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Sequential Pattern Mining
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Outline
• What is sequence database and sequential 

pattern mining
• Methods for sequential pattern mining
• Constraint-based sequential pattern mining
• Periodicity analysis for sequence data
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Sequence Databases

• A sequence database consists of ordered elements 
or events

• Transaction databases vs. sequence databases

A sequence database
SID sequences
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

A transaction database
TID itemsets
10 a, b, d

20 a, c, d

30 a, d, e

40 b, e, f
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Applications

• Applications of sequential pattern mining
– Customer shopping sequences:

• First buy computer, then CD-ROM, and then digital camera, 
within 3 months.

– Medical treatments, natural disasters (e.g., earthquakes), 
science & eng. processes, stocks and markets, etc.

– Telephone calling patterns, Weblog click streams
– DNA sequences and gene structures
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Subsequence vs. super sequence

• A sequence is an ordered list of events, 
denoted < e1 e2 … el >

• Given two sequences α=< a1 a2 … an > and β=< 
b1 b2 … bm >

• α is called a subsequence of β, denoted as α⊆
β, if there exist integers 1≤ j1 < j2 <…< jn ≤m 
such that a1⊆ bj1, a2⊆ bj2,…, an⊆ bjn

• β is a super sequence of α
– E.g.α=< (ab), d> and β=< (abc), (de)> 
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What Is Sequential Pattern Mining?

• Given a set of sequences and support 
threshold, find the complete set of frequent 
subsequences

A sequence database
A sequence : < (ef) (ab)  (df) c b >

An element may contain a set of items.
Items within an element are unordered
and we list them alphabetically.

<a(bc)dc> is a subsequence 
of <a(abc)(ac)d(cf)>

Given support threshold min_sup =2, <(ab)c> is a 
sequential pattern

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Challenges on Sequential Pattern 
Mining
• A huge number of possible sequential patterns 

are hidden in databases
• A mining algorithm should 

– find the complete set of patterns, when 
possible, satisfying the minimum support 
(frequency) threshold

– be highly efficient, scalable, involving only a 
small  number of database scans

– be able to incorporate various kinds of user-
specific constraints 
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Studies on Sequential Pattern 
Mining
• Concept introduction and an initial Apriori-like algorithm

– Agrawal & Srikant. Mining sequential patterns, [ICDE’95]

• Apriori-based method: GSP (Generalized Sequential Patterns: Srikant 
&  Agrawal [EDBT’96])

• Pattern-growth methods: FreeSpan & PrefixSpan (Han et al.KDD’00; 
Pei, et al. [ICDE’01])

• Vertical format-based mining: SPADE (Zaki [Machine Leanining’00])

• Constraint-based sequential pattern mining (SPIRIT: Garofalakis, 
Rastogi, Shim [VLDB’99]; Pei, Han, Wang [CIKM’02])

• Mining closed sequential patterns: CloSpan (Yan, Han & Afshar 
[SDM’03])
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Methods for sequential pattern 
mining
• Apriori-based Approaches

– GSP
– SPADE

• Pattern-Growth-based Approaches
– FreeSpan
– PrefixSpan



10

The Apriori Property of Sequential 
Patterns
• A basic property: Apriori (Agrawal & Sirkant’94) 

– If a sequence S is not frequent, then none of the 
super-sequences of S is frequent

– E.g, <hb> is infrequent   so do <hab> and 
<(ah)b>

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID

Given support threshold
min_sup =2 
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GSP—Generalized Sequential Pattern 
Mining
• GSP (Generalized Sequential Pattern) mining 

algorithm 
• Outline of the method

– Initially, every item in DB is a candidate of length-1
– for each level (i.e., sequences of length-k) do

• scan database to collect support count for each candidate 
sequence

• generate candidate length-(k+1) sequences from length-k 
frequent sequences using Apriori

– repeat until no frequent sequence or no candidate can 
be found

• Major strength: Candidate pruning by Apriori
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Finding Length-1 Sequential 
Patterns

• Initial candidates: 
– <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

• Scan database once, count support 
for candidates

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10

SequenceSeq. ID
min_sup =2 

Cand Sup
<a> 3
<b> 5
<c> 4
<d> 3
<e> 3
<f> 2
<g> 1
<h> 1
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Generating Length-2 Candidates

<a> <b> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

51 length-2
Candidates

Without Apriori 
property,
8*8+8*7/2=92 
candidates
Apriori prunes 

44.57% candidates
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Finding Length-2 Sequential 
Patterns
• Scan database one more time, collect support 

count for each length-2 candidate
• There are 19 length-2 candidates which pass 

the minimum support threshold
– They are length-2 sequential patterns
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The GSP Mining Process

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. 
pat.

2nd scan: 51 cand. 19 length-2 seq. 
pat. 10 cand. not in DB at all

3rd scan: 46 cand. 19 length-3 seq. 
pat. 20 cand. not in DB at all

4th scan: 8 cand. 6 length-4 seq. 
pat. 

5th scan: 1 cand. 1 length-5 seq. 
pat. 

Cand. cannot pass 
sup. threshold

Cand. not in DB at all

<a(bd)bcb(ade)>50
<(be)(ce)d>40

<(ah)(bf)abf>30
<(bf)(ce)b(fg)>20
<(bd)cb(ac)>10
SequenceSeq. ID

min_sup =2 
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The GSP Algorithm
• Take sequences in form of <x> as length-1 

candidates
• Scan database once, find F1, the set of length-1 

sequential patterns
• Let k=1; while Fk is not empty do

– Form Ck+1, the set of length-(k+1) candidates from Fk;
– If Ck+1 is not empty, scan database once, find Fk+1, the 

set of length-(k+1) sequential patterns
– Let k=k+1;
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The GSP Algorithm
• Benefits from the Apriori pruning

– Reduces search space
• Bottlenecks

– Scans the database multiple times 

– Generates a huge set of candidate sequences

There is a need for 
more efficient mining 

methods
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The SPADE Algorithm

• SPADE (Sequential PAttern Discovery using 
Equivalent Class) developed by Zaki 2001

• A vertical format sequential pattern mining 
method

• A sequence database is mapped to a large set 
of Item: <SID, EID>

• Sequential pattern mining is performed by 
– growing the subsequences (patterns) one item at a 

time by Apriori candidate generation
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The SPADE Algorithm
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Bottlenecks of Candidate 
Generate-and-test
• A huge set of candidates generated.

– Especially 2-item candidate sequence.

• Multiple Scans of database in mining.
– The length of each candidate grows by one at each 

database scan.

• Inefficient for mining long sequential patterns.
– A long pattern grow up from short patterns

– An exponential number of short candidates
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PrefixSpan (Prefix-Projected 
Sequential Pattern Growth)
• PrefixSpan

– Projection-based 
– But only prefix-based projection: less projections and 

quickly shrinking sequences
• J.Pei, J.Han,… PrefixSpan : Mining sequential 

patterns efficiently by prefix-projected pattern 
growth. ICDE’01.
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Prefix and Suffix (Projection)

• <a>, <aa>, <a(ab)> and <a(abc)> are prefixes
of sequence <a(abc)(ac)d(cf)>

• Given sequence <a(abc)(ac)d(cf)>

Prefix Suffix (Prefix-Based Projection)

<a> <(abc)(ac)d(cf)>
<aa> <(_bc)(ac)d(cf)>
<ab> <(_c)(ac)d(cf)>
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Mining Sequential Patterns by 
Prefix Projections

• Step 1: find length-1 sequential patterns
– <a>, <b>, <c>, <d>, <e>, <f>

• Step 2: divide search space. The complete set of 
seq. pat. can be partitioned into 6 subsets:
– The ones having prefix <a>;
– The ones having prefix <b>;
– …
– The ones having prefix <f>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Finding Seq. Patterns with Prefix 
<a>

• Only need to consider projections w.r.t. <a>
– <a>-projected database: <(abc)(ac)d(cf)>, 

<(_d)c(bc)(ae)>, <(_b)(df)cb>, <(_f)cbc>

• Find all the length-2 seq. pat. Having prefix <a>: 
<aa>, <ab>, <(ab)>, <ac>, <ad>, <af>
– Further partition into 6 subsets

• Having prefix <aa>;
• …
• Having prefix <af>

SID sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>
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Completeness of PrefixSpan
SID sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

SDB
Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

<a>-projected database
<(abc)(ac)d(cf)>
<(_d)c(bc)(ae)>
<(_b)(df)cb>
<(_f)cbc>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

Having prefix <a>

Having prefix <aa>

<aa>-proj. db … <af>-proj. db

Having prefix <af>

<b>-projected database …
Having prefix <b>

Having prefix <c>, …, <f>

… …
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The Algorithm of PrefixSpan
• Input: A sequence database S, and the 

minimum support threshold min_sup
• Output: The complete set of sequential patterns
• Method: Call PrefixSpan(<>,0,S)
• Subroutine PrefixSpan(α, l, S|α)
• Parameters:

– α: sequential pattern,
– l: the length of α;
– S|α: the α-projected database, if α ≠<>; otherwise; the 

sequence database S
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The Algorithm of PrefixSpan(2)
• Method
1. Scan S|α once, find the set of frequent items b 

such that:
a) b can be assembled to the last element of α to form    

a sequential pattern; or
b) <b> can be appended to α to form a sequential 

pattern.
2. For each frequent item b, append it to α to form 

a sequential pattern α’, and output α’;
3. For each α’, construct α’-projected database 

S|α’, and call PrefixSpan(α’, l+1, S|α’).
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Efficiency of PrefixSpan

• No candidate sequence needs to be 

generated

• Projected databases keep shrinking

• Major cost of PrefixSpan: constructing 

projected databases
– Can be improved by bi-level projections
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Optimization in PrefixSpan 
• Single level vs. bi-level projection 

– Bi-level projection with 3-way checking may reduce 
the number and size of projected databases

• Physical projection vs. pseudo-projection 
– Pseudo-projection may reduce the effort of projection 

when the projected database fits in main memory
• Parallel projection vs. partition projection

– Partition projection may avoid the blowup of disk 
space
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Scaling Up by Bi-Level Projection

• Partition search space based on length-2 
sequential patterns

• Only form projected databases and pursue 
recursive mining over bi-level projected 
databases
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Speed-up by Pseudo-projection
• Major cost of PrefixSpan: projection

– Postfixes of sequences often appear 
repeatedly in recursive projected databases

• When (projected) database can be held 
in main memory, use pointers to form 
projections
– Pointer to the sequence

– Offset of the postfix

s=<a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>
s|<a>: ( , 2)

s|<ab>: ( , 4)



32

Pseudo-Projection vs. Physical 
Projection
• Pseudo-projection avoids physically copying 

postfixes
– Efficient in running time and space when 

database can be held in main memory

• However, it is not efficient when database 
cannot fit in main memory
– Disk-based random accessing is very costly

• Suggested Approach:
– Integration of physical and pseudo-projection
– Swapping to pseudo-projection when the data set 

fits in memory
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Performance on Data Set 
C10T8S8I8
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Performance on Data Set Gazelle
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Effect of Pseudo-Projection
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CloSpan: Mining Closed Sequential 
Patterns

• A closed sequential pattern s: 
there exists no superpattern s’
such that s’  כ s, and s’ and s
have the same support 

• Motivation: reduces the 
number of (redundant) 
patterns but attains the same 
expressive power

• Using Backward Subpattern 
and Backward Superpattern 
pruning to prune redundant 
search space
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CloSpan: Performance Comparison 
with PrefixSpan
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Constraints for Seq.-Pattern Mining

• Item constraint
– Find web log patterns only about online-bookstores

• Length constraint
– Find patterns having at least 20 items

• Super pattern constraint
– Find super patterns of “PC �digital camera”

• Aggregate constraint
– Find patterns that the average price of items is over $100
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More Constraints 
• Regular expression constraint

– Find patterns “starting from Yahoo homepage, search 
for hotels in Washington DC area”

– Yahootravel(WashingtonDC|DC)(hotel|motel|lodging)
• Duration constraint

– Find patterns about ±24 hours of a shooting
• Gap constraint

– Find purchasing patterns such that “the gap between 
each consecutive purchases is less than 1 month”
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From Sequential Patterns to Structured 
Patterns

• Sets, sequences, trees, graphs, and other 
structures 
– Transaction DB: Sets of items

• {{i1, i2, …, im}, …}

– Seq. DB: Sequences of sets:
• {<{i1, i2}, …, {im, in, ik}>, …}

– Sets of Sequences: 
• {{<i1, i2>, …, <im, in, ik>}, …}

– Sets of trees: {t1, t2, …, tn}
– Sets of graphs (mining for frequent subgraphs): 

• {g1, g2, …, gn}

• Mining structured patterns in XML documents, 
bio-chemical structures, etc.
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Episodes and Episode Pattern 
Mining

• Other methods for specifying the kinds of 
patterns
– Serial episodes: A ® B

– Parallel episodes: A & B
– Regular expressions: (A | B)C*(D ® E)

• Methods for episode pattern mining
– Variations of Apriori-like algorithms, e.g., GSP

– Database projection-based pattern growth
• Similar to the frequent pattern growth without candidate 

generation
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Periodicity Analysis
• Periodicity is everywhere: tides, seasons, daily power 

consumption, etc.
• Full periodicity

– Every point in time contributes (precisely or approximately) to the 
periodicity

• Partial periodicit: A more general notion
– Only some segments contribute to the periodicity

• Jim reads NY Times 7:00-7:30 am every week day

• Cyclic association rules
– Associations which form cycles

• Methods
– Full periodicity: FFT, other statistical analysis methods
– Partial and cyclic periodicity: Variations of Apriori-like mining 

methods
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Summary
• Sequential Pattern Mining is useful in many 

application, e.g. weblog analysis, financial 
market prediction, BioInformatics, etc.

• It is similar to the frequent itemsets mining, but 
with consideration of ordering.

• We have looked at different approaches that are 
descendants from two popular algorithms in 
mining frequent itemsets
– Candidates Generation: AprioriAll and GSP
– Pattern Growth: FreeSpan and PrefixSpan


