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Introduction

Basically we can describe Bayesian inference through repeated use of
the sum and product rules

Using a graphical / diagrammatical representation is often useful
1 A way to visualize structure and consider relations
2 Provides insights into a model and possible independence
3 Allow us to leverage of the many graphical algorithms available

Will consider both directed and undirected models

This is a very rich areas with numerous good references
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Bayesian Networks

Consider the joint probability p(a, b, c)

Using product rule we can rewrite it as

p(a, b, c) = p(c |a, b)p(a, b)

Which again can be changed to

p(a, b, c) = p(c |a, b)p(b|a)p(a)

We can illustrate this as
a

b

c
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Bayesian Networks

Nodes represent variables

Arcs/links represent conditional dependence

We can use the decomposition for any joint distribution.

The direct / brute-force application generates fully connected graphs

We can represent much more general relations
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Example with ”sparse” connections

We can represent relations such as

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5)

Which is shown below

x1

x2 x3

x4 x5

x6 x7
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The general case

We can think of this as coding the factors

p(xk |pak)

where pak is the set of parents to a variable xk

The inference is then

p(x) =
∏
k

p(xk |pak)

we will refer to this as factorization

There can be no directed cycles in the graph

The general form is termed a directed acyclic graph - DAG
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Basic example

We have seen the polynomial regression before

p(t,w) = p(w)
∏
n

p(tn|w)

Which can be visualized as
w

t1 tN
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Bayesian Regression

We can make the parameters and variables explicit

p(t,w|x, α, σ2) = p(w|α)
∏
n

p(tn|w, xn, σ2)

as shown here

tn

xn

N

w

α

σ2
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Bayesian Regression - Learning

When entering data we can condition inference on it

p(w|t) ∝ p(w)
∏
n

p(tn|w)

tn

xn

N

w

α

σ2
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Generative Models - Example Image Synthesis

Image

Object OrientationPosition
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Discrete Variables - 1

General joint distribution has K 2 − 1 parameters (for K possible
outcomes)

x1 x2

p(x1, x2|µ) =
K∏
i=1

K∏
j=1

µ
x1ix2j
ij

Independent joint distributions have 2(K − 1) parameters

x1 x2

p(x1, x2|µ) =
K∏
i=1

µx1i1i

K∏
j=1

µ
x2j
2j
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Discrete Variables - 2

General joint distribution over M variables will have KM − 1
parameters

A Markov chain with M nodes will have K − 1 + (M − 1)K (K − 1)
parameters

x1 x2 xM
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Discrete Variables - Bayesian Parms

x1 x2 xM

µ1 µ2 µM

The parameters can be modelled explicitly

p({xm, µm}) = p(x1|µ1)p(µ1)
M∏

m=2

p(xm|xm−1, µm)p(µm)

It is assumed that p(µm) is a Dirachlet
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Discrete Variables - Bayesian Parms (2)

x1 x2 xM

µ1 µ

For shared paraemeters the situation is simpler

p({xm}, µ1, µ) = p(x1|µ1)p(µ1)
M∏

m=2

p(xm|xm−1, µ)p(µ)
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Extension to Linear Gaussian Models

The model can be extended to have each node as a Gaussian
process/variable that is a linear function of its parents

p(xi |pai ) = N

xi

∣∣∣ ∑
j∈pai

wijxj + bi , vi
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Conditional Independence

Considerations of independence is important as part of the analysis
and setup of a system

As an example a is independent of b given c

p(a|b, c) = p(a|c)

Or equivalently

p(a, b|c) = p(a|b, c)p(b|c)

= p(a|c)p(b|c)

Frequent notation in statistics

a ⊥⊥ b|c
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Conditional Independence - Case 1

c

a b

p(a, b, c) = p(a|c)p(b|c)p(c)

p(a, b) =
∑
c

p(a|c)p(b|c)p(c)

a /⊥⊥b | ∅
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Conditional Independence - Case 1

c

a b

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

a ⊥⊥ b | c
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Conditional Independence - Case 2

a c b

p(a, b, c) = p(a)p(c |a)p(b|c)

p(a, b) = p(a)
∑
c

p(c |a)p(b|c) = p(a)p(b|a)

a /⊥⊥b|∅
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Conditional Independence - Case 2

a c b

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c |a)p(b|c)

p(c)

= p(a|c)p(b|c)

a⊥⊥b|c
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Conditional Independence - Case 3

c

a b

p(a, b, c) = p(a)p(b)p(c |a, b)

p(a, b) = p(a)p(b)

a ⊥⊥ b | ∅

This is the opposite of Case 1 - when c unobserved
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Conditional Independence - Case 3

c

a b
p(a, b|c) =

p(a, b, c)

p(c)

=
p(a)p(b)p(c |a, b)

p(c)

a /⊥⊥b | c

This is the opposite of Case 1 - when c observed
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Diagnostics - Out of fuel?

G

B F

B = Battery
F = Fuel Tank
G = Fuel Gauge

p(G = 1|B = 1,F = 1) = 0.8

p(G = 1|B = 1,F = 0) = 0.2

p(G = 1|B = 0,F = 1) = 0.2

p(G = 1|B = 0,F = 0) = 0.1

p(B = 1) = 0.9

p(F = 1) = 0.9

⇒ p(F = 0) = 0.1

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 26 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Diagnostics - Out of fuel?

G

B F

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

p(G = 0)

≈ 0.257

Observing G=0 increased the probability of an empty tank
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Diagnostics - Out of fuel?

G

B F

p(F = 0|G = 0,B = 0) =
p(G = 0|B = 0,F = 0)p(F = 0)∑

p(G = 0|B = 0,F )p(F )

≈ 0.111

Observing B=0 implies less likely empty tank
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D-separation

Consider non-intersecting subsets A, B, and C in a directed graph

A path between subsets A and B is considered blocked if it contains a
node such that:

1 the arcs are head-to-tail or tail-to-tail and in the set C
2 the arcs meet head-to-head and neither the node or its descendents are

in the set C.

If all paths between A and B are blocked then A is d-separated from
B by C.

If there is d-separation then all the variables in the graph satisfies
A ⊥⊥ B|C
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D-Separation - Discussion

f

e b

a

c

f

e b

a

c
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Inference in graphical models

Consider inference of p(x , y) we can formulate this as

p(x , y) = p(x |y)p(y) = p(y |x)p(x)

We can further marginalize

p(y) =
∑
x ′

p(y |x ′)p(x ′)

Using Bayes Rule we can reverse the inference

p(x |y) =
p(y |x)p(x)

p(y)

Helpful as mechanisms for inference
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Inference in graphical models

x

y

x

y

x

y

(a) (b) (c)
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Inference on a chain

x1 x2 xN−1 xN

p(x) =
1

Z
ψ1,2(x1, x2)ψ2,3(x2, x3) · · ·ψN−1,N(xN−1, xN)

p(xn) =
∑
x1

· · ·
∑
xn−1

∑
xn+1

∑
xN

p(x)
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Inference on a chain

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

p(xn) =
1

Z

∑
xn−1

ψn−1,n(xn−1, xn) · · ·

[∑
x1

ψ1,2(x1, x2)

]
︸ ︷︷ ︸

µa(xn)[∑
xn+1

ψn,n+1(xn, xn+1) · · ·

[∑
xN

ψN−1,N(xN−1, xN)

]]
︸ ︷︷ ︸

µb(xn)
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Inference on a chain

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

µa(xn) =
∑
xn−1

ψn−1,n(xn−1, xn) · · ·

[∑
x1

ψ1,2(x1, x2)

]
=

∑
xn−1

ψn−1,n(xn−1, xn)µa(xn−1)

µb(xn) =
∑
xn+1

ψn,n+1(xn, xn+1) · · ·

[∑
xN

ψN−1,N(xN−1, xN)

]
=

∑
xn+1

ψn,n+1(xn, xn+1)µb(xn+1
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Inference on a chain

x1 xn−1 xn xn+1 xN

µα(xn−1) µα(xn) µβ(xn) µβ(xn+1)

µa(x2) =
∑

x1
ψ1,2(x1, x2) µb(xN−1) =

∑
xN
ψN−1,N(xN−1, xn)

Z =
∑
xn

µa(xn)µb(xn)
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Inference on a chain

To compute local marginals

Compute and store forward messages µa(xn)
Compute and store backward messages µb(xn)
Compute Z at all nodes
Compute

p(xn) =
1

Z
µa(xn)µb(xn)

for all variables
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Inference in trees

Undirected Tree Directed Tree Directed Polytree
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Factor Graphs

x1 x2 x3

fa fb fc fd

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3)

p(x) =
∏
s

fs(xs)
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Factor Graphs from Directed Graphs

x1 x2

x3

x1 x2

x3

f

x1 x2

x3

fc

fa fb

p(x) = p(x1)p(x2) f (x1, x2, x3) = fa(x1) = p(x1)
p(x3|x1, x2) p(x1)p(x2)p(x3|x1, x2) fb(x2) = p(x2)

fc(x1, x2, x3) = p(x3|x2, x1)
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Factor Graphs from Undirected Graphs

x1 x2

x3

x1 x2

x3

f

x1 x2

x3

fa

fb

ψ(x1, x2, x3) f (x1, x2, x3) fa(x1, x2, x3)fb(x2, x3)
= ψ(x1, x2, x3) = ψ(x1, x2, x3)

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 43 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Outline

1 Introduction

2 Bayesian Networks

3 Conditional Independence

4 Inference

5 Factor Graphs

6 Sum-Product Algorithm

7 HMM Introduction

8 Markov Model

9 Hidden Markov Model

10 ML solution for the HMM

11 Forward-Backward

12 Viterbi

13 Example

14 Summary

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 44 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

The Sum-Product Algorithm

Objective exact, efficient algorithm for computing marginals
make allow multiple marginals to be computed efficiently

Key Idea The distributive Law

ab + ac = a(b + c)
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The Sum-Product Algorithm

xfs

µfs→x(x)

F
s
(x
,X

s
)

p(x) =
∑
x\x

p(x)

p(x) =
∏

s∈Ne(x)

Fs(x ,Xs)
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The Sum-Product Algorithm

xfs

µfs→x(x)

F
s
(x
,X

s
)

p(x) =
∏

s∈Ne(x)

∑
Xs

Fs(x ,Xs)

 =
∏

s∈Ne(x)

µfs→x(x)

µfs→x(x) =
∑
Xs

Fs(x ,Xs)
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The Sum-Product Algorithm

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

Fs(x ,Xs) = fs(x , x1, ..., xM)G1(x1,Xs1) . . .GM(xM ,XsM)

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 48 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

The Sum-Product Algorithm

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

µfs→x(x) =
∑
x1

· · ·
∑
xM

fs(x , x1, ..., xM)
∏

m∈Ne(fs)\x

∑
Xsm

Gm(xm,Xsm)


=

∑
x1

· · ·
∑
xM

fs(x , x1, ..., xM)
∏

m∈Ne(fs)\x

µxm→fs (xm)
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The Sum-Product Algorithm

xm

xM

x
fs

µxM→fs(xM )

µfs→x(x)

Gm(xm, Xsm)

µxm→fs (xm)
∑
Xsm

Gm(xm,Xsm) =
∑
Xsm

∏
l∈Ne(xm)\fs

Fl(xm,Xlm)

=
∏

l∈Ne(xm)\fs

µfl→xm(xm)
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The Sum-Product Algorithm

Initialization For variable nodes

x f

µx→f (x) = 1

For factor nodes

xf

µf→x(x) = f(x)
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The Sum-Product Algorithm

To compute local marginals

Pick an arbitrary node as root
Compute and propagate msgs from leafs to root (store msgs)
Compute and propagate msgs from root to leaf nodes (store msgs)
Compute products of received msgs and normalize as required

Propagate up the tree and down again to compute all marginals (as
needed)
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Introduction

There are many examples where we are processing sequential data

Everyday examples include

Processing of stock data
Speech analysis
Traffic patterns
Gesture analysis
Manufacturing flow

We cannot assume IID as a basis for analysis

The Hidden Markov Model is frequently used
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Apple Stock Quote Example
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Markov model

We have already talked about the Markov model.

Estimation of joint probability as a sequential challenge

p(x1, . . . , xN) =
N∏

n=1

p(xn|xn−1, . . . , x1)

An Nth order model is dependent on the N last terms

A 1st order model is then

P(x1, . . . , xN) =
N∏

n=1

p(xn|xn−1)

I.e.:
p(xn|xn−1, . . . , x1) = p(xn|xn−1)
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Markov chains

x1 x2 x3 x4

x1 x2 x3 x4
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Hidden Markov Model

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2
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Modelling of HMM’s

We can model the transition probabilities as a table

Ajk = p(znk = 1|zn−1,j = 1)

The conditionals are then (with a 1-out-of-K coding)

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
zn−1,jznk
jk

The per element probability is expressed by πk = p(z1k = 1)

p(z1|π) =
K∏

k=1

πz1kk

with
∑

k πk = 1
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Illustration of HMM

k = 1

k = 2

k = 3

n− 2 n− 1 n n + 1

A11 A11 A11

A33 A33 A33

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 62 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Outline

1 Introduction

2 Bayesian Networks

3 Conditional Independence

4 Inference

5 Factor Graphs

6 Sum-Product Algorithm

7 HMM Introduction

8 Markov Model

9 Hidden Markov Model

10 ML solution for the HMM

11 Forward-Backward

12 Viterbi

13 Example

14 Summary

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 63 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Maximum likelihood for the HMM

If we observe a set of data X = {x1, . . . , xN} we can estimate the
parameters using ML

p(X |θ) =
∏
Z

p(X ,Z |θ)

I.e. summation of paths through lattice

We can use EM as a strategy to find a solution

E-Step: Estimation of p(Z |X , θold)

M-Step: Maximize over θ to optimize

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 64 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

ML solution to HMM

Define

Q(θ, θold) =
∑
Z

p(Z |X , θold) ln p(X ,Z |θ)

γ(zn) = p(zn|X , θold)

γ(znk) = E [znk ] =
∑
z

γ(z)znk

ξ(zn−1, zn) = p(zn−1, zn|X , θold)

ξ(zn−1,j , znk) =
∑
z

γ(z)zn−1,jznk
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ML solution to HMM

The quantities can be computed

πk =
γ(z1k)∑K
j=1 γ(z1j)

Ajk =

∑N
n=2 ξ(zn−1,j , znk)∑K

l=1

∑N
n=2 ξ(zn−1,j , znl)

Assume p(x |φk) = N(x |µk ,Σk) so that

µk =

∑
n γ(znk)xn∑
n γ(znk)

Σk =

∑
n γ(znk)(xn − µk)(xn − µk)T∑

n γ(znk)

How do we efficiently compute γ(znk)?
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Forward-Backward / Baum-Welch

How can we efficiently compute γ() and ξ(., .)?

Remember the HMM is a tree model

Using message passing we can compute the model efficiently
(remember earlier discussion?)

We have two parts to the message passing forward and backward for
any component

We have

γ(zn) = p(zn|X ) =
P(X |zn)p(zn)

p(X )

From earlier we have

γ(zn) =
α(zn)β(zn)

p(X )
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Forward-Backward

We can then compute

α(zn) = p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1)

β(zn) =
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn)

p(X ) =
∑
zn

α(zn)β(zn)

ξ(zn−1, zn) =
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X )
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Sum-product algorithms for the HMM

Given the HMM is a tree structure

Use of sum-product rule to compute marginals

We can derive a simple factor graph for the tree
χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn
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Sum-product algorithms for the HMM

We can then compute the factors

h(z1) = p(z1)p(x1|z1)

fn(zn−1, zn) = p(zn|zn−1)p(xn|zn)

The update factors µfn→zn(zn) can be used to derive message passing
with α(.) and β(.)

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 71 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Outline

1 Introduction

2 Bayesian Networks

3 Conditional Independence

4 Inference

5 Factor Graphs

6 Sum-Product Algorithm

7 HMM Introduction

8 Markov Model

9 Hidden Markov Model

10 ML solution for the HMM

11 Forward-Backward

12 Viterbi

13 Example

14 Summary

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 72 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Viterbi Algorithm

Using the message passing framework it is possible to determine the
most likely solution (ie best recognition)

Intuitively

Keep only track of the most likely / probably path through the graph

At any time there are only K possible paths to maintain

Basically a greedy evaluation of the best solution
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Small example of gesture tracking

Tracking of hands using an HMM to interpret track

Pre-process images to generate tracks

Color segmentation
Track regions using Kalman Filter
Interpret tracks using HMM

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 75 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Pre-process architecture

RGB image
Color 

segmentation

Binary image

Downscale

Density map
Thresholding 

and 
Connecting

N largest 
blobs

Tracker

Head, left 
and right hand 

blobs

Color 
model

 

Lookup 
table

Histogram 
generation

Adapted 
lookup table

Initial HSV 
thresholds

Camera
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Basic idea
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Tracking
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Motion Patterns

Attention Idle Forward Back Left Right

Turn left Turn right Faster Slower Stop
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Evaluation

Acquired 2230 image sequences

Covering 5 people in a normal living room

1115 used for training

1115 sequences were used for evaluation

Capture of position and velocity data
Rec Rates Position Velocity Combined

Result [%] 96.6 88.7 99.5
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Example Timing

Phase Time/frame[ms]

Image Transfer 4.3
Segmentation 0.6
Density Est 2.1
Connect Comp 2.1
Kalman Filter 0.3
HMM 21.0

Total 30.4
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Summary

The Hidden Markov Model (HMM)

Many uses for sequential data models

HMM is one possible formulation

Autoregressive Models are common in data processing
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