
specific constraints

8

Studies on Sequential Pattern
Mining
• Concept introduction and an initial Apriori-like algorithm

– Agrawal & Srikant. Mining sequential patterns, [ICDE’95]

• Apriori-based method: GSP (Generalized Sequential Patterns: Srikant
& Agrawal [EDBT’96])

• Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.KDD’00;
Pei, et al. [ICDE’01])

• Vertical format-based mining: SPADE (Zaki [Machine Leanining’00])

• Constraint-based sequential pattern mining (SPIRIT: Garofalakis,
Rastogi, Shim [VLDB’99]; Pei, Han, Wang [CIKM’02])

• Mining closed sequential patterns: CloSpan (Yan, Han & Afshar
[SDM’03])

9

Methods for sequential pattern
mining
• Apriori-based Approaches

– GSP
– SPADE

• Pattern-Growth-based Approaches
– FreeSpan
– PrefixSpan

10

The Apriori Property of Sequential
Patterns
• A basic property: Apriori (Agrawal & Sirkant’94)

– If a sequence S is not frequent, then none of the
super-sequences of S is frequent

– E.g, <hb> is infrequent so do <hab> and
<(ah)b>

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID

Given support threshold
min_sup =2

11

GSP—Generalized Sequential Pattern
Mining
• GSP (Generalized Sequential Pattern) mining

algorithm
• Outline of the method

– Initially, every item in DB is a candidate of length-1
– for each level (i.e., sequences of length-k) do

• scan database to collect support count for each candidate
sequence

• generate candidate length-(k+1) sequences from length-k
frequent sequences using Apriori

– repeat until no frequent sequence or no candidate can
be found

• Major strength: Candidate pruning by Apriori

12

Finding Length-1 Sequential
Patterns

• Initial candidates:
– <a>, , <c>, <d>, <e>, <f>, <g>, <h>

• Scan database once, count support
for candidates

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID
min_sup =2

Cand Sup
<a> 3
 5
<c> 4
<d> 3
<e> 3
<f> 2
<g> 1
<h> 1

13

Generating Length-2 Candidates

<a> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
 <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

51 length-2
Candidates

Without Apriori
property,
8*8+8*7/2=92
candidates
Apriori prunes

44.57% candidates

14

Finding Length-2 Sequential
Patterns
• Scan database one more time, collect support

count for each length-2 candidate
• There are 19 length-2 candidates which pass

the minimum support threshold
– They are length-2 sequential patterns

15

The GSP Mining Process

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq.
pat.

2nd scan: 51 cand. 19 length-2 seq.
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 19 length-3 seq.
pat. 20 cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq.
pat.

5th scan: 1 cand. 1 length-5 seq.
pat.

Cand. cannot pass
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10
SequenceSeq. ID

min_sup =2

16

The GSP Algorithm
• Take sequences in form of <x> as length-1

candidates
• Scan database once, find F1, the set of length-1

sequential patterns
• Let k=1; while Fk is not empty do

– Form Ck+1, the set of length-(k+1) candidates from Fk;
– If Ck+1 is not empty, scan database once, find Fk+1, the

set of length-(k+1) sequential patterns
– Let k=k+1;

17

The GSP Algorithm
• Benefits from the Apriori pruning

– Reduces search space
• Bottlenecks

– Scans the database multiple times

– Generates a huge set of candidate sequences

There is a need for
more efficient mining

methods

18

The SPADE Algorithm

• SPADE (Sequential PAttern Discovery using
Equivalent Class) developed by Zaki 2001

• A vertical format sequential pattern mining
method

• A sequence database is mapped to a large set
of Item: <SID, EID>

• Sequential pattern mining is performed by
– growing the subsequences (patterns) one item at a

time by Apriori candidate generation

19

The SPADE Algorithm

20

Bottlenecks of Candidate
Generate-and-test
• A huge set of candidates generated.

– Especially 2-item candidate sequence.

• Multiple Scans of database in mining.
– The length of each candidate grows by one at each

database scan.

• Inefficient for mining long sequential patterns.
– A long pattern grow up from short patterns

– An exponential number of short candidates

21

PrefixSpan (Prefix-Projected
Sequential Pattern Growth)
• PrefixSpan

– Projection-based
– But only prefix-based projection: less projections and

quickly shrinking sequences
• J.Pei, J.Han,… PrefixSpan : Mining sequential

patterns efficiently by prefix-projected pattern
growth. ICDE’01.

22

Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes
of sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>

23

Mining Sequential Patterns by
Prefix Projections

• Step 1: find length-1 sequential patterns
– <a>, , <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of
seq. pat. can be partitioned into 6 subsets:
– The ones having prefix <a>;
– The ones having prefix ;
– …
– The ones having prefix <f>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

24

Finding Seq. Patterns with Prefix
<a>

• Only need to consider projections w.r.t. <a>
– <a>-projected database: <(abc)(ac)d(cf)>,

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>:
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
– Further partition into 6 subsets

• Having prefix <aa>;
• …
• Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

25

Completeness of PrefixSpan
SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

SDB
Length-1 sequential patterns
<a>, , <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

-projected database …
Having prefix

Having prefix <c>, …, <f>

… …

26

The Algorithm of PrefixSpan
• Input: A sequence database S, and the

minimum support threshold min_sup
• Output: The complete set of sequential patterns
• Method: Call PrefixSpan(<>,0,S)
• Subroutine PrefixSpan(α, l, S|α)
• Parameters:

– α: sequential pattern,
– l: the length of α;
– S|α: the α-projected database, if α ≠<>; otherwise; the

sequence database S

27

The Algorithm of PrefixSpan(2)
• Method
1. Scan S|α once, find the set of frequent items b

such that:
a) b can be assembled to the last element of α to form

a sequential pattern; or
b) can be appended to α to form a sequential

pattern.
2. For each frequent item b, append it to α to form

a sequential pattern α’, and output α’;
3. For each α’, construct α’-projected database

S|α’, and call PrefixSpan(α’, l+1, S|α’).

28

Efficiency of PrefixSpan

• No candidate sequence needs to be

generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing

projected databases
– Can be improved by bi-level projections

29

Optimization in PrefixSpan
• Single level vs. bi-level projection

– Bi-level projection with 3-way checking may reduce
the number and size of projected databases

• Physical projection vs. pseudo-projection
– Pseudo-projection may reduce the effort of projection

when the projected database fits in main memory
• Parallel projection vs. partition projection

– Partition projection may avoid the blowup of disk
space

30

Scaling Up by Bi-Level Projection

• Partition search space based on length-2
sequential patterns

• Only form projected databases and pursue
recursive mining over bi-level projected
databases

31

Speed-up by Pseudo-projection
• Major cost of PrefixSpan: projection

– Postfixes of sequences often appear
repeatedly in recursive projected databases

• When (projected) database can be held
in main memory, use pointers to form
projections
– Pointer to the sequence

– Offset of the postfix

s=<a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>
s|<a>: (, 2)

s|<ab>: (, 4)

32

Pseudo-Projection vs. Physical
Projection
• Pseudo-projection avoids physically copying

postfixes
– Efficient in running time and space when

database can be held in main memory

• However, it is not efficient when database
cannot fit in main memory
– Disk-based random accessing is very costly

• Suggested Approach:
– Integration of physical and pseudo-projection
– Swapping to pseudo-projection when the data set

fits in memory

33

Performance on Data Set
C10T8S8I8

34

Performance on Data Set Gazelle

35

Effect of Pseudo-Projection

36

CloSpan: Mining Closed Sequential
Patterns

• A closed sequential pattern s:
there exists no superpattern s’
such that s’ כ s, and s’ and s
have the same support

• Motivation: reduces the
number of (redundant)
patterns but attains the same
expressive power

• Using Backward Subpattern
and Backward Superpattern
pruning to prune redundant
search space

37

CloSpan: Performance Comparison
with PrefixSpan

38

Constraints for Seq.-Pattern Mining

• Item constraint
– Find web log patterns only about online-bookstores

• Length constraint
– Find patterns having at least 20 items

• Super pattern constraint
– Find super patterns of “PC �digital camera”

• Aggregate constraint
– Find patterns that the average price of items is over $100

39

More Constraints
• Regular expression constraint

– Find patterns “starting from Yahoo homepage, search
for hotels in Washington DC area”

– Yahootravel(WashingtonDC|DC)(hotel|motel|lodging)
• Duration constraint

– Find patterns about ±24 hours of a shooting
• Gap constraint

– Find purchasing patterns such that “the gap between
each consecutive purchases is less than 1 month”

40

From Sequential Patterns to Structured
Patterns

• Sets, sequences, trees, graphs, and other
structures
– Transaction DB: Sets of items

• {{i1, i2, …, im}, …}

– Seq. DB: Sequences of sets:
• {<{i1, i2}, …, {im, in, ik}>, …}

– Sets of Sequences:
• {{<i1, i2>, …, <im, in, ik>}, …}

– Sets of trees: {t1, t2, …, tn}
– Sets of graphs (mining for frequent subgraphs):

• {g1, g2, …, gn}

• Mining structured patterns in XML documents,
bio-chemical structures, etc.

41

Episodes and Episode Pattern
Mining

• Other methods for specifying the kinds of
patterns
– Serial episodes: A ® B

– Parallel episodes: A & B
– Regular expressions: (A | B)C*(D ® E)

• Methods for episode pattern mining
– Variations of Apriori-like algorithms, e.g., GSP

– Database projection-based pattern growth
• Similar to the frequent pattern growth without candidate

generation

42

Periodicity Analysis
• Periodicity is everywhere: tides, seasons, daily power

consumption, etc.
• Full periodicity

– Every point in time contributes (precisely or approximately) to the
periodicity

• Partial periodicit: A more general notion
– Only some segments contribute to the periodicity

• Jim reads NY Times 7:00-7:30 am every week day

• Cyclic association rules
– Associations which form cycles

• Methods
– Full periodicity: FFT, other statistical analysis methods
– Partial and cyclic periodicity: Variations of Apriori-like mining

methods

43

Summary
• Sequential Pattern Mining is useful in many

application, e.g. weblog analysis, financial
market prediction, BioInformatics, etc.

• It is similar to the frequent itemsets mining, but
with consideration of ordering.

• We have looked at different approaches that are
descendants from two popular algorithms in
mining frequent itemsets
– Candidates Generation: AprioriAll and GSP
– Pattern Growth: FreeSpan and PrefixSpan

