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Introduction

Sometimes it is easier to use the data directly or in a simplified form
Data structure might be hard to parse
The disadvantage of “raw” data models is the lack of insight

Analysis of robustness / performance can be a challenge

Yet, often these methods are very effective
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K-means
@ Assume you have a collection of data {x1,...,xn}
@ We want to approimate the data by K “prototypes”
@ Generate an initial guess of K prototypes
@ lterate to convergence

@ For each data member (x;) find closest “prototype”
@ Re-estimate the center for the cluster

For any data-member approximate it by its mean (thus, the K-means)

So far without consideration of classes

Henrik |. Christensen (IRIM@GT) Prototypes & NN 6 /32



Intro Prototypes k-NN a-NN Summary

K-means with classes

Assume we have R classes.

Each prototype is represented by (x;, gj), where x; is the data value
and gj is the label

Apply K-means to each class of data separately

Assign class labels to each of the K*R prototypes

Assign class label to new data based on nearest neighbor
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Example K-means result

K-means - 5 Prototypes per Class
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Fixing K-means

@ The prototypes are generated for each class independently
@ The boundaries may not be well-defined

@ What if we could change this as part of learning?
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Kohonen's Learned Vector Quantization

Algorithm 13.1 Learning Vector Quantization—LVQ).

1. Choose R initial prototypes for each class: mi(k), mz(k),...,mr(k),
k=1,2,...,K, for example, by sampling R training points at random
from each class.

2. Sample a training point z; randomly (with replacement), and let (7, k)
index the closest prototype m;(k) to x;.

(a) If g; = k (i.e., they are in the same class), move the prototype
towards the training point:

my (k) — m;(k) + e(z: — my(k)),

where € is the learning rate.

(b) If g; # k (i.e., they are in different classes), move the prototype
away from the training point:

m;(k) «— m;(k) — e(r; — my(k)).

3. Repeat step 2, decreasing the learning rate ¢ with each iteration to-
wards zero.
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Gaussian Mixture Models

K-means is a hard method for approximating data

Could we use a mixture of Gaussians to approxiate our data / classes

Model each class k as

K
P(X|G = k)= med(X: jikr, T)
r=1

The GM model is typically more robust to noise
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Training Error: 0.170
Test Error: 0243
Bayes Emor:  0.210
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Example Gaussian Mixture result

Gaussian Mixtures - 5 Subclasses per Class

Training Error: 0.17
Test Error. 0.22
Bayes Emor: 0.21
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© k-Nearest Neighbor Classifier
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K-Nearest Neighbors Classifier

Find the k nearest neighbors {(x1,81),- .., (xk,&k)}
Estimate the class by majority vote

In most cases a simple Euclidian distance is used

This is a pure memory based technique. All training data are
preserved

@ It is possible to show that the error rate at most is twice the Bayes
error rate (Ripley 1996).

Still considered a top-10 data minign algorithm
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Example result - 1-NN

1-Nearest Neighbor
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Example result - 15-NN
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Real-world example - LANDSAT

‘Spectral Band 1 Spectral Band 2

Land Usage

FIGURE 13.6. The first four paﬂels are LANDSAT rmages for an agmultuml
area in four spectral bands, depicted by h The 1 g two

panels give the actual land usage (color eoded) :md the predicted land usage using
a five-nearest-neighbor rule described in the text.
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Real-world example - LANDSAT - Performance

STATLOG results
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FIGURE 13.8. Test-error performance for a number of classifiers, as reported
by the STATLOG project. The entry DANN is a variant of k-nearest neighbors,
using an adaptive metric (Section 13.4.2).
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Character recognition - MNIST
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FIGURE 13.9. Examples of grayscale images of handwritten digits.
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MNIST addressign systematic variations

o Consider slight variations in the rotation of the character
—= = ] | =
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_—

@ The image is here 16x16 or 256 vector
@ This is a curve in a 256D space.

@ We could compute a curvature space and reduce dynamics
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MNIST Curvature encoding
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MNIST Curvature Comparative Results

Method Error rate
Neural-net 0.049
I-nearest-neighbor/Euclidean distance 0.055
I-nearest-neighbor/tangent distance 0,026
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K-NN considerations

@ Classifying unknown data are relatively expensive
e Have to compare / compute distances for k-neighbors
o Computationally intensive, especially as size of training data grows
e The challenge is particularly hard in high dimensional spaces
o Noisy / irrelevant data can be a major challenge
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@ Adaptive Nearest Neighbor Classifier
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Adaptive Neirest Neighbor Classifier

dimensional spaces.
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@ The distance to a closeby point goes up quickly with higher

Summary

@ Size considerations - the radius to find a point goes up quickly, ie the
space coverage is sparse.
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Discriminant adaptive neighbor classification

e DANN

e Discriminative - senstitive the set of classes
o Adaptive - capability to adapt / adjust ot the situation
@ NN - based on the local neighbors

@ Uses local discriminative analysis to determine the right neighborhood
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The DANN algorithm

O Initialize ¥ to be identity /
@ Given a test point xg find nearest neighbor using the metric

D(x,x0) = (x — x0) "X (x — xo)
compute the weighted within, W, and between, B covariances

@ Update the ¥ matrix using the metric

Y = W Yw2BWw 2 4 e)w 12
W=2[B* 4 ellw~1/2

@ lterate 1-3 a number of times to find the adjusted nearest neighbors
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basic example of DANN use

FIGURE 13.14. Neighborhoods found by the DANN procedure, at various query
points (centers of the crosses). There are two classes in the data, with one class
surrounding the other. 50 nearest-neighbors were used to estimate the local met-
rics. Shown are the resulting metrics used to form 15-nearesi-neighborhoods.
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Summary

Prototype / Memory Based Techniques Frequently perform well,
especially on unstructured data

Computational considerations are important

Often k-NN or basic mixture models are good for a first evaluation of
performance

Lots of good tools available for use even on large data sets.
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