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Introduction

This far the process has been about data compression and optimal
discrimination

Once process complete the training set is discarded and the model is
used for processing

What if data were kept and used directly for estimation?

Why you ask?

The decision boundaries might not be simple or the modeling is too
complicated

Already discussed Nearest Neighbor (NN) as an example of direct
data processing

A complete class of memory based techniques

Q: how to measure similarity between a data point and samples in
memory?

Henrik I Christensen (RIM@GT) Kernel Methods 3 / 37



Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary

Kernel Methods

What if we could predict based on a linear combination of features?

Assume a mapping to a new feature space using φ(x)

A kernel function is defined by

k(x, x′) = φ(x)Tφ(x′)

Characteristics:

The function is symmetric: k(x, x′) = k(x′, x)
Can be used both on continuous and symbolic data

Simple kernel
k(x, x′) = xTx′

the linear kernel.

A kernel is basically an inner product performed in a feature/mapped
space.
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Kernels

Consider a complete set of data in memory

How can we interpolate new values based on training values? I.e.,

y(x) =
1∑
k

N∑
n=1

k(x , xn)xn

consider k(., .) a weight function that determines contribution based
on distance between x and xn
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Dual Representation

Consider a regression problem as seen earlier

J(w) =
1

2

N∑
n=1

{
wTφ(xn)− tn

}2
+
λ

2
wTw

with the solution

w = − 1

λ

N∑
n=1

{
wTφ(xn)− tn

}
φ(xn) =

N∑
n=1

anφ(xn) = ΦTa

where a is defined by

an = − 1

λ

{
wTφ(xn)− tn

}
Substitute w = Φta into J(w) to obtain

J(a) =
1

2
atΦΦTΦTΦa− aTΦΦT t +

1

2
tT t +

λ

2
aTΦΦTa

which is termed the dual representation
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Dual Representation II

Define the Gram matrix - K = ΦΦT to get

J(a) =
1

2
aTKKTa− aTKt +

1

2
tT t +

λ

2
aTKa

where
Knm = φ(xm)Tφ(xn) = k(xm, xn)

J(a) is then minimized by

a = (K + λIN)−1t

Through substitution we obtain

y(x) = wTφ(x) = aTΦφ(x) = k(x)T (K + λIN)−1 t

We have in reality mapped the program to another (dual) space in
which it is possible to optimize the regression/discrimination problem

Typically N >> M so the immediate advantage is not obvious. See
later.
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Constructing Kernels

How would we construct kernel functions?

One approach is to choose a mapping and find corresponding kernels

A one dimensional example

k(x , x ′) = φ(x)Tφ(x ′) =
M∑
n=1

φi (x)φi (x
′)

where φi (.) are basis functions
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Kernel Basis Functions - Example
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Construction of Kernels

We can also design kernels directly.

Must correspond to a scala product in “some” space

Consider:
k(x, z) = (xTz)2

for a 2-dimensional space x = (x1, x2)

k(x, z) = (xTz)2 = (x1z1 + x2z2)2

= x2
1 z

2
1 + 2x1z1x2z2 + x2

2 z
2
z

= (x2
1 ,
√

2x1x2, x
2
2 )(z2

1 ,
√

2z1z2, z
2
2 )T

= φ(x)Tφ(z)

In general if the Gram matrix, K, is positive semi-definite the kernel
function is valid
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Techniques for construction of kernels

k(x, x′) = c1k(x, x′)

k(x, x′) = f (x)k(x, x′)f (x′)

k(x, x′) = q(k(x, x′))

k(x, x′) = exp(k(x, x′))

k(x, x′) = k1(x, x′) + k2(x, x′)

k(x, x′) = k1(x, x′)k2(x, x′)

k(x, x′) = xTAx′
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More kernel examples/generalizations

We could generalize k(x, x′) = (xTx′)2 in various ways
1 k(x, x′) = (xTx′ + c)2

2 k(x, x′) = (xTx′)M

3 k(x, x′) = (xTx′ + c)M

Example correlation between image regions

Another option is
k(x, x′) = e−||x−x

′||/2σ2

called the “Gaussian kernel” (see later)

Several more examples in the book
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Radial Basis Functions

What is a radial basis function?

φj(x) = h(||x− xj ||)

How to average/smooth across data entirely based on distance?

y(x) =
N∑

n=1

wnh(||x− xn||)

the weights wn could be estimated using LSQ

A popular interpolation strategy is:

y(x) =
N∑

n=1

tnh(x− xn)

where

h(x− xn) =
ν(x− xn)∑
j ν(x− xj)
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The effect of normalization?
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Nadaraya-Watson Models

Lets interpolate across all data!
Using a Parzen density estimator we have

p(x, t) =
1

N

N∑
n=1

f (x− xn, t − tn)

We can then estimate

y(x) = E [t|x] =

∫ ∞
−∞

tp(t|x)dt

=

∫
tp(x, t)dt∫
p(x, t)dt

=

∑
n g(x− xn)tn∑
m g(x− xm)

=
∑
n

k(x, xn)tn

where

k(x, xn) =

∑
n g(x− xn)∑
m g(x− xm)

and

g(x) =

∫ ∞
−∞

f (x, t)dt
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Gaussian Mixture Example

Assume a particular one-dimensional function (here sine) with noise

Each data point is an iso-tropic Gaussian Kernel

Smoothing factors are determined for the interpolation
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Gaussian Mixture Example
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Gaussian Kernels

We have so far considered basic of kernels - a distance metric

Transformations to a new space

Lets consider Gaussian Processes

Rather than direct regression / classification
What if the mapping is probabilistic over a function space
Ex; training with noisy training data
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Linear Regression Revisited

In Regression we are used to

y(x) = wTφ(x)

what is the weights were probabilistic

p(w) = N(w|0, α−1I)

we can reformulate the optimization to be

y = Φw
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Gaussian Models

Considering basic Gaussian parameters

E [y] = ΦE [w] = 0

E [yyT ] = ΦE [wwT ]ΦT =
1

α
ΦΦT = K

where K is the Gram matrix which defines the kernel, i.e.

Knm = k(xn, xm) =
1

α
φ(xn)Tφ(xm)
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Gaussian Processes

Determined in full by 1. and 2. order moments

Typically no knowledge of mean so

E [p(w |t)] = 0

is assumed a good guess

Specification of the co-variance is thus adequate

E [y(xn)y(xm)] = k(xn, xm)

One could also define the Gaussian kernels directly as a set of basis
functions.
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Gaussian Processes for Regression

If we have noisy training data

tn = yn + εn

then we can model the data as

p(tn|yn) = N(tn|yn, β−1)

for a vector of data (your training set) we have

p(t|y) = N(t|y, β−1IN)

the marginalized distribution is then

p(y) = N(y|0,K)

where K is the Gram matrix
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Gaussian Processes for Regression II

We can then compute the marginal for the target

p(t) =

∫
p(t|y)p(y)dy = N(t|0,C)

where
C (xn, xm) = k(xn, xm) + β−1δnm

We can thus express the distribution of y entirely based on the kernel
function

Henrik I Christensen (RIM@GT) Kernel Methods 28 / 37



Introduction Dual Representations Kernel Design RBF Linear Reg. GP Regression GP Classification Summary

Exponential quadratic Gaussian Processes

A popular family of Gaussian processes are defined by

k(xn, xm) = θ0exp

{
−θ1

2
||xn − xm||2

}
+ θ2 + θ3x

T
n xm

Which has a bias term, a linear term and the quadratic exponential

Allows representation of a broad family of functions
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Quadratic Exponential Gaussian Processes
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Recursive Process Regression

In temporal processes we would like to model

p(tN+1|tN , xN+1)

For the process we have

p(tN+1) = N(tN+1|0,CN+1)

We can partition C

CN+1 =

[
CN k
kT c

]
where k is composed of k(xi , xN+1) and c = k(xN+1, xN+1) + β−1
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Recursive Process Regression II

The mean and variance is then

E [xN+1] = kTC−1
N t

σ2(xN+1) = c − kTC−1
N k
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Gaussian Processes for Classification

This far we have considered regression over the full space

For classification the optimization would be with respect to miss
classification

p(t|a) = σ(a)t(1− sigma(a))1−t

Very similar derivations can be performed as detailed in the book.
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Gaussian Process Classification Example
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Summary

Memory based methods - keeping the data!

Design of distance metrics for weighting of data in learning set

Kernels - a distance metric based on dot-product in some feature
space

Being creative about design of kernels

Gaussian processes represent a broad class of stochastic processes

Estimation of Gaussian Processes is a way to optimize fit to data and
to obtain estimate of uncertainty as interpolation is performed away
from learning data

A good source:

C. E. Rasmussen & C. K. I. Williams, “Gaussian Processes for Machine
Learning”, the MIT Press, 2006
Available from http://www.GaussianProcess.org/gpml

Includes a good Matlab toolkit
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