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Bayesian	Decision	Theory

• Design	classifiers	to	recommend	decisions that	
minimize	some	total	expected	”risk”.
– The	simplest	risk is	the	classification	error	(i.e.,	costs	
are	equal).

– Typically,	the	risk includes	the	cost associated	with	
different	decisions.



Terminology	

• State	of	nature	ω (random	variable):	
– e.g.,	ω1 for	sea	bass,	ω2 for	salmon

• Probabilities	P(ω1) and	P(ω2) (priors):
– e.g.,	prior	knowledge	of	how	likely	is	to	get	a	sea	bass	
or	a	salmon

• Probability	density	function	p(x)	(evidence):	
– e.g.,	how	frequently	we	will	measure	a	pattern	with	
feature	value	x (e.g.,	x corresponds	to	lightness)	



Terminology	(cont’d)

• Conditional	probability	density	p(x/ωj) (likelihood)	:
– e.g.,	how	frequently	we	will	measure	a	pattern	with	
feature	value	x given	that	the	pattern	belongs	to	class	ωj

e.g., lightness distributions
between salmon/sea-bass
populations



Terminology	(cont’d)

• Conditional	probability	P(ωj	/x)	(posterior)	:
– e.g.,	the	probability	that	the	fish	belongs	to	
class	ωj given	measurement	x.



Decision	Rule	Using	Prior	
Probabilities

Decide	ω1 if P(ω1) >	P(ω2); otherwise	decide ω2

or P(error)	=	min[P(ω1),	P(ω2)]

• Favours		the	most	likely	class.
• This	rule	will	be	making	the	same	decision	all	times.

– i.e.,	optimum	if	no	other	information	is	available
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Decision	Rule	Using	Conditional	
Probabilities

• Using	Bayes’	rule,	the	posterior	probability	of	category	ωj
given	measurement	x	is	given	by:

where																																																	(i.e.,	scale	factor	– sum	of	probs	=	1)

Decide	ω1		if	P(ω1 /x)	>	P(ω2	/x); otherwise	decide		ω2
or

Decide		ω1	if		p(x/ω1)P(ω1)>p(x/ω2)P(ω2) otherwise	decide		ω2
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Decision	Rule	Using	
Conditional	pdf (cont’d)
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Probability	of	Error

• The	probability	of	error	is	defined	as:

or

• What	is	the	average	probability	error?

• The	Bayes	rule	is	optimum,	that	is,	it	minimizes	the	
average	probability	error!
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Where	do	Probabilities	Come	From?

• There	are	two	competitive	answers	to	this	
question:

(1) Relative	frequency (objective)	approach.
– Probabilities	can	only	come	from	experiments.

(2) Bayesian (subjective)	approach.
– Probabilities	may	reflect	degree	of	belief	and	can	be	
based	on	opinion.



Example	(objective	approach)

• Classify	cars	whether	they	are	more	or	less	than	$50K:
– Classes:		C1 if	price	>	$50K,			C2 if	price	<=	$50K	
– Features:	x,	the	heightof	a	car

• Use	the	Bayes’	rule	to	compute	the	posterior	probabilities:

• We	need	to	estimate		p(x/C1),	p(x/C2),	P(C1),	P(C2)
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Example	(cont’d)

• Collect	data
– Ask	drivers	how	much	their	car	was	and	measure	height.	

• Determine	prior probabilities	P(C1),	P(C2)
– e.g.,		1209	samples:	#C1=221		#C2=988
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Example	(cont’d)

• Determine	class	conditional	probabilities	(likelihood)
– Discretize	car	height	into	bins	and	use	normalized	histogram

( / )ip x C



Example	(cont’d)

• Calculate	the	posterior	probability for	each	bin:
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A	More	General	Theory

• Use	more	than	one	features.
• Allow	more	than	two	categories.
• Allow	actions other	than	classifying	the	input	to	
one	of	the	possible	categories	(e.g.,	rejection).

• Employ	a	more	general	error	function	(i.e.,	“risk”	
function)	by	associating	a	“cost”	(“loss”	function)	
with	each	error	(i.e.,	wrong	action).



Terminology

• Features	form	a	vector
• A	finite	set	of	c categories	ω1,	ω2,	…,	ωc

• Bayes	rule	(i.e.,	using	vector	notation):

• A	finite	set	of l	actions	α1,	α2,	…,	αl

• A	loss function	λ(αi /	ωj)
– the	costassociated	with	taking	action	αiwhen	the	correct	

classification	category	is	ωj
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Conditional	Risk	(or	Expected	Loss)	

• Suppose	we	observe	x	and	take	action αi

• Suppose	that	the	cost	associated	with	taking	
action	αi with	ωj being	the	correct	category	is				
λ(αi /	ωj)

• The	conditional	risk (or	expected	loss)	with	
taking	action	αi is:
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Overall	Risk

• Suppose	α(x)	is	a	general decision	rule	that	
determines	which	action	α1,	α2,	…,	αl		to	take	for	
every	x;	then	the	overall	risk	is	defined	as:

• The	optimum decision	rule	is	the	Bayes	rule	
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Overall	Risk	(cont’d)

• The	Bayes	decision	rule	minimizes	R by:
(i)		Computing	R(αi /x) for	every	αi given	an	x

(ii)	Choosing	the	action	αi	with	the	minimum	R(αi /x)

• The	resulting	minimum	overall	risk	is	called	Bayes	
risk and	is	the	best	(i.e.,	optimum)	performance	
that	can	be	achieved:	

* minR R=



Example:	Two-category	
classification

• Define
– α1:	decide	ω1	

– α2:	decide	ω2	

– λij		=	λ(αi /ωj)

• The	conditional	risks	are:
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Example:	Two-category	
classification	(cont’d)

• Minimum	risk	decision	rule:

or (i.e.,	using	likelihood	ratio)	

or

>

thresholdlikelihood ratio



Special	Case:
Zero-One	Loss	Function

• Assign	the	same	loss	to	all	errors:

• The	conditional	risk	corresponding	to	this	loss	function:



Special	Case:
Zero-One	Loss	Function	(cont’d)

• The	decision	rule	becomes:

• In	this	case,	the	overall	risk	is	the	average	probability	
error!
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Example
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Discriminant	Functions

• A	useful	way	to	represent	classifiers	is	through
discriminant functions gi(x),	i =	1,	.	.	.	,	c,	where	a	feature	
vector	x is	assigned	to	class	ωi if:

gi(x)	>	gj(x) for	all	 j i≠



Discriminants	for	Bayes	Classifier

• Assuming	a	general	loss	function:

gi(x)=-R(αi	/	x)

• Assuming	the	zero-one	loss	function:

gi(x)=P(ωi	/	x)



Discriminants	for	Bayes	Classifier	
(cont’d)

• Is	the	choice	of	gi unique?
– Replacing	gi(x)with	f(gi(x)),	where	f() is	monotonically	
increasing,	does	not	change	the	classification	results.
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Case	of	two	categories

• More	common	to	use	a	single	discriminant	function	
(dichotomizer)	instead	of	two:

• Examples:
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Decision	Regions and	Boundaries
• Decision	rules	divide	the	feature	space	in	decision	regions

R1,	R2,	…,	Rc, separated	by	decision	boundaries.

decision	boundary	
is	defined	by:

g1(x)=g2(x) 



Discriminant	Function	for	
Multivariate	Gaussian	Density

• Consider	the	following	discriminant	function:
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Multivariate	Gaussian	Density:
Case	I

• Σi=σ2(diagonal)
– Features	are	statistically	independent
– Each	feature	has	the	same	variance

favours	the	a-priori
more	likely	category



Multivariate	Gaussian	Density:
Case	I	(cont’d)
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Multivariate	Gaussian	Density:
Case	I	(cont’d)

• Properties	of	decision	boundary:
– It	passes	through	x0
– It	is	orthogonal	to	the	line	linking	the	means.
– What	happens	when	P(ωi)=	P(ωj) ?
– If	P(ωi)=	P(ωj),	then	x0 shifts	away	from	the	most	likely	category.
– If	σ is	very	small,	the	position	of	the	boundary	is	insensitive	to	P(ωi)	

and P(ωj)
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Multivariate	Gaussian	Density:
Case	I	(cont’d)

If	P(ωi)=	P(ωj),	then	x0 shifts	away	
from	the	most	likely	category.

≠



Multivariate	Gaussian	Density:
Case	I	(cont’d)

If	P(ωi)=	P(ωj),	then	x0 shifts	away	
from	the	most	likely	category.

≠



Multivariate	Gaussian	Density:
Case	I	(cont’d)

If	P(ωi)=	P(ωj),	then	x0 shifts	away	
from	the	most	likely	category.

≠



Multivariate	Gaussian	Density:
Case	I	(cont’d)

• Minimum	distance	classifier	
– When	P(ωi)	are	equal,	then:
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Multivariate	Gaussian	Density:
Case	II

• Σi=	Σ



Multivariate	Gaussian	Density:
Case	II	(cont’d)



Multivariate	Gaussian	Density:
Case	II	(cont’d)

• Properties	of	hyperplane	(decision	boundary):
– It	passes	through	x0
– It	is	notorthogonal	to	the	line	linking	the	means.
– What	happens	when	P(ωi)=	P(ωj) ?
– If	P(ωi)=	P(ωj),	then	x0 shifts	away	from	the	most	likely	category.≠



Multivariate	Gaussian	Density:
Case	II	(cont’d)

If	P(ωi)=	P(ωj),	then	x0 shifts	away	
from	the	most	likely	category.

≠



Multivariate	Gaussian	Density:
Case	II	(cont’d)

If	P(ωi)=	P(ωj),	then	x0 shifts	away	
from	the	most	likely	category.

≠



Multivariate	Gaussian	Density:
Case	II	(cont’d)

• Mahalanobis	distance	classifier	
– When	P(ωi)	are	equal,	then:

max



Multivariate	Gaussian	Density:
Case	III

• Σi=	arbitrary

e.g., hyperplanes,	pairs	of	hyperplanes,		hyperspheres,	
hyperellipsoids,	hyperparaboloids etc.	

hyperquadrics;



Example	- Case	III

P(ω1)=P(ω2)

decision	boundary:

boundary	does
not pass	through
midpoint	of	μ1,μ2



Multivariate	Gaussian	Density:
Case	III	(cont’d)

non-linear
decision
boundaries



Multivariate	Gaussian	Density:
Case	III	(cont’d)

• More	examples	



Error	Bounds
• Exact	error	calculations	could	be	difficult	– easier	to	

estimate	error	bounds!

or	
min[P(ω1/x),	P(ω2/x)]

P(error)	



Error	Bounds		(cont’d)

• If	the	class	conditional	distributions	are	Gaussian,	then

where:

| |



Error	Bounds	(cont’d)

• The	Chernoff bound	corresponds	to	β that	minimizes e-κ(β)	
– This	is	a	1-D	optimization	problem,	regardless	to	the	dimensionality	

of	the	class	conditional	densities.
loose boundloose bound

tight bound



Error	Bounds	(cont’d)
• Bhattacharyyabound

– Approximate	the	error	bound	using	β=0.5
– Easier	to	compute	than	Chernoff	error	but	looser.

• The	Chernoff	and	Bhattacharyya	bounds	will	not	be	good	
bounds	if	the	distributions	are	not Gaussian.



Example

k(0.5)=4.06

( ) 0.0087P error ≤

Bhattacharyyaerror:



Receiver	Operating	
Characteristic	(ROC)	Curve

• Every	classifier	employs	some	kind	of	a	threshold.

• Changing	the	threshold	affects	the	performance	of	the	
system.

• ROC	curves	can	help	us	evaluate	system	performance	for	
different thresholds.
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Example:	Person	Authentication
• Authenticate	a	person	using	biometrics	(e.g.,	fingerprints).

• There	are	two	possible	distributions	(i.e.,	classes):
– Authentic (A)	and	Impostor (I)

I
A



Example:	Person	Authentication	
(cont’d)

• Possible	decisions:
– (1)	correct	acceptance	(true	positive):	

• X	belongs	 to	A,	and	we	decide	A

– (2)	incorrect	acceptance (false	positive):	
• X	belongs	 to	I,	and	we	decide	 A

– (3)	correct	rejection	(true	negative):	
• X	belongs	 to	I,	and	we	decide	 I

– (4)	incorrect	rejection (false	negative):	
• X	belongs	 to	A,	and	we	decide	 I

I A

false positive

correct acceptance

correct rejection

false negative



Error	vs	Threshold

ROC



False	Negatives	vs	Positives	





Next	Lecture

• Linear	Classification	Methods
– Hastie	et	al,	Chapter	4

• Paper	list	will	available	by	Weekend
– Bidding	to	start	on	Monday



Bayes	Decision	Theory:	
Case	of	Discrete	Features

• Replace																										with		

• See	section	2.9

( / )jp dω∫ x x ( / )jP ω∑
x

x



Missing	Features

• Consider	a	Bayes	classifier	using	uncorrupted	data.
• Suppose	x=(x1,x2)		is	a	test	vector	where	x1 is	missing	and	the	

value	of	x2 is								- how	can	we	classify	it?
– If	we	set	x1 equal	to	the	average	value,	we	will	classify	x as	ω3

– But																						is	larger;	maybe	we	should	classify	xas	ω2 ?2 2ˆ( / )p x ω

2x̂



Missing	Features	(cont’d)

• Suppose	x=[xg,xb]	(xg:	good	features,	xb:	bad	features)
• Derive	the	Bayes	rule	using	the	good	features:

pp

Marginalize
posterior
probability
over	bad
features.



Compound	Bayesian	
Decision	Theory

• Sequential decision
(1)	Decide	as	each	fish	emerges.	

• Compound decision
(1)	Wait	for	n fish	to	emerge.
(2)	Make	all n decisions	jointly.

– Could	improve	performance	when	consecutive	states	
of	nature	are	not be	statistically	independent.



Compound	Bayesian	
Decision	Theory	(cont’d)

• Suppose	Ω=(ω(1),	ω(2),	…,	ω(n))denotes	the	
n	states	of	nature	where	ω(i)	can	take	one	of	
c	values	ω1,	ω2,	…,	ωc	(i.e.,	c	categories)

• Suppose	P(Ω)	is	the	prior	probability	of	the	n	
states	of	nature.

• Suppose	X=(x1,	x2,	…,	xn)	are	n	observed	
vectors.



Compound	Bayesian	
Decision	Theory	(cont’d)

i.e.,	consecutive	states	of	nature	may	
not be	statistically	independent!

acceptable!
P P


