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Bayesian Decision Theory

* Design classifiers to recommend decisions that
minimize some total expected "risk”.

— The simplestrisk is the classification error (i.e., costs
are equal).

— Typically, the risk includes the cost associated with
different decisions.



Terminology

e State of nature w (random variable):
— e.g., w, for sea bass, w, for salmon

* Probabilities P(w,) and P(w,) (priors):

— e.g., prior knowledge of how likely is to get a sea bass
or a salmon

* Probability density function p(x) (evidence):

— e.g., how frequently we will measure a pattern with
feature value x (e.g., x corresponds to lightness)



Terminology (cont’d)

* Conditional probability density p(x/w;) (likelihood) :

— e.g., how frequently we will measure a pattern with
feature value x given that the pattern belongs to class w;
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FIGURE 2.1. Hypothetical class-conditional probability density functions show the
probability density of measuring a particular feature value x given the pattern is in
category w;. If x represents the lightness of a fish, the two curves might describe the
difference in lightness of populations of two types of fish. Density functions are normal-
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,



Terminology (cont’d)

* Conditional probability P(wj/x) (posterior) :

— e.g., the probability that the fish belongs to
class w; given measurement x.



Decision Rule Using Prior
Probabilities

Decide w; if P(w,) > P(w,); otherwise decide w,

(P(w,) if wedecide w,

P(error) = | . .
P(w,) if wedecide w,

or P(error)=min[P(w,), P(w,)]

* Favours the mostlikely class.

* Thisrule will be making the same decision all times.
— i.e.,optimumif nootherinformationis available



Decision Rule Using Conditional
Probabilities

* Using Bayes' rule, the posterior probability of category w;
given measurement x is given by:

p(x/w;)P(w,) _ likelihood x prior

p(x) evidence

P(w,/x) =

2
where p(x) = Ep(x/a)j)P(a)j) (i.e., scale factor — sum of probs = 1)
T=1

Decide w; if P(w, /x) > P(w,/x); otherwise decide w,
or

Decide w;if p(x/w;)P(w,)>p(x/w,)P(w,) otherwise decide w,




Decision Rule Using
Conditional pdf (cont’d)

1
Ple,) = 3 P(w,/x)
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FIGURE 2.2. Posterior probabilities for the particular priors P(w) = 2/3 and P(w,)
FIGURE 2.1. Hypothetical class-conditional probability density functions show the = 1/3 for the class-conditional probability densities shown in Fig. 2.1. Thus in this
probability density of measuring a particular feature value x given the pattern is in case, given that a pattern is measured to have feature value x = 14, the probability it is
category w;. If x represents the lightness of a fish, the two curves might describe the in category @; is roughly 0.08, and thatitis in @ is 0.92. At every x, the posteriors sum
difference in lightness of populations of two types of fish. Density functions are normal- to 1.0. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
ized, and thus the area under each curve is 1.0. From: Richard O. Duda, Peter E. Hart, Copvright © 2001 bv lohn Wilev & Sons. Inc.

and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,



Probability of Error

 The probability of error is defined as:

(P(w, / x) if wedecide w,

P / =<
(error/x) P(w, / x) if wedecide w,

or P(error/x) = min[P(w,;/x), P(w,/x)]
. What is the average probability error?
P(error) = f P(error,x)dx = f P(error/ x) p(x)dx

. The Bayes rule is optimum, thatis, it minimizes the
average probability error!



Where do Probabilities Come From?

* There are two competitive answers to this
guestion:

(1) Relative frequency (objective) approach.
— Probabilities can only come from experiments.

(2) Bayesian (subjective) approach.

— Probabilities may reflect degree of belief and can be
based on opinion.



Example (objective approach)

* Classify cars whether they are more or less than S50K:
— Classes: C,if price>S50K, C, if price <= S50K
— Features: x,the heightof a car

* Usethe Bayes’ rule to compute the posterior probabilities:

p(x/C)HP(C)
p(x)
* We needto estimate p(x/C,), p(x/C,), P(C,), P(C,)

P(C./x)=



Example (cont’d)

* Collectdata
— Askdrivers howmuch their car was and measure height.

* Determine prior probabilities P(C,), P(C,)
— e.g., 1209 samples: #C;=221 #C,=988

|ess than 50k

PCYy=22L _0.183
209

)=

1.5

I=more than 50k 2

. P(C2)=192—8089=0.817
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Example (cont’d)

 Determine class conditional probabilities (likelihood)
— Discretize car heightinto bins and use normalized histogram

p(x/C)




Example (cont’d)

e Calculatethe posterior probability for each bin:

PIC/x~1.0) - p(x=1.0/ G)AG)
p(x=1.0/ C)AC) + p(x=1.0/ C) AC))

_ 0.2081*0.183
0.2081*0.183 +0.0597*0.817

= 0.438
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A More General Theory

Use more than one features.
Allow more than two categories.

Allow actions other than classifying the input to
one of the possible categories (e.g., rejection).

Employ a more general error function (i.e., “risk”
function) by associating a “cost” (“loss” function)
with each error (i.e., wrong action).



Terminology

Features form a vector xER"
A finite set of c categoriesw;, w, . w,
Bayes rule (i.e., using vector notation):

p(x/w;)P(w,)
p(X)

where p(X)= Ep(x/ w,)P(w))

P(w,/x) =

A finite set of /actionsa; a, .«

A loss function A(a;/ w))

— the costassociated with takingaction a; when the correct
classification categoryis w;



Conditional Risk (or Expected Loss)

* Suppose we observe x and take action «a;

* Suppose that the cost associated with taking
action o; with w; being the correct category is

Mo,/ w))

* The conditional risk (or expected loss) with
taking action a; is:

R(a, /x) = Sl(al. | w,)P(w, ] x)



Overall Risk

* Suppose a(x) is a general decision rule that
determines which action a; a, a, to take for

every X; then the overall rlsk |s deflned as:

= f R(a(x)/x) p(x)dx

* The optimum decision rule is the Bayes rule



Overall Risk (cont’d)

* The Bayes decision rule minimizes R by:
(i) Computing R(a;/x) for every a; given an x

(i) Choosing the action a;with the minimum R(«; /x)

* The resulting minimum overall risk is called Bayes
risk and is the best (i.e., optimum) performance
that can be achieved:

R =mnR



Example: Two-category
classification

e Define

— a,: decide w, (c=2)
— a,.decide w,

— A =Ma;/w))

e The conditional risks are:

R(a, /x)= Sl(al. [w;)P(w; ] x)

¥

R(GI/X) = ﬂ,llP(a)l/x) + ﬂlQP(G)Q/X)
R(CIQ/X) = AnP(w; /X) A7 ﬂzgp(a)z/X)



Example: Two-category
classification (cont’d)

e Minimum risk decision rule:

Decide o, 1f R(a,/x) < R(a,/x), otherwise decide a,

or

Decide oy 1f (197 — A11)P(@1/X) > (A5 = Ay )P(@,/X); otherwise decide o,
or (i.e., using likelihood ratio)

p(X/w) >(/112 — Axn) P(an)
p(Xan)  (Ay —A) P(oy)

] ]

likelihood ratio  threshold

Decide o 1f otherwise decide @,



Special Case:
Zero-One Loss Function

* Assign the same loss to all errors:

0o
zcaf/wﬁ:{l *d

* The conditional risk corresponding to this loss function:

Rafx)= ¥ Majo)P(o/x)= ¥ P(o/x)=1-P(a)x)
j=1 I#]



Special Case:
Zero-One Loss Function (cont’d)

e The decisionrule becomes:

Decide o if R(a,/x) < R(a,/x); otherwise decide w,
or Decide w1t 1 — P(w/x) <1 — P(@,/X); otherwise decide o,

or Decide o if P(w,/X) > P(@,/X), otherwise decide o,

* Inthiscase, the overall risk is the average probability
error!



Example
Assuming general loss:
pXawy) o (A2 — Axn) Plan)
p(Xl@y) (Ao = Ap) Play)

Assuming zero-one loss:
Decide w; 1if p(x/w,;)/p(x/®w,)>P(w,)/P(w,;) otherwise decide w,

Decide w; 1f otherwise decide w,

plx|w)

pi,) 6, = P(w,)/ P(w,)

6 = P(CUZ)(AIZ _}22)
’ P(wl)(;lz1 _/'Lu)

(decision regions)

R R, R R assume: Ay >/,



Discriminant Functions

* A useful way to represent classifiers is through

discriminant functionsgi(x),i=1, ..., c, where a feature
vector x is assigned to class w; if:

gi(x) > gj(x)forall J #1

action
(e.g., classification)

discriminant
Junctions



Discriminants for Bayes Classifier

 Assuminga general loss function:

gi(x)=-R(ct;/ x)

* Assumingthe zero-one loss function:

gi(x)=P(w;/ x)



Discriminants for Bayes Classifier
(cont’d)
* Isthechoiceof g; unique?

— Replacingg;(x) with f(g;(x)), where f() is monotonically
increasing, does not change the classification results.

p(x/w)P(w,)

8i (X) =
8(X)=P(wy/x) » P(X)
g(x) = p(x/w)P(w,)

we’ll use this

form extensively!



Case of two categories

* More commonto use a single discriminant function
(dichotomizer) instead of two:

g2(x) = g1(X) — £2(X)

Decide @ if g(x) > O; otherwise decide w,

 Examples:
g(x)=P(w,/x)-P(w,/x)

p(X/wl) +ln P(wl)
p(x/w,) P(w,)

o(x) =1In



Decision Regions and Boundaries

Decision rules divide the feature space in decision regions
R., separated by decision boundaries.

veey

decision boundary
is defined by:

g:(X)=g:(x)




Discriminant Function for
Multivariate Gaussian Density

1
N(,Z)= expl— > (x - W' (x - ]

(Zﬁ)d/2|2|1/2
* Considerthe following discriminant function:

g;(x) =In p(x/w)+InP(w)
-1t p(x/w;) ~ N(py, ), then

1 d ]
gi(X) =- E (X - ﬂi)tzz‘_l(x — i) — 5 Inm - Eln 2| + In P(w;)



Multivariate Gaussian Density:
Casel

¢ zi=0'2(diagonal)

— Featuresare statisticallyindependent

— Each feature hasthesamevariance

- If we disregard 5 n27 and 5 In |2;| (constants):

1

1 d
gi(X)=- > (x— ) Z7 (- ) - > Inm - 5 In|%] + In P(a;)

gi(X) =—

2
X — 2]
2072

+1n P(@;)
-~

>
where ||x — 1]|” = (x — 1) (X — ;)

- Expanding the above expression:

N

favours the a-priori
more likely category

1
gi(x)=- 252 [x'x — nyx + #5#:‘] + In P(w;)



Multivariate Gaussian Density:
Case | (cont’d)

- Disregarding x’x (constant), we get a linear discriminant:

t
gi(X) =W;X + wy

1 1
where w,= — Hi, and wio = — — pip; + In P(w;)
o 207

- Decision boundary 1s determined by hyperplanes; setting g;(x) = g(X):

w(x—-x5)=0

o’ - Pl

n
Lz = w1517 Pley)

1
where w = u; — j and xg = 5 (H; + 45) — (U — 15)



Multivariate Gaussian Density:
Case | (cont’d)

* Properties of decision boundary:
— It passesthroughx,
— Itis orthogonalto theline linkingthe means.
— Whathappens when P(w,)=P(w)) ?
— If P(w;)= P(w;), then x, shifts away from the mostlikely category.

— If ois verysmall, the position of the boundaryis insensitive to P(w),)
and P(w))

w(x—x9) =0

o P(w;)
5 n
i — 14l Pla))

1
where w = u; — s and x; = 5 (u; + ,uj) — (4 — #j)



Multivariate Gaussian Density:

Case | (cont’d)

Dﬂ/lﬁ) [ i ) 9 ‘D(:‘I O)i') [9)) 7

0.41 041
I
|
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|
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R, R, !R’;
Plw;)=7 Plw,)=.3 Plw;)=9

If P(w;)* P(w;), then X, shifts away
from the mostlikely category.

Pluy)=.1



Multivariate Gaussian Density:
Case | (cont’d)

o
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If P(w;)* P(w;), then X, shifts away
from the mostlikely category.
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Multivariate Gaussian Density

Case | (cont’d)

If P(w;)* P(w;), then X, shifts away
from the mostlikely category.



Multivariate Gaussian Density:
Case | (cont’d)

* Minimum distance classifier
— When P(w,) are equal, then:

_ Ix — ]| _ . 2
i) === +In P() # g, (x) | x — ¢ ||

action

(e.g., classification)

discriminant
Junctions



Multivariate Gaussian Density:
Casell

1 d 1
* 2.=2 gi(X)=- > (X 1) E7 (- ) - > Inm - Eln 2| + In P(a;)

- The clusters have hyperellipsoidal shape and same size (centered at ).

d 1
- If we disregard 0 n27 and 7 In |X;| (constants):

1
gi(0) = =5 (=) T (x— ) + In Pe)

- Expanding the above expression and disregarding the quadratic term:

t
gi(X) = W;X +wyg
(linear discriminant)

]
where w; = 3! i, and wyy = — 5 ut-Z‘l 1 +1n P(w;)

1



Multivariate Gaussian Density:
Case ll (cont’d)

- Decision boundary 1s determined by hyperplanes; setting g;(x) = g,(X):

w(x—x9)=0

where w = Z_l(,u- — i) and xy = l (i + 1) — il S (el (s — i)
C I T O n (T Th A



Multivariate Gaussian Density:
Case ll (cont’d)

* Propertiesof hyperplane(decision boundary):
— It passesthroughx,
— Itis notorthogonaltothe line linkingthe means.
— Whathappens when P(w,)=P(w;) ?
— If P(w;)=P(w)), then x, shifts away from the most likely category.

w(x—-x)=0

where w = Z‘l(u,- — ;) and X = l (Gt + ) = ln[P(a;),-)_/fD(a)]-)] (1 — 1)
2 (i — 1)) 27 (5 — i)



Multivariate Gaussian Density:
Case ll (cont’d)

If P(w;)* P(w;), then X, shifts away
from the mostlikely category.



Multivariate Gaussian Density:
Case ll (cont’d)

10

{175

If P(w,* P(w;), then X, shifts away
from the mostlikely category.



Multivariate Gaussian Density:
Case ll (cont’d)

e Mahalanobis distance classifier
— When P(w,) are equal, then:

1
gi(%) = =5 (x =) 27 (x = ) + In P(o)

\

1 —
gi(x)__i(x_zui)z (X — u4)

action

(e.g., classification)

discriminant
Junctions



Multivariate Gaussian Density:

Case lll

1 d 1
: gi(X) == > (X =) I (X - ) = = In27 = = In[%] + In P(o;)
* 2.= arbitrary 2 2 2

- The clusters have different shapes and sizes (centered at u).

- If we disregard 5 [n2 7 (constant):

2:(X) = X'W,X + W, X + wjg
(quadratic discriminant)

| | 1
where Wi = — 5 Zi—l, W, = Zz_l i, and Wio = — 5 ,uf-z_l M — 5 ln|23| + In P(Cﬂ)z)

- Decision boundary 1s determined by hyperquadrics; setting g;(x) = g ;(x)

e.g., hyperplanes, pairs of hyperplanes, hyperspheres,
hyperellipsoids, hyperparaboloids etc.



Example - Case lli

P(w,)=P(w,)

boundary does

not pass through - e X

midpoint of ;W Ll ® M e

(DR )
o O



Multivariate Gaussian Density:
Case lll (cont’d)

nhon-linear
decision
boundaries

FIGURE 2.14. Arbitrary Gaussian distributions lead to Bayes decision boundaries that
are general hyperquadrics. Conversely, given any hyperquadric, one can find two Gaus-
sian distributions whose Bayes decision boundary is that hyperquadric. These variances
are indicated by the contours of constant probability density. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
Wiley & Sons, Inc.



Multivariate Gaussian Density:
ase lll (cont’d)

* More examples

oy
Mot

\\\‘:\\:m‘\
\?‘\\‘\\\ Sl

==

==

JRE 2.15. Arbitrary three-dimensional Gaussian distributions vield Bayes decision boundaries that are
dimensional hyperquadrics. There are even degenerate cases in which the decision boundary is a line.

1: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John
2y & Sons, Inc.




Error Bounds

 Exact error calculations could be difficult — easier to
estimate error bounds!

P(error) = J P(error,X) dx = JP(error/X) p(X) dx

2 Y= P(w/x) 1if we decide w, or
(error/x) = P(an/x) 1if we decidem, min[P(w./x), P(w,/x)]

- Using the inequality:

min[a,b] < a?b'"™P, a,b>0,0<8<1

P(error) = jmm[ p(xo))P(@)), p(x/0))P(@,)]dx <

PP ()P (@) | pP(xlar) p' P (Xary)dlx



Error Bounds (cont’d)

If the class conditional distributions are Gaussian, then
j pﬁ(x/a)l) pl—ﬁ(x/coz)dx = ¢~ %)

where:

B(1 — ) , | )
k(B) = =21y — o)t [(1 = B)Z1 + BEa] ™" (1t — po)
1|1 -8)E; + 5%y
+3ln -3 3

20 X [1B]X)f




Error Bounds (cont’d)

The Chernoff bound corresponds to B that minimizes e*(®)

— Thisis a 1-D optimization problem, regardlessto the dimensionality
of the class conditional densities.

loose bound loose bound

.1 / tight bound \ ‘

0.6 { Bhattacharyya bound

Chernoff bound

L . L L L L ,6
0 0.25 0.5 g* 075 1

FIGURE 2.18. The Chernoff error bound is never looser than the Bhattacharyya bound.
For this example, the Chernoff bound happens to be at g* = 0.66, and is slightly tighter
than the Bhattacharyya bound (8 = 0.5). From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



Error Bounds (cont’d)

* Bhattacharyya bound

— Approximate the error bound using $=0.5
— Easiertocomputethan Chernoff error butlooser.

B

0.8

0.6  Bhattacharyya bound

Chernoff bound
0.4

0.2

0 n n it n n n
0 0.25 0.5 3 * 0.75 1

J&]

FIGURE 2.18. The Chernoff error bound is never looser than the Bhattacharyya bound.
For this example, the Chernoff bound happens to be at g* = 0.66, and is slightly tighter
than the Bhattacharyya bound (8 = 0.5). From: Richard O. Duda Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.

* The Chernoffand Bhattacharyyabounds will not be good
bounds if the distributions are not Gaussian.



Example

k8 = PPy )18+ (1 - BBty — i)+

1. |81+ (1 —3)22!‘

—In

2 Pl

Bhattacharyya error:

- 4 5 8 10 k(0.5)=4.06
: P(error) <0.0087




Receiver Operating
Characteristic (ROC) Curve

* Every classifier employs some kind of a threshold.

p(x|w,)
Pxjw,)

0, = P(w,)/ P()

6 = P(a)z)(;lqz _}‘22)
’ P(w))(A, - 4A))

 Changingthe threshold affects the performance of the
system.

 ROC curves can help us evaluate system performance for
different thresholds.



Example: Person Authentication

e Authenticate a person using biometrics(e.g., fingerprints).

 Thereare two possible distributions (i.e., classes):
— Authentic (A) and Impostor (1)

X))
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Example: Person Authentication
(cont’d)

* Possible decisions:
— (1) correct acceptance (true positive):

* X belongs to A, and we decide A correct rejection

Pxlw
/ «,  correctacceptance

— (2) incorrect acceptance (false positive):

X belongs to |, and we decide A

A

— (4) incorrect rejection (false negative): = ,\

s\
/
/
\
/ /

* X belongs to |, and we decide | P I

2

— (3) correct rejection (true negative): / VA

* Xbelongs to A, and we decide | false negative false positive



Error vs Threshold
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False Negatives vs Positives
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True positive rate
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Next Lecture

* Linear Classification Methods
— Hastie et al, Chapter 4

* Paper list will available by Weekend
— Bidding to start on Monday



Bayes Decision Theory:
Case of Discrete Features

* Replace (p(x/w)dx With ¥ P(x/w))

e Seesection 2.9



Missing Features

* Consider a Bayes classifier using uncorrupted data.

e Suppose x=(x{,%,) is a test vector where x, is missing and the
value of x, is X, - how can we classify it?
— If weset x, equaltothe average value, we will classify x as w;
— But p(X,/w,) islarger; maybe we should classifyxas w, ?

- =X,
X



* Suppose x=[xg,x,] (x;: good features, x,: bad features)

Missing Features (cont’d)

Derive the Bayes rule using the good features:

p(@;,Xg) J p(@;, Xg, Xp )dXyp

P(Xg) p(Xg)

P(ay/x,) =

| Ploixg. xp)p(xg. xp)dxs | Ploi/xg, %) p(x)dx;
p(xg) j P(X)dx;,

Decide w; 1f P(@,/x,) > P(wy/X,); otherwise decide

Marginalize
posterior
probability
over bad
features.



Compound Bayesian
Decision Theory

* Sequential decision
(1) Decide as each fish emerges.

* Compound decision
(1) Wait for n fish to emerge.
(2) Make all n decisions jointly.

— Could improve performance when consecutive states
of nature are not be statistically independent.



Compound Bayesian
Decision Theory (cont’d)

e Suppose Q=(w(1), w(2), ..., w(n))denotes the
n states of nature where w(i) can take one of
c values w,, w,, ..., w_(i.e., c categories)

e Suppose P(Q) is the prior probability of the n
states of nature.

* Suppose X=(x4, X,, ..., X,,) are n observed
vectors.



Compound Bayesian
Decision Theory (cont’d)

* Suppose p(X/Q) is the conditional
probability function for X

p(X/€2)P(£2)
p(X)
* The assumption p(X/Q)=[1;=, p(x;/w(i))
might be acceptable.

* The assumotionP (Q)=[];=;P (w(i)) is not
acceptable!

P(Q/X)=

i.e., consecutive states of nature may
not be statistically independent!



