Sequential Pattern Mining

Outline

What is sequence database and sequential
pattern mining

Methods for sequential pattern mining
Constraint-based sequential pattern mining
Periodicity analysis for sequence data

Sequence Databases

* A sequence database consists of ordered elements
or events

* Transaction databases vs. sequence databases

A transaction database A sequence database
TID itemsets SID sequences
10 a, b, d 10 <a(abc)(ac)d(cf)>
20 a, c,d 20 <(ad)c(bc)(ae)>
30 a, d, e 30 <(ef)(ab)(df)cb>
40 b, e, f 40 <eg(af)cbc>

Applications

* Applications of sequential pattern mining

— Customer shopping sequences:

» First buy computer, then CD-ROM, and then digital camera,
within 3 months.

— Medical treatments, natural disasters (e.g., earthquakes),
science & eng. processes, stocks and markets, etc.

— Telephone calling patterns, Weblog click streams
— DNA sequences and gene structures

Subsequence vs. super sequence

* A sequence is an ordered list of events,
denoted<e,;e,...g>

« Given two sequences a=< as a, ... a, > and =<
bib,...b,>

* ais called a subsequence of 3, denoted as a<
B, if there exist integers 1<, <j, <...<], <m
such thata; & by, a; & by,...,a, & by,

* [3is a super sequence of a
— E.g.a=<(ab), d> and =< (abc), (de)>

What Is Sequential Pattern Mining?

Given a set of sequences and support

threshold, find the complete set of frequent
subsequences

A sequence database

A sequence : <|(ef)|(ab)||(df) c|b|>

An element may contain a set of items.

Items within an element are unordered

and we list them alphabetically._

<a(bc)dc> is a subsequence

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a
sequential pattern

Challenges on Sequential Pattern

Mining

* A huge number of possible sequential patterns
are hidden in databases

* A mining algorithm should

— find the complete set of patterns, when
possible, satisfying the minimum support
(frequency) threshold

— be highly efficient, scalable, involving only a
small number of database scans

— be able to incorporate various kinds of user-
specific constraints

Studies on Sequential Pattern
Mining

Concept introduction and an initial Apriori-like algorithm
— Agrawal & Srikant. Mining sequential patterns, [I[CDE'95]

Apriori-based method: GSP (Generalized Sequential Patterns: Srikant
& Agrawal [EDBT’96])

Pattern-growth methods: FreeSpan & PrefixSpan (Han et al. KDD'0O;
Pei, et al. [ICDE’01])

Vertical format-based mining: SPADE (Zaki [Machine Leanining’00])

Constraint-based sequential pattern mining (SPIRIT: Garofalakis,
Rastogi, Shim [VLDB’99]; Pei, Han, Wang [CIKM'02])

Mining closed sequential patterns: CloSpan (Yan, Han & Afshar
[SDM’03])

Methods for sequential pattern
mining
« Apriori-based Approaches

~ GSP
— SPADE

« Pattern-Growth-based Approaches
— FreeSpan
— PrefixSpan

The Apriori Property of Sequential

Patterns

A basic property: Apriori (Agrawal & Sirkant'94)

— If a sequence S is not frequent, then none of the
super-sequences of S is frequent

— E.g, <hb>is infrequent—-so do <hab> and

<(ah)b>

Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

Given support threshold
min_sup =2

10

GSP—Generalized Sequential Pattern
Mining

GSP (Generalized Sequential Pattern) mining
algorithm

Outline of the method

— Initially, every item in DB is a candidate of length-1

— for each level (i.e., sequences of length-k) do

» scan database to collect support count for each candidate
sequence

» generate candidate length-(k+1) sequences from length-k
frequent sequences using Apriori

— repeat until no frequent sequence or no candidate can
be found

« Major strength: Candidate pruning by Apriori 11

Finding Length-1 Sequential

Patterns

* |nitial candidates:

— <a>, , <c>, <d>, <e>, <f> <g>, <h>

« Scan database once, count support

for candidates

Cand

)
c
©

min_sup =2

Seq. ID Sequence
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
20 <a(bd)bcb(ade)>

= =2 N LW WO W

12

Generating Length-2 Candidates

<g> <c> <d> <e> <f>
<a>

<c>
<d>
<e>
<f>
<a> | | <c> <d> <e> | =P Without Apriori
<a>
= property,
8*8+8*7/2=92
:;‘: candidates
<e> Apriori prunes
<> 44.57% candidat¥s

Finding Length-2 Sequential
Patterns

« Scan database one more time, collect support
count for each length-2 candidate

 There are 19 length-2 candidates which pass
the minimum support threshold
— They are length-2 sequential patterns

14

The GSP Mining Process

5thscan: 1 cand. 1 length-5seq. <(bd)cba> Cand. cannot pass
pat. sup. threshold

Cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq. <abba> <(bd)bc> ...
pat.

3" scan: 46 cand. 19 length-3 seq. ahphs <aab> <aba> <baa> <bab> ..
pat. 20 cand. not in DB at all

2" scan: 51 cand. 19 length-2 seq.
pat. 10 cand. not in DB at all

1st scan: 8 cand. 6 length-1 seq.

<aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)>

<a> <c> <d> <e> <f> <g> <h>

pat.
Seq. ID Sequence
min_sup =2 10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d> 5
50 <a(bd)bcb(ade)>

The GSP Algorithm

« Take sequences in form of <x> as length-1
candidates

e Scan database once, find F4, the set of length-1
sequential patterns

* Let k=1; while F, is not empty do
— Form C,, 4, the set of length-(k+1) candidates from F,;

— If C,,4 is not empty, scan database once, find F,.4, the
set of length-(k+1) sequential patterns

— Let k=k+1;

16

The GSP Algorithm

« Benefits from the Apriori pruning
— Reduces search space

* Bottlenecks
— Scans the database multiple times

— Generates a huge set of candidate sequences

There is a need for
more efficient mining

methods

17

The SPADE Algorithm

« SPADE (Sequential PAttern Discovery using
Equivalent Class) developed by Zaki 2001

* A vertical format sequential pattern mining
method

A sequence database is mapped to a large set
of Item: <SID, EID>

« Sequential pattern mining is performed by

— growing the subsequences (patterns) one item at a

time by Apriori candidate generation "

The SPADE Algorithm

SID

EID

[tems

abc

| s S] | O W o Ol W DO N DN DO | | |]

O O i | WD | O = O DN | | WO DN | U | W N

a b
SID EID SID EID
1 1 1 2
1 2 2 3
1 3 2 2
2 1 3 5
2 4 4 5
3 2
4 3
ab ba
SID EID (a) EID(b) SID EID (b) EID(a)
1 1 2 i 2 3
2 1 3 2 3 4
3 2 5
4 3 5
aba
SID EID (a) EID(b) EID(a)
1 1 2 3
2 1 3 4

Bottlenecks of Candidate
Generate-and-test

* A huge set of candidates generated.

— Especially 2-item candidate sequence.

* Multiple Scans of database in mining.

— The length of each candidate grows by one at each
database scan.

* |nefficient for mining long sequential patterns.

— Along pattern grow up from short patterns

— An exponential number of short candidates

20

PrefixSpan (Prefix-Projected
Sequential Pattern Growth)

PrefixSpan

— Projection-based

— But only prefix-based projection: less projections and
quickly shrinking sequences

J.Pei, J.Han,... PrefixSpan : Mining sequential

patterns efficiently by prefix-projected pattern

growth. ICDE’01.

21

Prefix and Suffix (Projection)

¢ <a>, <aa>, <a(ab)> and <a(abc)> are prefixes

of sequence <a(abc)(ac)d(cf)>

« Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)
<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>

Mining Sequential Patterns by

Prefix Projections

« Step 1: find length-1 sequential patterns

— <a>, , <c>, <d>, <e>, <f>

« Step 2: divide search space. The complete set of
sed. pat. can be partitioned into 6 subsets:

— The ones having prefix <a>;
— The ones having prefix ;

— The ones having prefix <f>

SID sequence
10 | <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

23

Finding Seq. Patterns with Prefix

<q>

* Only need to consider projections w.r.t. <a>

— <a>-projected database: <(abc)(ac)d(cf)>,

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

* Find all the length-2 seq. pat. Having prefix <a>:

<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>

— Further partition into 6 subsets
* Having prefix <aa>;

« Having prefix <af>

SID sequence
10 | <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

24

Completeness of PrefixSpan

SDB

SID | sequence Length-1 sequential patterns

10 | <a(@boffc)de)> | <a> , <c>, <d>, <e>, <f>
20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>
40 <eg(af)cbc_>

Having prefix <a> Having prefix <c>, ..., <f>
Having prefix

<a>-projected database -projected database

<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,

<ac>, <ad>, <af>

Having 74(<aa>\Hawreﬁx <af>

<aa>-proj. db

<af>-proj. db

25

The Algorithm of PrefixSpan

Input: A sequence database S, and the
minimum support threshold min_sup

Output: The complete set of sequential patterns
Method: Call PrefixSpan(<>,0,S)
Subroutine PrefixSpan(a, |, S|a)

Parameters:

— a: sequential pattern,
— |: the length of q;

— S|a: the a-projected database, if a #<>; otherwise; the
sequence database S

26

The Algorithm of PrefixSpan(2)

e Method

1. Scan S|a once, find the set of frequent items b
such that:
a) b can be assembled to the last element of a to form
a sequential pattern; or
b) can be appended to a to form a sequential
pattern.

2. For each frequentitem b, append it to a to form
a sequential pattern a’, and output o’;

3. For each a’, construct a’-projected database
S|a’, and call PrefixSpan(a’, [+1, S|a’).

27

Efficiency of PrefixSpan

* No candidate sequence needs to be

generated
* Projected databases keep shrinking

* Major cost of PrefixSpan: constructing

projected databases

— Can be improved by bi-level projections

28

Optimization in PrefixSpan

« Single level vs. bi-level projection

— Bi-level projection with 3-way checking may reduce
the number and size of projected databases

* Physical projection vs. pseudo-projection

— Pseudo-projection may reduce the effort of projection
when the projected database fits in main memory

« Parallel projection vs. partition projection

— Partition projection may avoid the blowup of disk
space

29

Scaling Up by Bi-Level Projection

» Partition search space based on length-2
sequential patterns

* Only form projected databases and pursue
recursive mining over bi-level projected

databases

30

Speed-up by Pseudo-projection

« Major cost of PrefixSpan: projection

— Postfixes of sequences often appear
repeatedly in recursive projected databases

 When (projected) database can be held
IN Mmain memory, use pointers to form

projections s=<a(abc)(ac)d(cf)>
. / l <a>

— Pointer to the sequence

s|<a>: (4, 2) <(abc)(ac)d(cf)>

— Offset of the postfix
l <ab>

s|<ab>: (/,4) <(_c)(ac)d(cf)>

Pseudo-Projection vs. Physical
Projection

* Pseudo-projection avoids physically copying
postfixes

— Efficient in running time and space when
database can be held in main memory

 However, it is not efficient when database
cannot fit in main memory
— Disk-based random accessing is very costly

« Suggested Approach:
— Integration of physical and pseudo-projection

— Swapping to pseudo-projection when the data set
fits in memory

32

Performance on Data Set

Runtime (in seconds)

1 OTRQR 18
1000 & | | | E
: PrefixSpan —+—]
SPADE ---%---
- FreeSpan ---%---
.‘.. E._.‘.
100 BN T E
10 E
1
0.5 1 1.5 2 23 3

Support threshold (in %)

Performance on Data Set Gazelle

1000 g I I I I I |
F % PrefixSpan -¢---
A Y
SN Spade -+--
S FreeSpan -BE---
hY
= 100 o \\\\ GSP -X--
& N
"8 - \\ \\ \\\
= \\ \\ »
O XK
8 \\\ \\ \\\‘*-
@ RN ~ \X‘\
= S h “*\.‘ .
A 10 % B ~ye
> No e Bt = S S
E \\ \\\. __--E__‘::“‘\
-S \\ i \\\ ‘“'E='=—;_____
= —__
E \\\\ _+-h--‘-"'-_
1 b TSses e S Anmae
o
—~————__
0.1 I I I I I I

0.015 0.02 0.025 0.03 0.035 004 0.045 0.05
Support threshold(in %)

Runtime (in seconds)

Effect of Pseudo-Projection

312 = I T
Preflepan (Wlth pseudo-proj] —+—
) PrefixSpan (w.o. pseudo-proj) =---X---
SPADE ---%--
256 -
g |
128 el
64 =
_¥ _______
I
2 | | | I —— =X
0.25 0.3 0.35 0.4 0.45 0.5

Support threshold (in %)

CloSpan: Mining Closed Sequential

Patterns

* Aclosed sequential pattern s:
there exists no superpattern s’
such that s’ > s,and s’and s
have the same support

—>

 Motivation: reduces the
number of (redundant)

patterns but attains the same
expressive power
« Using Backward Subpattern

and Backward Superpattern
pruning to prune redundant
search space

CloSpan: Performance Comparison

1000

running time(sec)

100

with PrefixSpan

A\

—8— Prefix—-Span

—e— CcSpan

—— CommonPrefix

13

14

15 16 17 18
average number of transactions per customer

19

Constraints for Seq.-Pattern Mining

Item constraint
— Find web log patterns only about online-bookstores

Length constraint

— Find patterns having at least 20 items
Super pattern constraint

— Find super patterns of “PC digital camera”

Aggregate constraint
— Find patterns that the average price of items is over $100

38

More Constraints

* Regular expression constraint

— Find patterns “starting from Yahoo homepage, search
for hotels in Washington DC area”

— Yahootravel(WashingtonDC|DC)(hotel|motel|lodging)

 Duration constraint
— Find patterns about =24 hours of a shooting

» Gap constraint

— Find purchasing patterns such that “the gap between
each consecutive purchases is less than 1 month”

39

From Sequential Patterns to Structured
Patterns

«~Sets, sequences, trees, graphs, and other
structures

— Transaction DB: Sets of items
o {{ig, iy, ...y}, --2}
— Seq. DB: Sequences of sets:
o {<{iy, b}, ..., {i, 1, i3>, ..}
— Sets of Sequences:
o {{<iy, x>, ory <imy iy 1> o0}
— Sets of trees: {t, t,, ..., t.}
— Sets of graphs (mining for frequent subgraphs):
* {91, 92, -, G0}
* Mining structured patterns in XML documents, 4o

hincrhamieceal ectriictiirae ote

Episodes and Episode Pattern
Mining

« Other methods for specitying the kinds of
patterns
— Serial episodes: A & B
— Parallel episodes: A& B
— Regular expressions: (A | B)C*(D @ E)
* Methods for episode pattern mining
— Variations of Apriori-like algorithms, e.g., GSP

— Database projection-based pattern growth

« Similar to the frequent pattern growth without candidate
generation

41

Periodicity Analysis

Periodicity is everywhere: tides, seasons, daily power
consumption, etc.
Full periodicity
— Every point in time contributes (precisely or approximately) to the
periodicity
Partial periodicit: A more general notion
— Only some segments contribute to the periodicity
« Jim reads NY Times 7:00-7:30 am every week day
Cyclic association rules
— Associations which form cycles

Methods

— Full periodicity: FFT, other statistical analysis methods
— Partial and cyclic periodicity: Variations of Apriori-like mining
methods 42

Summary

« Sequential Pattern Mining is useful in many
application, e.g. weblog analysis, financial
market prediction, Biolnformatics, etc.

* ltis similar to the frequent itemsets mining, but
with consideration of ordering.

 We have looked at different approaches that are
descendants from two popular algorithms in
mining frequentitemsets
— Candidates Generation: AprioriAll and GSP
— Pattern Growth: FreeSpan and PrefixSpan

43

