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Introduction

@ Basically we can describe Bayesian inference through repeated use of
the sum and product rules
@ Using a graphical / diagrammatical representation is often useful

© A way to visualize structure and consider relations
@ Provides insights into a model and possible independence
© Allow us to leverage of the many graphical algorithms available

@ Will consider both directed and undirected models

@ This is a very rich areas with numerous good references
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Bayesian Networks

e Consider the joint probability p(a, b, ¢)
@ Using product rule we can rewrite it as

p(a, b, c) = p(cla, b)p(a, b)
@ Which again can be changed to
p(a, b, c) = p(c|a, b)p(b|a)p(a)

@ We can illustrate this as
a

(o

C

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 5/83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Bayesian Networks

Nodes represent variables
Arcs/links represent conditional dependence
We can use the decomposition for any joint distribution.

The direct / brute-force application generates fully connected graphs

We can represent much more general relations
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- 1) 1A) -
Example with "sparse” connections
@ We can represent relations such as

p(x1)p(x2)P(x3)p(xa|x1, X2, x3) P(x5 | X1, x3) P(X6 | Xa) P(X7| X4, X5)

@ Which is shown below
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The general case

@ We can think of this as coding the factors

p(xk|pax)

where pay is the set of parents to a variable x;

@ The inference is then

p(x) = [ [ p(xklpa)
k
we will refer to this as factorization

@ There can be no directed cycles in the graph

@ The general form is termed a directed acyclic graph - DAG
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Basic example

@ We have seen the polynomial regression before
p(t,w) = p(w) [ | p(talw)
n

@ Which can be visualized as

w
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Bayesian Regression

@ We can make the parameters and variables explicit

p(t7 W|X7 «, 0-2) = p(W|Oé) H p(tn|w7 Xn, 02)

n

as shown here
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Bayesian Regression - Learning

@ When entering data we can condition inference on it

p(wlt) o< p(w) [ T p(talw)

n

Ln (6%
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Generative Models - Example Image Synthesis

Object Position QOrientation

Image
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Discrete Variables - 1

o General joint distribution has K2 — 1 parameters (for K possible

outcomes)
X1 X2 K K
O—CO plaln) = [T [

i=1j=1
e Independent joint distributions have 2(K — 1) parameters

X1 X2 K K
i X2j
O O plrs.sali) = [ T
i=1

/
j=1
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Discrete Variables - 2

@ General joint distribution over M variables will have KM — 1

parameters
@ A Markov chain with M nodes will have K — 1+ (M — 1)K(K — 1)
parameters
X1 X2 XM

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 14 / 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Discrete Variables - Bayesian Parms

K1 Ko Kar
X1 [ X2 [ [ XM
@ The parameters can be modelled explicitly

M
p({xm, tim}) = p(xa|p2)p(p1) [T PCtmlxim—1, 11m)p(11m)

m=2

@ It is assumed that p(um) is a Dirachlet
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Discrete Variables - Bayesian Parms (2)

@ For shared paraemeters the situation is simpler

M
p({xm}, 1, 1) = p(xalpa)p(n) T pOmlxm—1, 1)p(12)
m=2
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Extension to Linear Gaussian Models

@ The model can be extended to have each node as a Gaussian
process/variable that is a linear function of its parents

E Wi Xj + b;, v;
JEpa;

p(xilpai) = N | x;
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Conditional Independence

o Considerations of independence is important as part of the analysis
and setup of a system

@ As an example a is independent of b given ¢
p(alb, c) = p(alc)
o Or equivalently

p(a,blc) = p(alb, c)p(blc)
— p(alc)p(blc)

@ Frequent notation in statistics

al b|c
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Conditional Independence - Case 1

p(a,b,c) = p(alc)p(blc)p(c)
p(a,b) = > p(alc)p(blc)p(c)

a b c

alb | 0

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 20/ 83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Conditional Independence - Case 1

Y ~ pla,b,c)
p(a’ b’C) - p(C)
" b = p(alc)p(blc)
alb | c
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Conditional Independence - Case 2

a c b
VR
O—0O—0
p(a, b, c) = p(a)p(cla)p(blc)

p(a, b) = p(a) > _ p(cla)p(blc) = p(a)p(b|a)

al bl
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Conditional Independence - Case 2

O—e—O

pla,blc) =
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Conditional Independence - Case 3

a b
p(a,b,c) = p(a)p(b)p(cla,b)
p(a,b) = p(a)p(b)
alb | 0

This is the opposite of Case 1 - when ¢ unobserved
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Conditional Independence - Case 3

a b _ pla, b, c)
p(a,b|c) - p(C)

p(a)p(b)p(c|a, b)
p(c)

alb | ¢

This is the opposite of Case 1 - when c observed
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Diagnostics - Out of fuel?

p(G=1B=1,F=1) = 0.8

p(G=1B=1,F=0) = 0.2

B F p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1

B = Battery p(B=1) = 09

¢ F = FuelTank p(F=1) = 09
G = Fuel Gauge:>p(/:_0) - 01
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Diagnostics - Out of fuel?

p(G = 0|F = 0)p(F =0)

P(F=0/G=0) = C=0

0.257

Q

Observing G=0 increased the probability of an empty tank
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Diagnostics - Out of fuel?

>.p(G=0[B=0,F)p(F)
0.111

Q

Observing B=0 implies less likely empty tank
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D-separation

o Consider non-intersecting subsets A, B, and C in a directed graph

@ A path between subsets A and B is considered blocked if it contains a
node such that:
© the arcs are head-to-tail or tail-to-tail and in the set C
@ the arcs meet head-to-head and neither the node or its descendents are

in the set C.
o If all paths between A and B are blocked then A is d-separated from
B by C.
@ If there is d-separation then all the variables in the graph satisfies
Al B|C
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D-Separation - Discussion
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@ Inference
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Inference in graphical models

e Consider inference of p(x,y) we can formulate this as

p(x,y) = p(xly)p(y) = p(y[x)p(x)

@ We can further marginalize

ply) =>_ pyIx)p(x)

@ Using Bayes Rule we can reverse the inference

ply[x)p(x)

p(xly) = o(y)

@ Helpful as mechanisms for inference
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Inference in graphical models

x €T i

Graphical Models & HMMs 33 /83



Intro BN Independence Inference FG Sum-Product HMM Markov HMM ML of HMM F-B Viterbi Example Summary

Inference on a chain

T X2 ITN-1 TN
p(x) = ¢12(X1,X2)¢23(X2,X3) Yy, (Xn—1, XN)

(xn)—z DD e

Xn—1 Xn+1 XN
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Inference on a chain

p(xn) Zlbn 1,n(Xn—1,Xn) [Z%z X1, X2 ]

Xn—1
x,,)
[E Un,nt1(Xn, Xnt1) [E Yn—1,n(xNn— 1,XN)”
Xn41
Hb Xn
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Inference on a chain

,ua(Xn)

,ub(Xn)

Henrik I. Christensen (RIM@GT)

nl o (Tn) pg(n) Nfgn—%l)
() N (...
Tn—1 Tn Tn+1 TN

E Yn—1,n(Xn—1, Xn) [E P12 X1,X2]
Xn—1

Z @Z)nfl,n(xnfla Xn),ua(xnfl)

Xn—1

Z% n+1(Xny Xng1) [Z Yn—1,n(XN— 1,XN)]
Xn+1

Z ¢n,n+1(Xna Xn+1)Mb(Xn+1

Xn+1
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Inference on a chain

pa(x2) =32 Y12(x, %) pe(xn-1) = >, Yn-1,8(XN-1, Xn)

Z = Z :Ufa(Xn),ub(Xn)

Xn
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Inference on a chain

@ To compute local marginals

Compute and store forward messages 115(xn)
Compute and store backward messages fp(Xn)
Compute Z at all nodes

Compute

p(xn) = %Ma(xn)ﬂb(xn)

for all variables
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Inference in trees

Undirected Tree Directed Tree Directed Polytree
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Factor Graphs

T L2 €3

fa fb fc fd

p(x) = fa(x1, x2) fp(x1, x2) fe (X2, X3) fu(x3)

p() = [] fxe)
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Factor Graphs from Directed Graphs

fe
fa fo
X)—p(X1 (x2) f(x1, x2, X3) fa(x1) = p(x1)
p(x3|x1, x2) p(x1)p(x2)p(x3 ’X1, x2) fo(x2) = p(x2)

fe(x1, x2, x3) = p(x3]x2, x1)
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Factor Graphs from Undirected Graphs

T T2 T T2 X7 T2
/ fa
o
x3 x3 T3
Y(x1, X2, X3) fx,x2,x3)  falx1, x2, x3)fp(x2, X3)
= P(x1, x2, X3) = Y(x1, x2, x3)
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The Sum-Product Algorithm

Objective @ exact, efficient algorithm for computing marginals
@ make allow multiple marginals to be computed efficiently

Key Idea @ The distributive Law

ab+ac=a(b+c)
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The Sum-Product Algorithm

Fy(z,X,)

p(x) = p(x)

x\x

p(x)= [ Fs(xX)

s€Ne(x)
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The Sum-Product Algorithm

Fy(x,X,)

p0)= [I [SFRecX)| = T #eon)
Xs

seNe(x) seNe(x)

[ih—x(X) = Z Fs(x, Xs)
Xs
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The Sum-Product Algorithm

TM

\lil’Mﬁfs (xM)

B —

Pfo—a(T)

Tm

Gm(mma Xsm)

Fs(x, Xs) = fs(x, x1, -ory xm) G1(x1, Xs1) - - - Gm(xm, Xsmr)
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The Sum-Product Algorithm

TM

\/’il‘Mﬁfs (xM)

Tm

Gm(mma Xsm)

pox(x) =

Z fs(X, X1y ooy XM1) H Z G (Xm, Xsm)

méeNe(£)\x | Xom

Z (X, X1, ooy X01) H Hoxm—s s (Xm)
XM

mée Ne(fs)\x

XZI..
%:..
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The Sum-Product Algorithm

TM

\/L:CM—’fs (mM)

Tm

Gm(xmy Xsm)

:U'Xmﬁfs(xm) Z Gm(Xma Xsm) = Z H Fl(Xma le)

Xsm Xsm le Ne(xm)\fs

= H Hfi—xm (xm)

leNe(xm)\fs
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The Sum-Product Algorithm

Initialization @ For variable nodes

@ For factor nodes
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The Sum-Product Algorithm

@ To compute local marginals

e Pick an arbitrary node as root

e Compute and propagate msgs from leafs to root (store msgs)

e Compute and propagate msgs from root to leaf nodes (store msgs)
e Compute products of received msgs and normalize as required

o Propagate up the tree and down again to compute all marginals (as
needed)
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Introduction

@ There are many examples where we are processing sequential data
o Everyday examples include

e Processing of stock data
Speech analysis

Traffic patterns

Gesture analysis
Manufacturing flow

@ We cannot assume |ID as a basis for analysis
@ The Hidden Markov Model is frequently used
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Apple Stock Quote Example

Feb 17,2009 Open96.87 High97.04 Low9428 Close94.53  Volume 24,222,600

J Hidd

225

200

175

125

Dec 2009 Feb Mar Apr May Jun Jul Aug Sep Oct Nou
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© Markov Model
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Markov model

We have already talked about the Markov model.

Estimation of joint probability as a sequential challenge

N
p(Xla tee 7XN) = H P(Xn|Xn—17 e 7X1)

n=1

An Nth order model is dependent on the N last terms

A 1st order model is then

N

P(x1, ..., xn) = [ [ p(xalxn-1)

n=1

P(Xn|Xn—1 -, x1) = p(Xn|Xn—1)
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Markov chains

Xl‘ X2 . X3 . X4 .

X1 X9 X3 X4
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© Hidden Markov Model
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Hidden Markov Model

Z1 Zo Zp—1 Zny Zn+1

X1 X2

Graphical Models & HMMs 60 / 83
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Modelling of HMM's
@ We can model the transition probabilities as a table
Ak = p(zok = 1]zp—1j = 1)
@ The conditionals are then (with a 1-out-of-K coding)

p(zn’Zn—la H HAzn b #nk

k=1, =1

@ The per element probability is expressed by 7y = p(z1x = 1)

p(z1|m) = H Tk

with 3, m = 1
Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 61 /83
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[llustration of HMM
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@ ML solution for the HMM
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Maximum likelihood for the HMM

o If we observe a set of data X = {xg,...,xy} we can estimate the
parameters using ML
p(X|0) = Hp (X, Z|6)
@ l.e. summation of paths through lattice
@ We can use EM as a strategy to find a solution
o E-Step: Estimation of p(Z|X,6°)
@ M-Step: Maximize over # to optimize
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ML solution to HMM

@ Define

Q(0,6°) = > p(Z|X,0°)Inp(X, Z|0)
V4
zn) = plzalX,0°9)

Y(zok) = E[an]:Z'Y(Z)an

§(Zn—lazn) - p(zn—lazn‘Xaeold)
g(zn—l,jy an) = Z V(Z)Zn—l,jznk
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ML solution to HMM

@ The quantities can be computed

B Y(z1k)
Tk = K o a
21:1’7(211)
Ay — > o2 §(Zn-1> Znk)
vk —

11 Yo (201, zar)
@ Assume p(x|ox) = N(x|uk, Xk) so that
,Uzk — Zn ’Y(an)xn
220 (2nk)

20 Y(Z0k) (X — i) (X — pk
Zn V(an)

@ How do we efficiently compute v(zpx)?

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 66 / 83
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Outline

@ Forward-Backward
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Forward-Backward / Baum-Welch

@ How can we efficiently compute () and &(.,.)?
© Remember the HMM is a tree model
@ Using message passing we can compute the model efficiently

(remember earlier discussion?)

@ We have two parts to the message passing forward and backward for
any component

o We have
P(X|z4)p(zn)

’Y(Zn) = p(Z,,|X) = p(X)

@ From earlier we have
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Forward-Backward

@ We can then compute

o(zp) = p(X,,|z,,)Za(zn,l)p(z,,|z,,,1)

B(zn) = ZB(Zn-I—l)P(Xn—&-l|Zn+1)P(Zn+1’Zn)
p(X) = ) alzn)B(zn)
(zn—1)P(xn| 2n)P(2n| 20—1)B(2n)

g(zn—lv Zn) =

p(X)
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Sum-product algorithms for the HMM

@ Given the HMM is a tree structure
@ Use of sum-product rule to compute marginals

@ We can derive a simple factor graph for the tree

Z1 Zp—1 Z
X P n
g1 In—1 9n
X1 Xn—1 Xn
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Sum-product algorithms for the HMM

@ We can then compute the factors

h(z1) = p(z1)p(xa|z1)
fo(zn-1,20) = p(zn|zn—1)p(Xn|zn)

@ The update factors pf,,, (z,) can be used to derive message passing
with «(.) and 5(.)
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@ Viterbi
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Viterbi Algorithm

Using the message passing framework it is possible to determine the
most likely solution (ie best recognition)

Intuitively
Keep only track of the most likely / probably path through the graph

At any time there are only K possible paths to maintain

Basically a greedy evaluation of the best solution
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@® Example
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Small example of gesture tracking

@ Tracking of hands using an HMM to interpret track
@ Pre-process images to generate tracks

o Color segmentation
e Track regions using Kalman Filter
o Interpret tracks using HMM
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Pre-process architecture

Initial HSV/
thresholds

en (RIM@G

RGB image

>

Binary image Density map
Color

Thresholding
and

Downscale

segmentation

Connecting

Lookup N largest
table blobs

lookup table

Color Tracker

~

model
> Histogram Head, left
and right hand
blobs
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Basic idea
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Tracking

77777777 Theshola

20
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Motion Patterns

Example Summary

AN A\
Attention Idle Forward Back Left Right
Turn left | Turnright| Faster Slower Stop

Henrik I. Christensen (RIM@GT)
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Evaluation

Acquired 2230 image sequences
Covering 5 people in a normal living room
1115 used for training

1115 sequences were used for evaluation

Capture of position and velocity data
’ Rec Rates ‘ Position ‘ Velocity ‘ Combined ‘

| Result [%] | 96.6 | 887 [ 995 |
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Example Timing

’ Phase ‘ Time/frame[ms] ‘
Image Transfer 4.3
Segmentation 0.6
Density Est 2.1
Connect Comp 2.1
Kalman Filter 0.3
HMM 21.0
Total 30.4
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Outline

@ Summary
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Summary

@ The Hidden Markov Model (HMM)
@ Many uses for sequential data models
@ HMM is one possible formulation

@ Autoregressive Models are common in data processing

Henrik I. Christensen (RIM@GT) Graphical Models & HMMs 83 /83



	Introduction
	Bayesian Networks
	Conditional Independence
	Inference
	Factor Graphs
	Sum-Product Algorithm
	HMM Introduction
	Markov Model
	Hidden Markov Model
	ML solution for the HMM
	Forward-Backward
	Viterbi
	Example
	Summary

